
IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 1 of 186

IoT Explorer

Device Development Guide

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 2 of 186

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

The complete copyright of this document, including all text, data, images, and other content, is

solely and exclusively owned by Tencent Cloud Computing (Beijing) Co., Ltd.（"Tencent

Cloud"); Without prior explicit written permission from Tencent Cloud, no entity shall

reproduce, modify, use, plagiarize, or disseminate the entire or partial content of this

document in any form. Such actions constitute an infringement of Tencent Cloud's copyright,

and Tencent Cloud will take legal measures to pursue liability under the applicable laws.

Trademark Notice

This trademark and its related service trademarks are owned by Tencent Cloud Computing

(Beijing) Co., Ltd. and its affiliated companies("Tencent Cloud"). The trademarks of third

parties mentioned in this document are the property of their respective owners under the

applicable laws. Without the written permission of Tencent Cloud and the relevant trademark

rights owners, no entity shall use, reproduce, modify, disseminate, or copy the trademarks as

mentioned above in any way. Any such actions will constitute an infringement of Tencent

Cloud's and the relevant owners' trademark rights, and Tencent Cloud will take legal measures

to pursue liability under the applicable laws.

Service Notice

This document provides an overview of the as-is details of Tencent Cloud's products and

services in their entirety or part. The descriptions of certain products and services may be

subject to adjustments from time to time.

The commercial contract concluded by you and Tencent Cloud will provide the specific types

of Tencent Cloud products and services you purchase and the service standards. Unless

otherwise agreed upon by both parties, Tencent Cloud does not make any explicit or implied

commitments or warranties regarding the content of this document.

Contact Us

We are committed to providing personalized pre-sales consultation and technical after-sale

support. Don't hesitate to contact us at 4009100100 or 95716 for any inquiries or concerns.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 3 of 186

Contents

Device Development Guide

Developer Guide

Device Identity Authentication Introduction

Introduction to Equipment Communication Protocol

Device MQTT Access Protocol

MQTT-Based Device Connection over TCP

Equipment'S MQTT Access Based on WebSocket

MQTT Persistent Session

Dynamic Registration Protocol

Thing Model Protocol

Firmware Upgrade Protocol

Gateway Subdevice

Feature Overview

Topology Relationship Management

Proxy Sub-Device Online and Offline

Proxied Subdevice Publish and Subscribe

Sub-Device Firmware Upgrade

Resource Management Protocol

File Management Protocol

Micro Call TWecall Protocol

SDK Description and Download

Device-Side SDK Usage Reference

C SDK Usage Reference

Usage Overview

Compilation Configuration Instructions

Compilation Environment Description

API and Variable Parameter Descriptions

Thing Model Code Generation

Model Application Development

Device Information Storage

Usage Reference

AT SDK Usage Reference

Using Android SDK Reference

Java SDK Usage Reference

Python SDK Usage Reference

C# Integration Reference

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 4 of 186

Gateway and Sub-Device Development

Gateway and Subdevice Integration Instruction

Gateway Device Access Guide

Sub-Device Access Guide

Audio/Video Device Development

P2P Access Guide

Cloud Storage Access Guide

Signal Interaction Instructions between Device Side and Application Side

Tencent Lianlian Mini Program Interactive Signaling Description

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 5 of 186

Device Development Guide

Developer Guide
Last updated：2025-04-27 17:48:43

Tencent Cloud IoT development platform provides device-side SDKs in multiple languages

and oriented to various scenarios. To help you use the correct SDK integration and utilize the

IoT development platform more efficiently, please read the following content carefully.

Developer Guide

SDK Overview

SDK
Descrip

tion
Application Scenario

Reference

Documentatio

n

qcloud-iot-explorer-

sdk-embedded-c

Device-

side C

Langua

ge SDK

Provide adaptation guides for

multiple integrations and

usages of IoT Explorer for

platforms developed based on

the C language.

C SDK Usage

Reference

qcloud-iot-explorer-

5G-sdk-embedded

Device-

side C

Langua

ge SDK

5G

Oriented to development

platforms based on the C

language, introduce 5G and

edge computing features on

the basis of IoT Explorer.

C SDK 5G

Usage

Reference

iot-device-java

Device-

side

Java

Langua

ge SDK

Provide adaptation guides for

platforms such as Android to

access and use IoT Explorer

for platforms developed based

on the Java language.

Android

SDK Usage

Reference

Java SDK

Usage

Reference

iot-device-python

Device-

side

Python

Langua

ge SDK

For platforms developed based

on the Python language,

support the access of

microcontrollers or embedded

devices running MicroPython

to IoT Explorer.

Python SDK

Usage

Reference

https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://cloud.tencent.com/document/product/1081/48377
https://cloud.tencent.com/document/product/1081/48377
https://github.com/tencentyun/qcloud-iot-explorer-5G-sdk-embedded
https://github.com/tencentyun/qcloud-iot-explorer-5G-sdk-embedded
https://cloud.tencent.com/document/product/1081/48365
https://cloud.tencent.com/document/product/1081/48365
https://cloud.tencent.com/document/product/1081/48365
https://github.com/tencentyun/iot-device-java
https://cloud.tencent.com/document/product/1081/48368
https://cloud.tencent.com/document/product/1081/48368
https://cloud.tencent.com/document/product/1081/48368
https://cloud.tencent.com/document/product/1081/48369
https://cloud.tencent.com/document/product/1081/48369
https://cloud.tencent.com/document/product/1081/48369
https://github.com/tencentyun/iot-device-python
https://cloud.tencent.com/document/product/1081/60785
https://cloud.tencent.com/document/product/1081/60785
https://cloud.tencent.com/document/product/1081/60785

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 6 of 186

Besides using the above SDK to integrate with IoT Explorer, you can also use TencentOS tiny

to quickly integrate with IoT Explorer by porting the C SDK, and introduce features such as

low-power, low resource occupation, modularization, and security and reliability to your

application. For details, see Usage Reference of SDK Based on TencentOS Tiny .

The development process is divided into the following three steps:

1. Determine application scenarios, among them the application scenarios include:

2. Select the appropriate SDK according to the application scenario.

3. Reference documentation and examples to implement the functionality.

Direct device access types are divided into resource-rich type and resource-constrained

type. For details, see direct device access type description .

qcloud-iot-sdk-

tencent-at-based

Device-

side AT

Module

SDK

For platforms developed based

on the customization of AT

Modules by Tencent Cloud,

provide an adaptation guide for

the access of MCU+ Tencent

Cloud customized AT Modules

to IoT Explorer.

AT SDK

Usage

Reference

qcloud-iot-esp-wifi

Device-

side

ESP826

6 SDK

For platforms developed based

on ESP8266, provide the

access process for Tencent

Cloud ESP8266 custom

firmware, as well as the

adaptation guide for multiple

networking protocols such as

SoftAp and SmartConfig to

access Tencent Lianlian Mini

Program.

ESP8266 SDK

Usage

Reference

Development Process

Directly connected device.

Gateway and subdevice.

Bluetooth device.

Device network configuration.

Relevant Guidelines

Directly Connected Device

Resource-rich devices

https://cloud.tencent.com/document/product/1081/48378
https://cloud.tencent.com/document/product/1081/48383
https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based
https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based
https://cloud.tencent.com/document/product/1081/48366
https://cloud.tencent.com/document/product/1081/48366
https://cloud.tencent.com/document/product/1081/48366
https://github.com/tencentyun/qcloud-iot-esp-wifi
https://cloud.tencent.com/document/product/1081/48367
https://cloud.tencent.com/document/product/1081/48367
https://cloud.tencent.com/document/product/1081/48367

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 7 of 186

For details, see Bluetooth device development .

For details, see Gateway and Sub-device Development .

Development

Platform
SDK Reference Documentation

Linux
qcloud-iot-explorer-sdk-

embedded-c
Linux Platform Access Guide

Windows
qcloud-iot-explorer-sdk-

embedded-c

Windows Platform Access

Guide

Android iot-device-java
Android Platform Access

Guide

Java iot-device-java Java Platform Access Guide

FreeRTOS+lw

IP

qcloud-iot-explorer-sdk-

embedded-c

FreeRTOS+lwIP Platform

Access Guide

other

platforms

qcloud-iot-explorer-sdk-

embedded-c
C SDK Porting Access Guide

Resource-constrained devices

Development

Platform
SDK Reference Documentation

MCU+ customized

AT Module (cellular

type)

qcloud-iot-sdk-

tencent-at-based

MCU+ Custom MQTT AT Module

(Cellular Type) Integration Guide

MCU+ customized

AT Module (Wi-Fi

type)

qcloud-iot-sdk-

tencent-at-based

MCU+ Custom MQTT AT Module

(Wi-Fi Type) Access Guide

MCU+ General AT

Module + FreeRTOS

qcloud-iot-explorer-

sdk-embedded-c

MCU+ General TCP AT Module

(FreeRTOS) Integration Guide

MCU+ General AT

Module + nonOS

qcloud-iot-explorer-

sdk-embedded-c

MCU+ General TCP AT Module

(nonOS) Access Guide

Bluetooth Device

Gateway and Subdevice

https://cloud.tencent.com/document/product/1081/48398
https://cloud.tencent.com/document/product/1081/48400
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://cloud.tencent.com/document/product/1081/48387
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://cloud.tencent.com/document/product/1081/48392
https://cloud.tencent.com/document/product/1081/48392
https://github.com/tencentyun/iot-device-java
https://cloud.tencent.com/document/product/1081/48390
https://cloud.tencent.com/document/product/1081/48390
https://github.com/tencentyun/iot-device-java
https://cloud.tencent.com/document/product/1081/48391
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://cloud.tencent.com/document/product/1081/48388
https://cloud.tencent.com/document/product/1081/48388
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://cloud.tencent.com/document/product/1081/48389
https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based
https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based
https://cloud.tencent.com/document/product/1081/48395
https://cloud.tencent.com/document/product/1081/48395
https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based
https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based
https://cloud.tencent.com/document/product/1081/48394
https://cloud.tencent.com/document/product/1081/48394
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://cloud.tencent.com/document/product/1081/48396
https://cloud.tencent.com/document/product/1081/48396
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://cloud.tencent.com/document/product/1081/48397
https://cloud.tencent.com/document/product/1081/48397

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 8 of 186

Device Network Configuration

Distribution

Network Protocol
SDK Reference Documentation

AirKiss qcloud-iot-esp-wifi
AirKiss Distribution Network

Development

SmartConfig qcloud-iot-esp-wifi
SmartConfig Distribution

Network Development

softAP qcloud-iot-esp-wifi
softAP Distribution Network

Development

Best Practice

Practice Item Introduction

Wi-Fi

Configuration

Practice

This practice mainly introduces how to port Tencent Cloud IoT C

SDK to Espressif ESP8266 RTOS platform, and provides a

runnable Demo. Meanwhile, it introduces how to use Wi-Fi

distribution network API at code level, and can combine with

Tencent Lianlian Mini Program to perform Wi-Fi distribution

network and device binding in SoftAP mode.

MCU+ Custom AT

Module Practice

This practice is oriented for device developers who use modules

(2G/3G/4G/5G, NB, Wi-Fi, etc.) that support Tencent AT

commands to integrate with the Tencent IoT Platform. It provides

a porting example of using the Tencent AT-SDK on the mcu side.

It shows how to achieve the HAL layer porting in a software and

hardware environment based on the STM32F103 mcu and

FreeRTOS.

MCU+ General

TCP Module (I-

Cube) Practice

This practice implements porting examples of

STM32+esp8266+FreeRTOS and STM32+esp8266+without RTOS

based on STM32 I-Cube.

TencentOS-tiny

This practice realizes the integration with Tencent Cloud IoT

Explorer based on TencentOS-tiny, a real-time operating system

developed by Tencent for the Internet of Things domain.

https://github.com/tencentyun/qcloud-iot-esp-wifi
https://cloud.tencent.com/document/product/1081/48406
https://cloud.tencent.com/document/product/1081/48406
https://github.com/tencentyun/qcloud-iot-esp-wifi
https://cloud.tencent.com/document/product/1081/48405
https://cloud.tencent.com/document/product/1081/48405
https://github.com/tencentyun/qcloud-iot-esp-wifi
https://cloud.tencent.com/document/product/1081/48404
https://cloud.tencent.com/document/product/1081/48404
https://github.com/TencentCloud/tc-iot-sdk-embedded-for-esp8266
https://github.com/TencentCloud/tc-iot-sdk-embedded-for-esp8266
https://github.com/TencentCloud/tc-iot-sdk-embedded-for-esp8266
https://github.com/tencentyun/tc-iot-at-sdk-stm32-freertos-based-example
https://github.com/tencentyun/tc-iot-at-sdk-stm32-freertos-based-example
https://github.com/tencentyun/qcloud-iot-c-sdk-porting-examples
https://github.com/tencentyun/qcloud-iot-c-sdk-porting-examples
https://github.com/tencentyun/qcloud-iot-c-sdk-porting-examples
https://github.com/OpenAtomFoundation/TencentOS-tiny/tree/master/board/TencentOS_tiny_EVB_AIoT/mqttclient_iot_explorer

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 9 of 186

Device Identity Authentication

Introduction
Last updated：2025-04-27 17:48:56

The IoT explorer platform assigns a unique identifier, ProductID, to each created product.

Users can customize the Devicename to identify devices. The legitimacy of devices is verified

using the product identification + device identification + device certificate/key. When creating

a product, users need to select the device authentication method. When devices are

connected, they need to report product, equipment information and corresponding key

information according to the specified method. Only after authentication can they connect to

the IoT explorer platform. Since the resource and security level requirements of devices of

different users are all different, the platform provides two authentication methods to meet

different use cases.

Provide the following two authentication methods:

The two solutions have their own pros and cons in terms of ease of use, security and device

resource requirements. You can comprehensively evaluate and select based on your business

scenario. The solution comparison is as follows:

Overview

Certificate authentication (device-level): Assign certificates and private keys to each

device, use asymmetric encryption for authentication during integration, and users need to

burn different configuration information for each device.

Key authentication (device-level): Assign a device key to each device, authenticate the

access using symmetric encryption, and the user needs to burn different configuration

information for each device.

Feature Certificate Authentication Key Authentication

Device burning

information

Product ID, Device name, Device

certificate, Device private key.

ProductId, Devicename,

device key.

Whether to pre-

create devices
Must. Required.

Security High. Normal.

Use Limits
Can create up to 200,000 devices

under a single product.

Create up to 200,000 devices

under a single product.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 10 of 186

Users pre-create devices through the IoT Explorer console or TencentCloud API, and obtain

the product ID, device name, and device key (or device certificate, device private key) required

for device authentication. During production, burn the configuration information required for

device authentication into the Device Flash for long-term storage. This information is used for

subsequent device-to-IoT Explorer connections. Only after passing authentication can the

device be activated and launched to complete device activation and go online, enabling data

interaction with the cloud to fulfill business requirements.

Directions

Need to burn different firmware for each device. There is certain realize cost in production line

application, but it has higher security. Recommended for use.

Devices can obtain device authentication information required for burning through dynamic

retrieval. In this method, users only need to enable the device dynamic registration switch in

the console to burn the same configuration firmware (ProductID + ProductSecret) for all

devices under the same product. Users pre-create devices in the IoT Explorer console or

TencentCloud API, and then obtain the configuration information required for device

authentication through a dynamic registration request, burn it into the Device Flash for long-

term storage, and use it for subsequent devices to initiate connection with the IoT Explorer.

Only after passing authentication, complete device activation and go live, it can interact with

the cloud for data exchange to realize business requirements.

Device

Resource

Requirements

Relatively high. Need to support

X509 certificate parsing.
Lower.

Note:

Only enterprise instances support certificate authentication.

Device Authentication Info Burning Method

Local Burning

Air Delivery

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 11 of 186

Operation Process

Note:

If you need to use this burning method, you need to manually enable the dynamic

registration feature of the product on the product details page on the console first.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 12 of 186

Introduction to Equipment

Communication Protocol

Device MQTT Access Protocol

MQTT-Based Device Connection

over TCP
Last updated：2025-04-27 17:49:33

Currently, the IoT development platform supports MQTT standard protocol access

(compatible with v3.1.1). For more information, please see MQTT Version 3.1.1 protocol

documentation.

1. Support MQTT messages such as PUB, SUB, PING, PONG, CONNECT, DISCONNECT,

UNSUB.

2. cleanSession is supported.

3. Not support will, retain msg.

4. Not support QOS2.

Support TLSV1, TLSV1.1, and TLSV1.2 protocol versions to establish a secure connection with

a high security level.

By default, after a product is created, all devices under the product have the following topic

category permissions:

MQTT Protocol Description

Difference From Standard MQTT

MQTT Channel, Security Level

TOPIC Specification

Subscribe to ${productId}/${deviceName}/control.

${productId}/${deviceName}/event released.

${productId}/${deviceName}/data subscription and publication.

$shadow/operation/${productId}/${deviceName} published. Distinguish by the type inside

the package body: update/get, which correspond to the update and retrieval operations of

the Device Shadow Document, respectively.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 13 of 186

The MQTT protocol supports two methods to integrate with the IoT platform: device certificate

and key signature. Based on your own scenario, you only need to choose one method to

integrate. The access parameters are as follows:

$shadow/operation/result/${productId}/${deviceName} subscription. Distinguish by the

type inside the package body: update/get/delta. Type update/get correspond to the results

of the update and retrieval operations of the Device Shadow Document, respectively; when

users modify the Device Shadow Document through the restAPI, the server will publish

messages through this topic, where the type is delta.

$ota/report/${productID}/${deviceName} for publishing. The device reports the version

number and the download/upgrade progress to the cloud.

$ota/update/${productID}/${deviceName} subscription. The device receives upgrade

messages from the cloud.

MQTT Access

Access

Authentic

ation

Method

Connection Domain Name

and Port
Connect Message Parameters

Certificate

authentica

tion

MQTT server connection

address, devices in

Guangzhou fill in:

${productId}.iotcloud.tence

ntdevices.com, here

${productId} is a variable

parameter, and the user

must enter the product ID

automatically generated

when creating the product.

For example,

1A17RZR3XX.iotcloud.t

encentdevices.com;

Port: 8883

﻿

 KeepAlive: The duration of keep-

alive. The value range is 0 - 900 s. If

the Internet of Things Platform still

does not receive the data of the client

after exceeding 1.5 times the

KeepAlive duration, the platform will

disconnect from the client.

ClientId: ${productId}${deviceName}, a

combined string of product ID and

device name.

UserName:

${productId}${deviceName};${sdkapp

id};${connid};${expiry}

. For details, see the username part in

the MQTT-based signature

authentication access guide below;

PassWord: password (you can assign

any value).

Key

Authentic

ation

The MQTT server

connection address

KeepAlive: time to keep the

connection alive. Value range: 0–900s;

ClientId:${productId}${deviceName};

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 14 of 186

The IoT platform uses TLS encryption to guarantee the security of device-transmitted data.

When a certificate device is connected, after obtaining the certificate, key, and CA certificate

file of the certificate device, set KeepAlive, ClientId, UserName, PassWord, etc. (Devices

connected via the Tencent Cloud Device SDK do not require setting; the SDK can

automatically generate based on device information). The device uploads the authentication

file to the URL (connection domain name and port) corresponding to the certificate

authentication. After passing, send the MqttConnect message to complete the certificate

device's TCP-based MQTT access.

The IoT platform supports generating digest signatures based on the device key using

methods such as HMAC-SHA256 and HMAC-SHA1. The process of accessing the IoT

platform through the signature method is as follows:

1. Log in to the IoT Explorer console . You can create products, add devices, and obtain

device keys in the console.

2. Generate the username field according to the constraints of IoT Explorer. The format of the

 is as follows:

matches the certificate

authentication; Port: 1883.

UserName:

${productId}${deviceName};${sdkapp

id};${connid};${expiry}

. For details, see the username part in

the MQTT-based signature

authentication access guide below;

PassWord: password. For details, see

the access guide based on MQTT

signature authentication in the

password section below.

Note:

When a device using certificate authentication is connected, the filled-in PassWord

part will not be verified. Any value can be filled in the PassWord part during certificate

authentication.

Certificate Authentication Device Connectivity Guide

Key Authentication Device Connectivity Guide

username field

The format of the username field is:

${productId}${deviceName};${sdkappid};${connid};${expiry}

Note: ${} indicates a variable, not a specific concatenation symbol.

https://console.cloud.tencent.com/iotexplorer

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 15 of 186

The meanings of each field are as follows:

3. Perform base64 decoding on the device key to obtain the original key raw_key.

4. Use the raw_key generated in step 3 to generate a hash value for the username through

the HMAC-SHA1 or HMAC-SHA256 algorithm, abbreviated as Token.

5. Generate the password field according to the constraints of IoT Explorer. The format of the

 is:

As a reference, Python, Java, Node.js, JavaScript, and C code samples for user-generated

signatures are as follows:

 Python code:

productId: product ID.

deviceName: device name.

sdkappid: fixed fill 12010126.

connid: a random string.

expiry: indicates the signature validity period, in unix timestamp format, such as

1704363215. expiry should be set to a time far exceeding the actual lifecycle of the

device, or by adding a large integer each time the device side gets the current system

time. If the value of expiry is less than the current system time, MQTT identity

verification will fail.

password field

The format of the password field is as follows:

${token}; hmac signature method

Among them, fill in the hmac signature method field with the digest

algorithm used in step 3. The optional values are hmacsha256 and

hmacsha1.

#!/usr/bin/python

-*- coding: UTF-8 -*-

import base64

import hashlib

import hmac

import random

import string

import time

import sys

Generate a random string of the specified length

def RandomConnid length

 return '' join random choice string ascii_uppercase +

string digits for _ in range length

Generate parameters required for IoT platform integration

():

. (. (.

.) ())

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 16 of 186

Save the above code to IotHmac.py, and execute the following command just. Here,

"YOUR_PRODUCTID", "YOUR_DEVICENAME", and "YOUR_PSK" are fill in your actual

product ID, device name, and device key of the created device.

Java code:

def IotHmac productID devicename devicePsk

 # 1. Generate connid as a random string to facilitate issue

identification in the backend

 connid = RandomConnid 5

 # 2. Generate expiration time, which indicates the signature's

expiration time, as a UTF8 string representing the number of seconds

from the epoch January 1, 1970, 00:00:00 UTC to the present

 expiry = int time time + 60 * 60

 # 3. Generate the clientid part of MQTT in the format of

${productid}${devicename}

 clientid = "{}{}" format productID devicename

 # 4. Generate the username part of MQTT in the format of

${clientid};${sdkappid};${connid};${expiry}

 username = "{};12010126;{};{}" format clientid connid expiry

 # 5. Sign the username and generate a token

 secret_key = devicePsk encode 'utf-8' # convert to bytes

 data_to_sign = username encode 'utf-8' # convert to bytes

 secret_key = base64 b64decode secret_key # this is still bytes

 token = hmac new secret_key data_to_sign

digestmod=hashlib sha256 hexdigest

 # 6. Generate the password field according to IoT platform rules

 password = "{};{}" format token "hmacsha256"

 return

 "clientid" clientid

 "username" username

 "password" password

if __name__ == '__main__'

 print IotHmac sys argv 1 sys argv 2 sys argv 3

(, ,):

()

(. ())

. (,)

. (, ,)

. ()

. ()

. ()

. (, ,

.). ()

. (,)

{

: ,

: ,

:

}

:

((. [], . [], . []))

python3 IotHmac.py "YOUR_PRODUCTID" "YOUR_DEVICENAME" "YOUR_PSK"

package

import Test

com.tencent.iot.hub.device.java.core.sign;

org.junit. ;

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 17 of 186

import Mac

import SecretKeySpec

import *

import static TestCase fail

import static Assert assertTrue

public class SignForMqttTest

 @Test

 public void testMqttSign

 try

System out println SignForMqttTest "YourProductId" "YourDeviceName" "Y

ourPsk"

 assertTrue true

 catch Exception e

 e printStackTrace

 fail

 public static Map<String, String> SignForMqttTest String

productID String devicename String

 devicePsk throws Exception

 final Base64.Decoder decoder = Base64 getDecoder

 //1. Generate connid as a random string to facilitate issue

identification in the backend

 String connid = HMACSHA256 getConnectId 5

 //2. Generate expiration time, which indicates the signature's

expiration time, as a UTF8 string representing the number of seconds

from the epoch January 1, 1970, 00:00:00 UTC to now

 Long expiry = Calendar getInstance getTimeInMillis /1000 +

600

 //3. Generate the MQTT clientid part in the format of

${productid}${devicename}

 String clientid = productID+devicename

 //4. Generate the MQTT username part in the format of

${clientid};${sdkappid};${connid};${expiry}

 String username = clientid+";"+"12010126;"+connid+";"+expiry

 //5. Sign the username, generate a token, and generate the

password field according to IoT platform rules

javax.crypto. ;

javax.crypto.spec. ;

java.util. ;

junit.framework. . ;

org.junit. . ;

{

() {

{

. . ((, ,

));

();

} () {

. ();

();

}

}

(

, ,

) {

. ();

. ();

. (). ()

;

;

;

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 18 of 186

 String password = HMACSHA256 getSignature username getBytes

decoder decode devicePsk + ";hmacsha256"

 Map<String,String> map = new HashMap<>

 map put "clientid" clientid

 map put "username" username

 map put "password" password

 return map

 public static class HMACSHA256

 private static final String HMAC_SHA256 = "HmacSHA256"

 /**

 * Generate signature data

 *

 * @param data The data to be encrypted

 * @param key The key used for encryption

 * @return Generate a hexadecimal encoded string

 */

 public static String getSignature byte data byte key

 try

 SecretKeySpec signingKey = new SecretKeySpec key

HMAC_SHA256

 Mac mac = Mac getInstance HMAC_SHA256

 mac init signingKey

 byte rawHmac = mac doFinal data

 return bytesToHexString rawHmac

 catch Exception e

 e printStackTrace

 return null

 /**

 * Convert byte[] array to a hexadecimal string

 *

 * @param bytes The byte array to be switched

 * @return Converted result

 */

 private static String bytesToHexString byte bytes

 StringBuilder sb = new StringBuilder

 for int i = 0 i < bytes length i++

 String hex = Integer toHexString 0xFF & bytes i

 if hex length == 1

 sb append '0'

. (. (),

. ()) ;

();

. (,);

. (,);

. (,);

;

}

{

;

([] , []) {

{

(,

);

. ();

. ();

[] . ();

();

} () {

. ();

}

;

}

([]) {

();

(; . ;) {

. ([]);

(. ()) {

. ();

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 19 of 186

Nodejs and JavaScript code are:

 sb append hex

 return sb toString

 /**

 * Get connection ID (a random alphanumeric string with a

length of 5)

 */

 public static String getConnectId int length

 StringBuffer connectId = new StringBuffer

 for int i = 0 i < length i++

 int flag = int Math random * Integer MAX_VALUE %

3

 int randNum = int Math random *

Integer MAX_VALUE

 switch flag

 case 0:

 connectId append char randNum % 26 + 'a'

 break

 case 1:

 connectId append char randNum % 26 + 'A'

 break

 case 2:

 connectId append char randNum % 10 + '0'

 break

 return connectId toString

. ();

}

. ();

}

() {

();

(; ;) {

() (. () .)

;

() (. ()

.);

() {

. (() ());

;

. (() ());

;

. (() ());

;

}

}

. ();

}

}

}

// The following is the introduction method for node. For browsers,

use the corresponding way to introduce the crypto-js library.

const crypto = require 'crypto-js'()

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 20 of 186

The C code is as follows:

// Function to generate a random number

const randomString = len =>

　　len = len || 32

　　var chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'

　　var maxPos = chars length

　　var pwd = ''

　　for let i = 0 i < len i++

　　　　pwd += chars charAt Math floor Math random * maxPos

　　

　　return pwd

// product id, device name and device key are required

const productId = 'YOUR_PRODUCTID'

const deviceName = 'YOUR_DEVICENAME'

const devicePsk = 'YOUR_PSK'

// 1. Generate connid as a random string to facilitate issue

identification in the backend

const connid = randomString 5

// 2. Generate the expiration time, which indicates the signature's

expiration time, as a UTF8 string representing the number of seconds

from the epoch January 1, 1970, 00:00:00 UTC to now

const expiry = Math round new Date getTime / 1000 + 3600 * 24

// 3. Generate the MQTT clientid part in the format of

${productid}${devicename}

const clientId = productId + deviceName

// 4. Generate the MQTT username part in the format of

${clientid};${sdkappid};${connid};${expiry}

const userName = $ clientId 12010126 $ connid $ expiry

//5. Sign the username, generate a token, and generate the password

field according to IoT platform rules

const rawKey = crypto enc Base64 parse devicePsk // Decode the

device key in base64

const token = crypto HmacSHA256 userName rawKey

const password = token toString crypto enc Hex + ";hmacsha256"

console log userName : $ userName \npassword : $ password

() {

;

;

. ;

;

(; ;) {

. (. (. ()));

}

;

}

;

;

;

();

. ((). ()) ;

;

{ } ; ; { } ; { };

. . . ();

. (,);

. (. .) ;

. ({ } { });

Note:

If you want more information about the C code, please see project download .

https://github.com/TencentCloud/tencentcloud-iot-explorer-sdk-embedded-c/blob/master/sdk_src/protocol/mqtt/mqtt_client.c

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 21 of 186

#include "limits.h"

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include "HAL_Platform.h"

#include "utils_base64.h"

#include "utils_hmac.h"

/* Max size of base64 encoded PSK = 64, after decode: 64/4*3 = 48*/

#define DECODE_PSK_LENGTH 48

/* MAX valid time when connect to MQTT server. 0: always valid */

/* Use this only if the device has accurate UTC time. Otherwise, set

to 0 */

#define MAX_ACCESS_EXPIRE_TIMEOUT (0)

/* Max size of conn Id */

#define MAX_CONN_ID_LEN (6)

/* IoT C-SDK APPID */

#define QCLOUD_IOT_DEVICE_SDK_APPID "21****06"

#define QCLOUD_IOT_DEVICE_SDK_APPID_LEN

(sizeof(QCLOUD_IOT_DEVICE_SDK_APPID) - 1)

static void HexDump char *pData uint16_t len

 int i

 for i = 0 i < len i++

 HAL_Printf "0x%02.2x " unsigned char pData i

 HAL_Printf "\n"

static void get_next_conn_id char *conn_id

 int i

 srand unsigned HAL_GetTimeMs

 for i = 0 i < MAX_CONN_ID_LEN - 1 i++

 int flag = rand % 3

 switch flag

 case 0:

(,)

{

;

(; ;) {

(, () []);

}

();

}

()

{

;

(() ());

(; ;) {

() ;

() {

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 22 of 186

 conn_id i = rand % 26 + 'a'

 break

 case 1:

 conn_id i = rand % 26 + 'A'

 break

 case 2:

 conn_id i = rand % 10 + '0'

 break

 conn_id MAX_CONN_ID_LEN - 1 = '\0'

int main int argc char **argv

 char *product_id = NULL

 char *device_name = NULL

 char *device_secret = NULL

 char *username = NULL

 int username_len = 0

 char conn_id MAX_CONN_ID_LEN

 char password 51 = 0

 char username_sign 41 = 0

 char psk_base64decode DECODE_PSK_LENGTH

 size_t psk_base64decode_len = 0

 long cur_timestamp = 0

 if argc != 4

 HAL_Printf "please ./qcloud-mqtt-sign product_id device_name

device_secret\r\n"

 return -1

 product_id = argv 1

 device_name = argv 2

 device_secret = argv 3

 /* first device_secret base64 decode */

[] (()) ;

;

[] (()) ;

;

[] (()) ;

;

}

}

[] ;

}

(,)

{

;

;

;

;

;

[];

[] { };

[] { };

[];

;

;

() {

(

);

;

}

[];

[];

[];

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 23 of 186

 qcloud_iot_utils_base64decode unsigned char * psk_base64decode

DECODE_PSK_LENGTH &psk_base64decode_len

 unsigned char * device_secret

strlen device_secret

 HAL_Printf "device_secret base64 decode:"

 HexDump psk_base64decode psk_base64decode_len

 /* second create mqtt username

 * [productdevicename;appid;randomconnid;timestamp] */

 cur_timestamp = HAL_Timer_current_sec +

MAX_ACCESS_EXPIRE_TIMEOUT / 1000

 if cur_timestamp <= 0 || MAX_ACCESS_EXPIRE_TIMEOUT <= 0

 cur_timestamp = LONG_MAX

 // 20 for timestampe length & delimiter

 username_len = strlen product_id + strlen device_name +

QCLOUD_IOT_DEVICE_SDK_APPID_LEN + MAX_CONN_ID_LEN + 20

 username = char * HAL_Malloc username_len

 if username == NULL

 HAL_Printf "malloc username failed!\r\n"

 return -1

 get_next_conn_id conn_id

 HAL_Snprintf username username_len "%s%s;%s;%s;%ld" product_id

device_name QCLOUD_IOT_DEVICE_SDK_APPID

 conn_id cur_timestamp

 /* third use psk_base64decode hamc_sha1 calc mqtt username sign

crate mqtt

 * password */

 utils_hmac_sha1 username strlen username username_sign

psk_base64decode psk_base64decode_len

 HAL_Printf "username sign: %s\r\n" username_sign

 HAL_Snprintf password 51 "%s;hmacsha1" username_sign

 HAL_Printf "Client ID: %s%s\r\n" product_id device_name

 HAL_Printf "username : %s\r\n" username

 HAL_Printf "password : %s\r\n" password

 HAL_Free username

(() ,

, ,

() ,

());

();

(,);

()

;

() {

;

}

() ()

;

() ();

() {

();

;

}

();

(, , , ,

, ,

,);

(, (), ,

,);

(,);

(, , ,);

(, ,);

(,);

(,);

();

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 24 of 186

6. Finally, fill in the parameters generated above into the corresponding MQTT connect

message.

7. Enter the clientid into the clientid field of the MQTT protocol.

8. Enter the username into the username field of MQTT.

9. Enter the password into the password field of MQTT and send MqttConnect information to

the domain name and port of key authentication to integrate with the IoT platform.

 return 0;

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 25 of 186

Equipment'S MQTT Access Based

on WebSocket
Last updated：2025-04-27 17:49:49

The IoT platform supports MQTT communication based on WebSocket. Devices can use the

MQTT protocol to transmit messages on the basis of the WebSocket protocol. Thus causing

browser-based applications to achieve data communication with the platform and devices

connected to the platform. Meanwhile, WebSocket uses ports 443/80, allowing message

transmission to pass through most firewalls.

Since both the MQTT-WebSocket protocol and the MQTT-TCP protocol ultimately transmit

messages based on MQTT, the access parameters for MQTT are identical for these two

protocols. The main difference lies in the protocol and port used to connect to the MQTT

platform. Devices with key authentication use WS for access, while devices with certificate

authentication use WSS for access, that is, WS+TLS.

1. Log in to the IoT Explorer console and enter the target product page. In the corresponding

device information section, download files such as the certificate and device private key.

2. Connection Domain Name: Devices in Guangzhou need to connect to

${ProductId}.ap-guangzhou.iothub.tencentdevices.com:443 , where ${ProductId} is a

variable parameter for product ID.

3. MQTT Connection Parameter Settings:

 The connection parameter settings are consistent with those when using MQTT-TCP

access. For details, see the MQTT Access chapter in the Device-Based TCP MQTT

Access document.

MQTT-WebSocket Overview

MQTT-WebSocket Integration

Certificate Authentication Device Access Guide

UserName:${productid}${devicename};${sdkappid};${connid};${expiry}

PassWord: PassWord (setting any value).

ClientId:${ProductId}${DeviceName}

KeepAlive: time to keep the connection alive. Value range: 0–900s

Key Authentication Device Access Guide

https://console.cloud.tencent.com/iotexplorer
https://cloud.tencent.com/document/product/172554601435082752
https://cloud.tencent.com/document/product/172554601435082752

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 26 of 186

1. Log in to the IoT Explorer console and enter the target product page. In the corresponding

device information section, obtain the device key.

2. Connection Domain Name: The device in Guangzhou needs to connect to

${ProductId}.ap-guangzhou.iothub.tencentdevices.com:80 , where ${ProductId} is a

variable parameter product ID.

3. MQTT Connection Parameter Settings:

 The connection parameter settings are consistent with those when using MQTT-TCP

access. For details, see the Key Device Access Guide chapter in the Device-Based TCP

MQTT Access document.

UserName:${productid}${devicename};${sdkappid};${connid};${expiry}

PassWord:${token};hmac signature method

ClientId:${ProductId}${DeviceName}

KeepAlive: time to keep the connection alive. Value range: 0–900s

https://console.cloud.tencent.com/iotexplorer
https://cloud.tencent.com/document/product/172554601435082752
https://cloud.tencent.com/document/product/172554601435082752

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 27 of 186

MQTT Persistent Session
Last updated：2025-04-27 17:50:03

IoT Explorer supports MQTT protocol version 3.1.1. It simultaneously supports QOS0 and

QOS1 service quality grades (QOS2 is not supported). Use MQTT persistent session to can

save the device's subscription status and the messages not received by the device. When a

device goes offline and comes online again, it can recover to the previous session and receive

the subscription messages not received when offline.

When a device connects to the IoT platform, the CleanSession flag bit in the variable header of

the Connect message can be set to 0. The IoT platform will determine the session status of the

device based on the client identifier ClientId during the device connection. If there is currently

no session, a new persistent session will be created. If an existing session exists,

communication will be performed based on the existing session process.

After the device sends a Connect message, the Internet of Things (IoT) Hub will return a

Connack Message. In the connection acknowledgment flag SessionPresent of the message, it

indicates whether the Internet of Things (IoT) Hub has already created the session status

corresponding to the client identifier when the device is connected. If SessionPresent is 0, it

means a persistent session has not been created, and the device needs to reestablish the

session status. If SessionPresent is 1, it indicates a persistent session has been created.

Create an MQTT Persistent Session on the Device Side

IoT Platform Response Description

After the device successfully connects, if it enters an existing persistent session, IoT Hub

will send the stored QOS1 messages and unconfirmed QOS1 messages to the device.

After the device successfully connects, if a new persistent session is created, IoT Hub will

save the subscription status of the device and store the QOS1 messages (excluding QOS0)

subscribed by the device when the device is offline. When the device goes live again, the

stored QOS1 messages and unconfirmed QOS1 messages will be sent to the device.

Note:

The Internet of Things Platform sends stored QOS1 messages sequentially at

intervals of 500 ms.

Only QOS1 messages are stored in a persistent session. A maximum of 150

messages can be stored per device, with a maximum storage duration of 24*7

hours.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 28 of 186

You can close the MQTT persistent session in the following two ways.

Disable MQTT Persistent Session

When a device connects to the IoT platform, set the CleanSession flag bit in the variable

header of the Connect message to 1.

The time when the device is disconnected exceeds 24 hours, the persistent session will be

automatically closed.

Note:

Device disconnection includes the device sending a disconnect message and

disconnection caused by device communication timeout.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 29 of 186

Dynamic Registration Protocol
Last updated：2025-04-27 17:50:16

When performing dynamic device registration, carry ProductId and DeviceName to initiate an

http/https request to the platform. The request API and parameters are as follows:

http://ap-guangzhou.gateway.tencentdevices.com/device/register

Use the HMAC-sha256 algorithm to sign the request message. For details, see Signature

Method .

Parameter Description

Requested URL:

https://ap-guangzhou.gateway.tencentdevices.com/device/register

Request method: Post

Request Parameter

Parameter Name Required Type Description

ProductId Yes string Product Id.

DeviceName Yes string Device name.

Note:

The API only supports application/json format.

Signature Generation

Platform Response Parameters

Parameter Name Type Description

RequestId String Request Id.

Len Int64 The length of the returned Payload.

Payload String

Returned device registration information.

The data is returned after encryption and

needs to be decrypted and processed by

the device side.

Note:

https://cloud.tencent.com/document/product/634/56319
https://cloud.tencent.com/document/product/634/56319

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 30 of 186

Original payload content description:

The encryption process is to convert the original JSON format Payload into a string and

then perform AES encryption, followed by base64 encryption. The AES encryption

algorithm is in CBC mode, with a key length of 128 bits, using the first 16 bits of

productSecret, and an offset of a 16-character string "0".

key value Description

encryptionType 1

Encryption type.

Certificate authentication.

2 indicates key authentication.

psk 1239466501

Device key. This parameter is present

when the product certification type is

signature authentication.

clientCert -

Device certificate file in string format.

This parameter is present when the

product certification type is certificate

authentication.

clientKey -

Device private key file in string format.

This parameter is present when the

product certification type is certificate

authentication.

Example Code

Request Packet

POST https://ap-guangzhou.gateway.tencentdevices.com/device/register

Content-Type: application/json

Host: ap-guangzhou.gateway.tencentdevices.com

X-TC-Algorithm: HmacSha256

X-TC-Timestamp: 1551****65

X-TC-Nonce: 5456

X-TC-Signature:

2230eefd229f582d8b1b891af7107b91597****07d778ab3738f756258d7652c

{"ProductId":"ASJ****GX","DeviceName":"xyz"}

Response Package

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 31 of 186

1. Payload

2. Base64 decoded:

3. AES decryption.

Product key: hzvf5LF9S0isvBhDSauWMaIk

Decrypted data: {"encryptionType":2,"psk":"lDZ6Uqt+I9E0wW7rvDUs7Q=="}

{

 "Response": {

 "Len": 53,

 "Payload":

"031T01DWAoqFePDt71VuZXuLzkUzbIhGOnvMzpAFtNgOjagyFNHVSostNl9ztvhOuRx0dMM

/DMoWAXQCfL7jyA==",

 "RequestId": "f4da4f1f-d72e-40f1-****-349fc0072ba0"

 }

}

Payload Data Parsing Example

Note:

The following data is provided only for your testing use. Ensure that your information is

not leaked when you use it officially.

s6FB3a1BA/YYbcmSE12XpeDVmQNDcf1QgVD141RRbmmAnFwQfp1ECAu5O016mCOvYlJJ6V

59yM4OqQSiWphfTg==

b3a141ddad4103f6186dc992135d97a5e0d599034371fd508150f5e354516e69809c5c

107e9d44080bb93b4d7a9823af625249e95e7dc8ce0ea904a25a985f4e

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 32 of 186

Thing Model Protocol
Last updated：2025-04-27 17:50:31

The Thing Model can digitally define the features of devices in the physical world, making it

easy for applications to conveniently manage devices. The platform provides users with a

business protocol based on the Thing Model, which can meet the needs of smart life scenarios

as well as those of various vertical industry applications in the IoT.

After the product defines the Thing Model, the device can report attributes and events

according to the definitions in the Thing Model, and control commands can be issued to the

device. For details on Thing Model management, see Product Definition . The Thing Model

Protocol includes the following parts.

Overview

Smart life scenario: Based on the Thing Model Protocol, after users submit device-related

attributes, events, etc., to the cloud, they can seamlessly use Tencent Lianlian Mini

Program or Chinese domestic brand mini programs and apps. There is no need to handle

the communication details between the cloud and the mini program or app, enhancing the

Application Development Efficiency of users in smart life scenarios.

Vertical industry application scenarios: Based on the Thing Model Protocol, there is no

need for users to parse device data. Users can use the data analysis, Alarm, and storage

services of IoT Explorer and related Cloud services of Tencent Cloud to enhance the

development efficiency of vertical industry applications.

Thing Model Protocol

Overview

Attribute reporting of devices: The device end submits the defined attributes to the cloud

according to the business logic of the device end.

Remote control of devices: Issue control commands from the cloud to the device end, that

is, set the writable attributes of the device on the cloud.

Obtain the latest reported information of the device: Obtain the latest reported data of the

device.

Device event reporting: The device can report alarms, faults and other event information

according to the protocol of device event reporting when an event defined in the Thing

Model is triggered.

Device behavior invocation: The cloud can notify the device to perform a certain action via

RPC, suitable for scenarios where the application needs to obtain the device's execution

result in real time.

https://cloud.tencent.com/document/product/1081/34739

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 33 of 186

1. When the equipment needs to report changes in the device running status to the cloud,

notify the application side mini program, App to display in real time or the cloud business

system to receive the attribute data reported by the equipment. The IoT Explorer has set a

default Topic for the equipment:

2. Request.

Submit initial device information: Submit initial information when the device connects to the

platform, making it easy for mini programs or Apps to display device details, such as the

device MAC address, IMEI number.

User deletes a device: A notification message sent from the cloud to the device when a

user deletes a device in the Tencent Lianlian Mini Program or the user's own brand mini

program, making it easy for the device to reset or for gateway devices to clear subdevice

data.

Equipment Attribute Reporting

Device property uplink request Topic: $thing/up/property/{ProductID}/{DeviceName}

$thing/down/property/{ProductID}/{DeviceName} : Device property downlink

response Topic

Request message example on the device side

 "method":"report"

 "clientToken":"123"

 "timestamp":1628646783

 "params":

 "power_switch":1

 "color":1

 "brightness":32

{

,

,

,

{

,

,

}

}

request parameter description

Parameter Type Description

method String report indicates device property reporting.

clientToken String
Used for uplink and downlink message pairing

identifier.

timestamp Integer The time of attribute reporting, format: UNIX system

timestamp. Not filling in this field means it defaults to

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 34 of 186

3. Respond.

the current system time. Unit: seconds.

params JSON
The JSON structure contains attribute values

reported by the device.

params.pow

er_switch

Boolea

n
The value of a Boolean attribute is generally 0 or 1.

params.colo

r
Enum

Enumerating integer attribute values as integer

values, a 406 response code appears if the numerical

type is filled in incorrectly or exceeds the defined

range of enumeration items, indicating a format

validation error of the Thing Model.

params.brig

htness
Integer

The value of an integer attribute is an integer value. A

406 response code will appear if the numerical type is

filled in incorrectly or exceeds the value range,

indicating a format validation error of the Thing

Model.

Message example returned by the cloud to the device side

 "method":"report_reply"

 "clientToken":"123"

 "code":0

 "status":"some message where error"

{

,

,

,

}

response parameter description

Parameter Type Description

method String

report_reply indicates the HTTP response

message from the cloud after receiving device

reporting.

clientToken String
Used for uplink and downlink message pairing

identifier.

code Integer
0 means the cloud has successfully received the

attributes reported by the device.

status String prompt error message when code is not 0.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 35 of 186

1. Devices using the Thing Model Protocol need to subscribe to the published Topic to receive

cloud instructions when the cloud needs to control the devices:

2. Request.

3. Respond.

Remote Control of Equipment

Send Topic: $thing/down/property/{ProductID}/{DeviceName}

$thing/up/property/{ProductID}/{DeviceName} : Response Topic

Remote control request message format:

 "method": "control"

 "clientToken": "123"

 "params":

 "power_switch": 1

 "color": 1

 "brightness": 66

{

,

,

{

,

,

}

}

request parameter description

Parameter Type Description

method String
Control means the cloud initiates a control request to the

device.

clientToke

n
String Used for uplink and downlink message pairing identifier.

params JSON

The JSON structure contains set values of device

properties. Only writable attribute values can be

controlled successfully.

Equipment response to remote control request message format:

 "method":"control_reply"

 "clientToken":"123"

 "code":0

 "status":"some message where error"

{

,

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 36 of 186

1. Topic used by devices to receive the latest messages from the cloud:

2. Request.

}

response parameter description

Parameter Type Description

method String
Request response indicating the control

command sent by the device to the cloud.

clientToken String
Used for uplink and downlink message pairing

identifier.

code Integer
0 means the device has successfully received

the control command sent by the cloud.

status String prompt error message when code is not 0.

Obtain the Latest Reported Information of the Device

Request Topic: $thing/up/property/{ProductID}/{DeviceName}

$thing/down/property/{ProductID}/{DeviceName} : Response Topic

Request message format:

 "method": "get_status"

 "clientToken": "123"

 "type" : "report"

 "showmeta": 0

{

,

,

,

}

request parameter description

Parameter Type Description

method String
get_status: Obtain the latest reported information of the

device.

clientToke

n
String

Message Id. The replied message will return this data

for comparison with the request response message.

type String Indicates what kind of information is obtained. report

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 37 of 186

3. Respond.

1. When a device needs to report events to the cloud, such as reporting device failures and

alarm data, the platform sets a default Topic for the device:

indicates the information reported by the device.

showmeta Integer
Flag whether the reply message carries metadata.

Default to 0 means not returning metadata.

Response message format:

 "method": "get_status_reply"

 "code": 0

 "clientToken": "123"

 "type": "report"

 "data":

 "reported":

 "power_switch": 1

 "color": 1

 "brightness": 66

{

,

,

,

,

{

{

,

,

}

}

}

response parameter description

Parameter Type Description

method String
reply message indicating the latest reported information

obtained from the device.

code Integer
0. The cloud successfully received the attributes

reported by the device.

clientToke

n
String

Message Id. The replied message will return this data for

comparison with the request response message.

type String
Indicates what kind of information is obtained. report

indicates the information reported by the device.

data JSON
Return the latest reported data content of the specific

device.

Device Event Reporting

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 38 of 186

2. Request.

3. Respond.

Device event uplink request Topic: $thing/up/event/{ProductID}/{DeviceName}

$thing/down/event/{ProductID}/{DeviceName} : Device event downlink response Topic

Request message example on the device side

 "method":"event_post"

 "clientToken":"123"

 "version":"1.0"

 "eventId":"PowerAlarm"

 "type":"fault"

 "timestamp":1212121221

 "params":

 "Voltage":2.8

 "Percent":20

{

,

,

,

,

,

,

{

,

}

}

request parameter description

Paramete

r
Type Description

method String event_post means event reporting.

clientTok

en
String

Message ID. The replied message will return this data for

comparison with the request response message.

version String Protocol version, default is 1.0.

eventId String Event Id, defined in the Thing Model event.

type String

Event type.

info: information.

alert: Alarm.

fault: Failure.

params String
Parameters of the event, defined in the Thing Model

event.

timestam

p
Integer

The time of event reporting. Not filling in this field means

it defaults to the current system time. Unit: seconds.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 39 of 186

1. When the application initiates a certain behavior invocation of the device through the cloud,

the platform has set a default Topic for the handling of the device behavior:

2. Request.

Response message format:

 "method": "event_reply"

 "clientToken": "123"

 "version": "1.0"

 "code": 0

 "status": "some message where error"

 "data":

{

,

,

,

,

,

{}

}

response parameter description

Parameter Type Description

method String
event_reply indicates the response returned by the

cloud to the device.

clientToke

n
String

Message Id. The replied message will return this data for

comparison with the request response message.

version String Protocol version, default is 1.0.

code Integer Event report result, 0 indicates success.

status String Event report result description.

data JSON The content returned by the event report.

Device Behavior Invocation

$thing/down/action/{ProductID}/{DeviceName} : Application call device behavior

Topic

Equipment response behavior execution result Topic:

$thing/up/action/{ProductID}/{DeviceName}

Message example of device behavior invocation initiated by the application side:

 "method": "action"

 "clientToken": "20a4ccfd-d308-****-86c6-5254008a4f10"

{

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 40 of 186

3. Respond.

 "actionId": "openDoor"

 "timestamp": 1212121221

 "params":

 "userid": "323343"

,

,

{

}

}

request parameter description

Paramet

er
Type Description

method String action indicates calling a certain behavior of the device.

clientTo

ken
String

Message Id. The replied message will return this data for

comparison with the request response message.

actionId String

actionId is a behavior identifier in the Thing Model,

defined by the developer manually according to the

device's application scenario.

timesta

mp
Integer

The current time of the behavior invocation. If not

specified, it defaults to the current system time of the

behavior invocation. Unit: seconds.

params String
Calling parameters of the behavior, defined in the

behavior of the Thing Model.

Response message format:

 "method": "action_reply"

 "clientToken": "20a4ccfd-d308-11e9-86c6-5254008a4f10"

 "code": 0

 "status": "some message where error"

 "response":

 "Code": 0

{

,

,

,

,

{

}

}

response parameter

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 41 of 186

1. When a mini program or App displays device details, it generally shows the device's MAC

address, IMEI number, time zone and other basic information. Topic used for device

information reporting:

2. Request.

Paramete

r
Type Description

method String
action_reply is the response that the device end sends to

the cloud after executing the specified behavior.

clientTok

en
String

Message Id. The replied message will return this data for

comparison with the request response message.

code Integer Action execution result, 0 indicates success.

status String
Error information description after action execution

failure.

response JSON

The response parameters defined in the device behavior

are returned to the cloud after the device behavior is

executed successfully.

Reporting Basic Information of Devices

Uplink request Topic: $thing/up/property/{ProductID}/{DeviceName}

Downlink response Topic: $thing/down/property/{ProductID}/{DeviceName}

Request message example on the device side

 "method": "report_info"

 "clientToken": "1234567"

 "params":

 "name": "dev001"

 "imei": "ddd"

 "module_hardinfo": "ddd"

 "mac": "ddd"

 "device_label":

 "append_info": "ddddd"

{

,

,

{

,

,

,

,

{

}

}

}

Request Parameter Description

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 42 of 186

3. Respond.

Parameter Type Description

method String
report_info indicates device basic information

reporting.

clientToken String
Used for uplink and downlink message pairing

identifier.

imei String
IMEI number information of the device, optional

field.

mac String MAC information of the device, optional field.

module_hardinf

o
String Specific hardware model of the module.

append_info String
Custom basic product information of the

equipment vendor, submitted in KV format.

Message example returned by the cloud to the device side

 "method":"report_info_reply"

 "clientToken":"1234567"

 "code":0

 "status":"success"

{

,

,

,

}

response parameter description

Parameter Type Description

method String

report_reply indicates the HTTP response

message from the cloud after receiving device

reporting.

clientToken String
Used for uplink and downlink message pairing

identifier.

code Integer
0 means the cloud has successfully received the

attributes reported by the device.

status String prompt error message when code is not 0.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 43 of 186

1. When a user deletes a bound device in a mini program or App, the platform will send a

notification of user deletion of the device to the device. After receiving it, the device can

handle it based on business needs. For example, if a gateway device receives a notification

that a subdevice has been deleted.

Send user deletion Device Topic: $thing/down/service/{ProductID}/{DeviceName}

2. Request.

1. After a user successfully binds a device in a mini program or App, the platform will send a

notification message that the device has been bound by the user to the device. After

receiving it, the device can handle it based on business needs. This message is used to

notify the device end from the mobile application end, and there is no need for the device

end to reply.

Send user binding device notification message Topic:

$thing/down/service/{ProductID}/{DeviceName}

2. Request.

User Deletion of Device

Message example of user deletion of device initiated by the application side:

 "method": "unbind_device"

 "clientToken": "20a4ccfd-****-11e9-86c6-5254008a4f10"

 "timestamp": 1212121221

{

,

,

}

Request Parameter Description

Paramete

r
Type Description

method String
unbind_device means that the user removes or unbinds a

certain device in the mini program or App.

timestam

p
Integer The system timestamp when the user deletes the device.

User Binding Device Notification Message

Message example of user device binding notification initiated by the application side:

 "method": "bind_device"

 "clientToken": "20a4ccfd-****-11e9-86c6-5254008a4f10"

{

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 44 of 186

1. When a user creates and associates a geographic electronic fence for a device in the

Console Location Service feature, mini program, or App, the platform will send a fence

alarm message notification to the device when the device triggers the fence alarm

condition. After receiving it, the device can handle it by itself based on business needs. For

example, if the device receives a fence alarm message, it will voice broadcast to remind

the user or manager using the device to pay attention to safety.

2. The cloud sends down fence alarm messages.

 "timestamp": 1212121221

}

request parameter description

Parameter Type Description

method String
bind_device means that the user binds a certain

device in the mini program or App.

clientToken String
Used for uplink and downlink message pairing

identifier.

timestamp Integer System timestamp for user to bind device.

Location Service Fence Alarm Message Delivery

$thing/down/service/{ProductID}/{DeviceName} : Downlink Fence Alarm Message

Topic

Device response reply Topic: $thing/up/service/{ProductID}/{DeviceName}

Message example of alarm message sent by the cloud

 "method":"alert_fence_event"

 "clientToken":"xx"

 "timestamp": 0

 "data":

 "alert_type":"xx" //Event, In Out InOrOut

 "alert_condition":"xx" //Trigger condition for device

binding fence In Out InOrOut

 "alarm_time": 0 // Alarm time

 "fence_name":"xx" // Fence name

 "long": 0

 "lat": 0

{

,

,

,

{

,

,

,

,

,

}

https://console.cloud.tencent.com/iotexplorer

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 45 of 186

3. Device end replies.

}

request parameter description

Parameter Type Description

method String
alert_fence_event indicates a fence alarm

event.

clientToken String
Used for uplink and downlink message pairing

identifier.

timestamp Integer Timestamp, in seconds.

data.alert_type String alarm event type: In, Out, InOrOut.

data.alert_condi

tion
String

Trigger conditions for device-bound fence: In,

Out, InOrOut.

data.alarm_time Int Alarm time.

data.fence_nam

e
String Fence name.

data.long Float Longitude.

data.lat Float Latitude.

Message example returned by the device side to the cloud

 "method":"alert_fence_event_reply"

 "clientToken":"xx"

 "timestamp": 0

 "code":0

 "status":"success"

{

,

,

,

,

}

response parameter description

Parameter Type Description

method String
alert_fence_event_reply indicates a reply to a fence

alarm.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 46 of 186

clientToken String
Used for uplink and downlink message pairing

identifier.

timestamp Int Timestamp.

code Int 0 indicates it has been correctly handled.

status String Prompt error message when code is not 0.

Error Code

code Description

400 The message format is not JSON format.

403
Incorrect method identifier or property, event, behavior identifier

inconsistent with the identifiers defined in the Thing Model.

405
Timestamp error. The difference between the current time and the

reporting time is 24 hours. Note that the timestamp is in seconds.

406
Data type error of the Thing Model parameter input value or the data

exceeds the defined range.

503 Internal system error.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 47 of 186

Firmware Upgrade Protocol
Last updated：2025-04-27 17:50:47

Device firmware upgrade, also known as OTA, is a crucial part of the Internet of Things (IoT)

Hub service. When IoT devices have new features or need to fix vulnerabilities, devices can

quickly perform firmware upgrades through the OTA service.

During the firmware upgrade process, device subscription to the following two topics is

required to achieve communication with the cloud, as shown in the figure below:

 Example as follows:

Overview

Implementation Principles

$ota/report/${productID}/${deviceName}

Used to publish uplink messages, device reporting version number and

download, upgrade progress to the cloud

$ota/update/${productID}/${deviceName}

Used to subscribe downlink messages, device receives upgrade messages

from the cloud

()

()

Operation Process

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 48 of 186

The upgrade procedure of the equipment is as follows:

 ﻿

1. The device submits the current version number. The device publishes a message to Topic

$ota/report/${productID}/${deviceName} via the MQTT protocol to report the version

number. The message is in json format, with the following content:

2. Then you can upload the firmware through the console.

3. Upgrade the specified device to the specified version on the console.

 "type": "report_version"

 "report":

 "version": "0.1"

// type: message type

// version: The submitted version number

{

,

{

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 49 of 186

4. After triggering the firmware upgrade operation, the device will receive firmware upgrade

messages through the subscribed Topic $ota/update/${productID}/${deviceName} , with

the following content:

5. After receiving the firmware upgrade message, the device downloads the firmware

according to the URL. During the download process, the Device SDK continuously reports

the download progress through the Topic $ota/report/${productID}/${deviceName} . The

reported content is as follows:

6. When the device finishes downloading the firmware, it needs to submit a message to start

the upgrade through the Topic $ota/report/${productID}/${deviceName} . The content is

as follows:

 "file_size": 708482

 "md5sum": "36eb5951179db14a63**********22a2"

 "type": "update_firmware"

 "url": "https://ota-125*****90.cos.ap-guangzhou.myqcloud.com"

 "version": "0.2"

// type: the message type is update_firmware

// version: Upgrade version

// url: The URL for downloading firmware

// md5sum: The MD5 value of the firmware

// file_size: firmware size in bytes

{

,

,

,

,

}

 "type": "report_progress"

 "report":

 "progress":

 "state":"downloading"

 "percent":"10"

 "result_code":"0"

 "result_msg":""

 "version": "0.2"

// type: message type

// state: status is downloading

// percent: current download progress, percentage

{

,

{

{

,

,

,

},

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 50 of 186

7. After the device firmware upgrade is completed, submit an upgrade success message to

the Topic $ota/report/${productID}/${deviceName} . The content is as follows:

During the process of downloading or upgrading firmware, if it fails, submit a firmware

upgrade failure message through Topic $ota/report/${productID}/${deviceName} . The

content is as follows:

 "type": "report_progress"

 "report":

 "progress":

 "state":"burning"

 "result_code":"0"

 "result_msg":""

 "version": "0.2"

// type: message type

// state: status is burning in progress

{

,

{

{

,

,

},

}

}

 "type": "report_progress"

 "report":

 "progress":

 "state":"done"

 "result_code":"0"

 "result_msg":""

 "version": "0.2"

// type: message type

// state: status is completed

{

,

{

{

,

,

},

}

}

 "type": "report_progress"

 "report":

 "progress":

 "state":"fail"

 "result_code":"-1"

{

,

{

{

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 51 of 186

IoT devices are in a weak network environment in some scenarios. In this scenario, the

connection will be unstable, and the firmware download may be interrupted. If the firmware

always starts to download from an offset of 0 each time, it is possible that the firmware

download cannot be completed in a weak network environment. Therefore, the breakpoint

resume function of the firmware is especially necessary.

The OTA upgrade process with breakpoint resume is as follows:

 "result_msg":"time_out"

 "version": "0.2"

// state: status is failed

// result_code: error code, -1: Download Timeout; -2: File does not

exist; -3: Signature expired; -4: MD5 mismatch; -5: firmware update

failed

// result_msg: error message

},

}

}

OTA Breakpoint Resume

Resumable uploading refers to re-downloading or uploading from the last interruption of a

file. To implement the resumable uploading feature, the device needs to record the

interruption position of the firmware download, and record the MD5, individual file size, and

version information of the downloaded firmware.

For scenarios of OTA interruption, the platform reports the device version on the device

side. If the reported version number is inconsistent with the target version number to be

upgraded, the platform will send the firmware upgrade message again. After the device

obtains the information of the target firmware to be upgraded and compares it with the

interrupted firmware information recorded locally, if it is confirmed to be the same

firmware, it will continue to download based on the breakpoint.

Note:

Steps 3 to 6 may be executed multiple times in a weak network environment. If step 7 is

not executed and step 3 is executed, the device will receive the messages of step 4

each time.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 52 of 186

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 53 of 186

Gateway Subdevice

Feature Overview
Last updated：2025-04-27 17:51:12

The IoT development platform divides devices into the following three categories (i.e., node

categories) according to their functionality:

Device Classification

Ordinary device: this type of device can directly access the IoT development platform and

has no mounted subdevices.

Gateway device: This type of device can directly access the IoT development platform and

can accept subdevices to join the LAN.

subdevice: This type of device must rely on a gateway device to communicate with IoT

Explorer, such as Zigbee, Bluetooth, RF433 devices.

Overview

For devices that don't have direct access to the Internet, they can be connected to the

network of the local gateway device first and then access the IoT development platform

through the communication feature between the gateway device and the cloud.

For subdevices that join or exit the network in the LAN, the gateway device can perform

bind or unbind operations on them on the platform and report the topological relationship

with the subdevices to achieve the management of the entire LAN subdevices by the

platform.

Access Method

Gateway devices can be connected to the IoT development platform in the same way as

ordinary devices. After a gateway device is connected, it can connect/disconnect

subdevices in the same LAN to/from the platform, proxy device-reported data of

subdevices, proxy the receipt of data sent from the cloud to subdevices, and manage the

topological relationships between them.

The access of subdevices needs to be completed through gateway devices. After the

authentication of the identity of subdevices is completed through gateway devices, they

can successfully access the cloud. The authentication methods are divided into the

following two:

Device-level key method

The gateway obtains the device certificate or key of the sub-device and generates a

sub-device binding signature string. The gateway reports the sub-device binding

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 54 of 186

signature string information to the platform and acts as a proxy for the sub-device to

complete identity verification.

Product-level key method

 The gateway obtains the ProductSecret (product key) of the subdevice and generates

a signature. The gateway sends a dynamic registration request to the platform. If the

verification is successful, the platform will return the DeviceCert or DeviceSecret of the

subdevice. The gateway device will generate a signature string for sub-device binding

based on this and report the information of the sub-device binding signature string to

the platform. After the verification is successful, the access of the subdevice is

completed.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 55 of 186

Topology Relationship Management
Last updated：2025-04-27 17:51:26

For devices of the gateway type, they can bind and unbind their subdevices through data

communication with the cloud. To implement such functionality, the following two topics need

to be leveraged:

Devices of the gateway type can use the data upstream Topic to request adding the

topological relationship between them and their subdevices to implement binding sub-

devices. After successful request, the cloud returns the binding result information of the

subdevice through the data downstream Topic.

Data format of the gateway binding sub-device request:

Response data format for binding sub-device by gateway:

Feature Overview

Data upstream Topic (for publishing): $gateway/operation/${productid}/${devicename}

Data downstream Topic (for subscription):

$gateway/operation/result/${productid}/${devicename}

Binding Device

 "type": "bind"

 "payload":

 "devices":

 "product_id": "CFC******AG7"

 "device_name": "subdeviceaaaa"

 "signature": "signature"

 "random": 121213

 "timestamp": 1589786839

 "signmethod": "hmacsha256"

 "authtype": "psk"

{

,

{

[

{

,

,

,

,

,

,

}

]

}

}

{

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 56 of 186

Request Parameter Description:

 "type": "bind"

 "payload":

 "devices":

 "product_id": "CFC******AG7"

 "device_name": "subaaa"

 "result": -1

,

{

[

{

,

,

}

]

}

}

Field Type Description

type String
Gateway Message Type. The value for binding sub-device

is: bind .

payload.devi

ces
Array The list of sub-devices that should be bound.

product_id String Subdevice Product ID.

device_nam

e
String Subdevice name.

signature String

Sub-device binding signature string. Signature algorithm:

1. Signature original string, concatenate the product ID,

device name, random number, and timestamp:

text=${product_id}${device_name};${random};${timest

amp}

2. Use the device Psk key or the Sha1 abstract of the

certificate for signing:

base64_encode(hmac_Sha1(device_secret, text))

random Int Random number.

timestamp Int Timestamp, in seconds.

signmethod String Signature algorithm. Support hmacsha1, hmacsha256.

authtype String Signature type.

psk: Signing using device psk.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 57 of 186

Response Parameter Description:

Devices of the gateway type can use the data upstream Topic to request unbinding the

topological relationship between them and their sub-devices. After successful request, the

cloud returns the unbinding information of the sub-devices through the data downstream

Topic.

Request data format for unbinding sub-device by gateway:

Response data format for gateway unbinding sub-device:

certificate: Signing using the device public key

certificate.

Field Type Description

type String
Gateway Message Type. The value for binding sub-device

is: bind .

payload.devi

ces
Array List of sub-devices that should be bound.

product_id String Subdevice Product ID.

device_nam

e
String Subdevice name.

result Int
Sub-device binding result. See Error Code in the table

below.

Unbinding Device

 "type": "unbind"

 "payload":

 "devices":

 "product_id": "CFC******AG7"

 "device_name": "subaaa"

{

,

{

[

{

,

}

]

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 58 of 186

Request Parameter Description:

Response Parameter Description:

 "type": "unbind"

 "payload":

 "devices":

 "product_id": "CFC******AG7"

 "device_name": "subaaa"

 "result": -1

{

,

{

[

{

,

,

}

]

}

}

Field Type Description

type String
Gateway Message Type. The value for unbinding

sub-device is: unbind .

payload.devices Array The list of sub-devices that need to be unbound.

product_id String Subdevice Product ID.

device_name String Subdevice name.

Field Type Description

type String
Gateway Message Type. The value for unbinding

sub-device is: unbind .

payload.devices Array The list of sub-devices that need to be unbound.

product_id String Subdevice Product ID.

device_name String Subdevice name.

result Int
Sub-device binding result. See Error Code in the

table below.

Enable the Search State of the Notification Gateway

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 59 of 186

When the application side mini program or app needs to enter a certain sub-device binding

process, the platform will notify the Notification Gateway to enable and disable the sub-device

search feature. The protocol is as follows:

Data Format Delivered by the Platform

Request Parameter Description:

Data Format of Gateway Reply

Data upstream Topic (for publishing): $gateway/operation/${productid}/${devicename}

Data downstream Topic (for subscription):

$gateway/operation/result/${productid}/${devicename}

 "type": "search_devices"

 "payload":

 "status": 0 //0-off 1-on

{

,

{

}

}

Field Type Description

type String
Gateway Message Type. Notification Gateway enables

search state, value is: search_devices.

status Int

Gateway search state:

0: Disable.

1: Enable.

 "type": "search_devices"

 "payload":

 "status": 0 //0-off 1-on

 "result": 0

{

,

{

,

}

}

Field Type Description

type String
Gateway Message Type. Notification Gateway enables

search state, value is: search_devices.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 60 of 186

Devices of the gateway type can use this Topic for an upstream request to query the

topological relationship of subdevices.

Gateway query sub-device topology relationship request data format:

Request parameter description:

Gateway query sub-device topology relationship response data format:

status Int

Gateway search state:

0: Off.

1: Enable.

result Int

Gateway Response Handling Result

0: Success.

1: Failure.

Topology Relationship Query

 "type": "describe_sub_devices"

{

}

Parameter Type Description

type String
Gateway Message Type. The value for querying sub-

devices is: describe_sub_devices .

 "type": "describe_sub_devices"

 "payload":

 "devices":

 "product_id": "XKFA****LX"

 "device_name": "2OGDy7Ws8mG****YUe"

 "product_id": "XKFA****LX"

 "device_name": "5gcEHg3Yuvm****2p8"

 "product_id": "XKFA****LX"

{

,

{

[

{

,

},

{

,

},

{

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 61 of 186

Response Parameter Description:

Devices of the gateway type can subscribe to the platform through this data downlink Topic to

get topology changes of subdevices.

When a sub-device is bound or unbound, the gateway will receive topology changes of the

sub-device. The data format is as follows:

 "device_name": "hmIjq0gEFcf****F5X"

 "product_id": "XKFA****LX"

 "device_name": "x9pVpmdRmET****mkM"

 "product_id": "XKFA****LX"

 "device_name": "zmHv6o6n4G3****Bgh"

},

{

,

},

{

,

}

]

}

}

Parameter Type Description

type String
Gateway Message Type. The value for querying sub-

devices is: describe_sub_devices .

payload.devic

es
Array The list of sub-devices bound to the gateway.

product_id String Subdevice Product ID.

device_name String Subdevice name.

Topology Change

 "type": "change"

 "payload":

 "status": 0 //0-unbind 1-bind

 "devices":

 "product_id": "CFCS****G7"

 "device_name": "****ev"

{

,

{

,

[

{

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 62 of 186

Request Parameter Description:

Gateway response, data format as follows:

Response Parameter Description:

}

]

}

}

Parameter Type Description

type String
Gateway Message Type. Topology change value is:

change.

status Int

Topology change status.

0: Unbind.

1: Bind.

payload.devices Array The list of sub-devices bound to the gateway.

product_id String Subdevice Product ID.

device_name String Subdevice name.

 "type": "change"

 "result": 0

{

,

}

Paramet

er
Type Description

type String Gateway Message Type. Topology change value is: change.

result Int Gateway Response Handling Result.

Error Codes

Error Code Description

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 63 of 186

0 Succeeded.

-1 Gateway device not bound to subdevice.

-2 System error. Subdevice online or offline failure.

801 Request parameter error.

802 Invalid device name or device does not exist.

803 Signature verification failed.

804 The signature method is not supported.

805 The signed request has expired.

806 The device has been bound.

807 Non-standard equipment cannot be bound.

808 The operation is not allowed.

809 Repeat binding.

810 Unsupported subdevice.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 64 of 186

Proxy Sub-Device Online and Offline
Last updated：2025-04-27 17:51:41

Devices of the gateway type can perform online and offline operations for their subdevices

through data communication with the cloud. The topics used by this functionality match those

for gateway subdevice topology management:

Devices of the gateway type can use the data upstream Topic to proxy subdevices to go live.

After the request is successful, the cloud returns the subdevice online result information

through the data downstream Topic.

Request data format for gateway proxying sub-device online

Response data format for proxying sub-device online

Feature Overview

Data upstream Topic (for publishing): $gateway/operation/${productid}/${devicename}

Data downstream Topic (for subscription):

$gateway/operation/result/${productid}/${devicename}

Proxy Sub-Device Online

 "type": "online"

 "payload":

 "devices":

 "product_id": "CFC******AG7"

 "device_name": "subdeviceaaaa"

{

,

{

[

{

,

}

]

}

}

 "type": "online"

 "payload":

 "devices":

 "product_id": "CFC******AG7"

 "device_name": "subdeviceaaaa"

 "result":0

{

,

{

[

{

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 65 of 186

Request parameter description:

Response Parameter Description:

Devices of the gateway type can use the data upstream Topic to proxy subdevices to go

offline. After the request is successful, the cloud returns the offline information of the

successful subdevice through the data downstream Topic.

Request data format for gateway proxying sub-device offline

}

]

}

}

Field Type Description

type String
Gateway message type. The value for agent sub-device

online is: online .

payload.devices Array List of sub-devices to be online.

product_id String Subdevice Product ID.

device_name String Subdevice name.

Field Type Description

type String
Gateway message type. The value for agent sub-device

online is: online .

payload.devices Array List of sub-devices to be online.

product_id String Subdevice Product ID.

device_name String Subdevice name.

result Int
Subdevice Online Result. See Error Code in the table

below.

Agent Subdevice Offline

 "type": "offline"

 "payload":

 "devices":

{

,

{

[

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 66 of 186

Response data format for gateway proxying sub-device offline

Request parameter description:

Response Parameter Description:

 "product_id": "CFC******AG7"

 "device_name": "subdeviceaaaa"

{

,

}

]

}

}

 "type": "offline"

 "payload":

 "devices":

 "product_id": "CFC******AG7"

 "device_name": "subdeviceaaaa"

 "result":-1

{

,

{

[

{

,

,

}

]

}

}

Field Type Description

type String
Gateway Message Type. The value for agent sub-

device offline is: offline .

payload.devices Array List of sub-devices to be offline via agent.

product_id String Subdevice Product ID.

device_name String Subdevice name.

Field Type Description

type String
Gateway Message Type. The value for agent sub-

device offline is: offline .

payload.devices Array List of sub-devices to be offline via agent.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 67 of 186

product_id String Subdevice Product ID.

device_name String Subdevice name.

result Int
Subdevice Offline Result. Specific Error Codes are in

the table below.

Error Code

Error Code Description

0 Succeeded.

-1 Gateway device not bound to subdevice.

-2 System error. Subdevice online or offline failure.

801 Request parameter error.

802 Invalid device name, or device does not exist.

810 Unsupported subdevice.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 68 of 186

Proxied Subdevice Publish and

Subscribe
Last updated：2025-04-27 17:51:54

A gateway device can publish and subscribe to messages on behalf of its subdevices through

data communication with the cloud.

Before publishing and subscribing to messages, please see gateway device integration and

sub-device online and offline to integrate gateway devices and subdevices online.

After the gateway product establishes a binding with the subproduct and obtains the Topic

permissions of the subdevice, the gateway device can use the subdevice Topic proxy to

send/receive messages. You can also view the communication information in Device

Debugging - Device Log.

Feature Overview

Prerequisites

Publish and Subscribe to Messages

https://cloud.tencent.com/document/product/1081/43417
https://cloud.tencent.com/document/product/634/45961

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 69 of 186

Sub-Device Firmware Upgrade
Last updated：2025-04-27 17:52:08

When a gateway subdevice has a new feature or needs to fix a vulnerability, the subdevice can

perform a firmware upgrade quickly through the device firmware upgrade service.

During the firmware upgrade process, the gateway needs to use the following two topics on

behalf of the sub-device to communicate with the cloud, as shown below:

Sample code is as follows:

Take MQTT as an example. The upgrade process diagram of the subdevice is as follows.

Overview

Implementation Principles

$ota/report/$ productID /$ deviceName

Used to publish uplink messages the device reports the version number

and the download and upgrade progress to the cloud.

$ota/update/$ productID /$ deviceName

Used to subscribe downlink messages the device receives upgrade

messages from the cloud.

{ } { }

() ,

{ } { }

() ,

Operation Process

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 70 of 186

Note:

Specific operation steps for firmware upgrade. For details, see device firmware

upgrade .

https://cloud.tencent.com/document/product/1081/39359
https://cloud.tencent.com/document/product/1081/39359

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 71 of 186

Resource Management Protocol
Last updated：2025-04-27 17:52:23

Resource management is mainly used by developers to issue standard device resources such

as face recognition libraries, image libraries, and music libraries to end devices, achieving the

upload and download of resource content between the platform and devices.

Implement this type of functionality requires using the following two Topics:

1. The device publishes a message to $resource/up/service/${productid}/${devicename}

via the MQTT protocol to perform the creation of a device resource upload task. The

message is in json format, with the following content:

2. Creation succeeded. The backend returns the URLs for resource upload through

$resource/down/service/${productid}/${devicename} . The message is in json format,

with the following content:

Feature Overview

Data Upstream Topic (for publishing): $resource/up/service/${productid}/${devicename}

.

Data downstream Topic (for subscription):

$resource/down/service/${productid}/${devicename} .

Device Resource Upload

Step 1: Create an Upload Task for Resources on the Device Side

 "type":"create_upload_task"

 "size":100

 "name":"file"

 "md5sum":"************"

{

,

,

,

,

}

 "type":"create_upload_task_rsp"

 "size":100

 "name":"file"

 "md5sum":"************"

 "url":"https://iothub.cos.ap-guangzhou.myqcloud.com/********"

{

,

,

,

,

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 72 of 186

1. Use HTTP PUT requests for resource upload, so the header needs to include the MD5

value (base64 encoded). During the resource upload process, the device reports the

upload progress via $resource/up/service/${productid}/${devicename} . The message is

in json format, with the following content:

2. Progress report response, sent to the device via

$resource/down/service/${productid}/${devicename} . The message is in json format,

with the following content:

1. The device reports messages via $resource/up/service/${productid}/${devicename} to

query download tasks. The message is in json format, with the following content:

2. If a download task exists, send the result via

$resource/down/service/${productid}/${devicename} . The message is in json format,

Step 2: Report the Upload Progress of Resources

 "type":"report_upload_progress"

 "name":"file"

 "progress":

 "state":"uploading"

 "percent":89

 "result_code":0

 "result_msg":""

{

,

,

{

,

,

,

}

}

 "type":"report_upload_progress_rsp"

 "result_code":0

 "result_msg":"ok"

{

,

,

}

Platform Resource Distribution

Step 1: Query the Resource Download Link

 "type":"get_download_task"

{

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 73 of 186

with the following content:

1. The resource download progress is reported via

$resource/up/service/${productid}/${devicename} . The message is in json format, with

the following content:

2. Progress report response, sent to the device via

$resource/down/service/${productid}/${devicename} . The message is in json format,

with the following content:

1. The resource download progress is reported via

$resource/up/service/${productid}/${devicename} . The message is in json format, with

 "type":"get_download_task_rsp"

 "size":372338

 "name":"AAAA"

 "md5sum":"a567907174*****3bb9a2bb20716fd97"

 "url":"https://iothub.cos.ap-guangzhou.myqcloud.com/********"

{

,

,

,

,

}

Step 2: Report the Download Progress of Resources

 "type":"report_download_progress"

 "name":"file"

 "progress":

 "state":"downloading"

 "percent":89

 "result_code":0

 "result_msg":""

{

,

,

{

,

,

,

}

}

 "type":"report_download_progress_rsp"

 "result_code":0

 "result_msg":"ok"

{

,

,

}

Step 3: Report the Successful Download of Resources

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 74 of 186

the following content:

2. Progress report response, sent to the device via

$resource/down/service/${productid}/${devicename} . The message is in json format,

with the following content:

 "type":"report_download_progress"

 "name":"file"

 "progress":

 "state":"done"

 "result_code":0

 "result_msg":""

{

,

,

{

,

,

}

}

 "type":"report_download_progress_rsp"

 "result_code":0

 "result_msg":"ok"

{

,

,

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 75 of 186

File Management Protocol
Last updated：2025-04-27 17:52:37

The file management functionality is used by manufacturers to complete file transfer between

the device side, platform side, and application side. It is used for storing the files required by

users during device usage after mass production. Since the permissions for these partial files

do not belong to the device manufacturer for viewing and managing, they are implemented

through the server file management topic message channel.

Use Case Examples

To implement this type of functionality, you need to use the following two Topics:

1. The device reports the current file version information. The device side publishes a

message to $thing/up/service/${productid}/${devicename} through the MQTT protocol

to report the version number. The message is in json format, and the content is as follows:

Feature Overview

User records voice in the mini program. The recording needs to be sent to the device for

broadcasting.

The access control camera takes a photo of the visitor when someone visits and views it

on the mini program side.

Data upstream Topic (for publishing): $thing/up/service/${productid}/${devicename} .

Data downstream Topic (for subscription):

$thing/down/service/${productid}/${devicename} .

Submitting Device File Version Information

 "method": "report_version"

 "request_id": "12345678"

 "report": "resource_name": "123.wav" "version": "1.0.0"

"resource_type": "FILE"

//method: message type

//resource_name: File Name

//version: file version number

//resource_type: file type, firmware (fw), file (file)

//Backend logic: receive messages and update the file version

information to the corresponding product/device.

{

,

,

{ , ,

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 76 of 186

In particular, if the submitted file list is empty, the cloud will reply with the recorded file list of

the device. Based on this feature, the device can perform exception recovery operations on

the device file list.

2. After the server receives the file version information report, the server replies to the device

side with the received version information through

$thing/down/service/${productid}/${devicename} . The message is in json format, and

the content is as follows:

1. The user calls the application-side API to upload files and create a file download task when

using the mini program.

2. The device side will receive file update messages through the subscribed

$thing/down/service/${productid}/${devicename} . The content of the file update

message is as follows:

 "method": "report_version"

 "report":

 "resource_list":

{

,

{

[]

}

}

 "method": "report_version_rsp"

 "result_code":0

 "result_msg":"success"

 "resource_list":

 "resource_name": "audio_woman_mandarin" "version":

"1.0.0" "resource_type": "FILE"

 "resource_name": "audio_woman_sichuanhua" "version":

"2.0.0" "resource_type": "FILE"

//method: message type

//result_code: version report result

//result_msg: version report result message

//resource_list: send back the received version information

//If the resource_list reported by the device is empty, the server

responds with the recorded list of resources.

{

,

,

,

[

{ ,

, },

{ ,

, }

]

}

Device File Download

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 77 of 186

3. After the device receives the file update message, it downloads resources according to the

URL. During the download process, the device SDK will continuously report the download

progress through $thing/up/service/${productid}/${devicename} . The reported content

is as follows:

 "method": "update_resource"

 "resource_name": "audio_woman_sichuanhua"

 "resource_type": "FILE"

 "version": "1.0.0"

 "url": "https://ota-125*****59.cos.ap-guangzhou.myqcloud.com"

 "md5sum": "cc03e747a6afbbcbf8**********bee5"

 "file_size": 31242

// method: message type

// resource_name: file name

// resource_type: firmware (fw), file (file), dropdown selection in

the console

// version: upgrade version

// url: URL to download file

// md5sum: MD5 value of the file

// file_size: file size in bytes

{

,

,

,

,

,

,

}

 "method": "report_progress"

 "report":

 "progress":

 "resource_name": "audio_woman_sichuanhua"

 "state":"downloading"

 "percent":"10"

 "result_code":"0"

 "result_msg":""

 "version": "1.0.0"

// method: message type

//resource_name: name of the downloading file.

// state: status is downloading

// percent: current download progress, percentage

{

,

{

{

,

,

,

,

},

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 78 of 186

4. When the device completes the file download, it needs to report a download result through

$thing/up/service/${productid}/${devicename} . The content is as follows:

1. The device requests the URL for file upload. The device side publishes a message to

$thing/up/service/${productid}/${devicename} through the MQTT protocol to request

the URL for file upload. The message is in json format, and the content is as follows:

2. After the server receives the file version information report, the server returns the pre-

signed cos url to the device side through Topic

$thing/down/service/${productid}/${devicename} . The message is in json format, and

the content is as follows:

// Download success

 "method": "report_result"

 "report":

 "progress":

 "resource_name": "audio_woman_sichuanhua"

 "state":"done"

 "result_code":"0"

 "result_msg":"success"

 "version": "1.0.0"

// method: message type

// state: status is download complete

// result_code: download result, 0 for success, non-zero for failure

// result_msg: Specific description of the failure scenario

{

,

{

{

,

,

,

},

}

}

Device File Upload

 "method": "request_url"

 "request_id": "12345678"

 "report": "resource_name": "123.wav" "version": "1.0.0"

"resource_type": "AUDIO"

//method: message type

//resource_name: File Name

//version: file version number

//resource_type: file type

{

,

,

{ , ,

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 79 of 186

3. The device puts the resource to the corresponding cos url. After the upload is completed, it

reports the upload result. The message is in json format, and the content is as follows:

1. The device side will receive file deletion messages through the subscribed Topic

$thing/down/service/${productID}/${deviceName}. The content of the file deletion message

is as follows:

 "method": "request_url_resp"

 "result_code":0

 "result_msg":"success"

 "resource_url": "presigned_url_xxx"

 "resource_token": "123456abcdef"

 "request_id": "12345678"

//method: message type

//result_code: version report result

//result_msg: version report result message

//resource_url: cos pre-signed url

//resource_token: file token, subsequently can be based on the token

to map resource url

{

,

,

,

,

,

}

 "method": "report_post_result"

 "report":

 "progress":

 "resource_token": "123456abcdef"

 "state":"done"

 "result_code":"0"

 "result_msg":"success"

//method: message type

//resource_name: file name

//state: upload result

//result_code: Result error code for upload, 0 for success

//result_msg: upload result message

//version: file version

{

,

{

{

,

,

,

},

}

}

File Deletion

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 80 of 186

2. When the device completes the file download, it needs to report a deletion result through

Topic $thing/up/service/${productID}/${deviceName} . In particular, if the file to be

deleted does not exist on the device side (such as due to device flashing), it is

recommended to reply that the deletion is successful. Otherwise, the records of this file on

the device side and in the cloud will always be inconsistent. The content is as follows:

 "method": "del_resource"

 "resource_name": "audio_woman_sichuanhua"

 "resource_type": "FILE"

 "version": "1.0.0"

// method: message type is

// resource_name: file name

{

,

,

,

}

 "method": "del_result"

 "report":

 "progress":

 "resource_name": "audio_woman_sichuanhua"

 "state":"done"

 "result_code":"0"

 "result_msg":"success"

 "version": "1.0.0"

// method: message type

// state: deletion complete

// result_code: deletion result, 0 for success, non-zero for failure

// result_msg: specific description information of the failure

scenario

{

,

{

{

,

,

,

},

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 81 of 186

Micro Call TWecall Protocol
Last updated：2025-04-27 17:52:50

Twecall is used for device calls to WeChat to perform audio and video calls, mainly applied to

products such as cameras, locks, doorbells, and indoor screens.

To implement this feature, you need to use the following two Topics:

1. The device publishes a message to $twecall/up/service/${productid}/${devicename}

via the MQTT protocol to obtain it. The message is in json format, with the following

content:

2. After the server receives the request reporting for retrieval, it replies to the device with the

snTicket information through $twecall/down/service/${productid}/${devicename} . The

message is in json format, with the following content:

Feature Overview

Data upstream Topic (for publishing): $twecall/up/service/${productid}/${devicename}

Data downstream Topic (for subscription):

$twecall/down/service/${productid}/${devicename} .

Retrieve the snTicket

 "method":"get_wechat_sn_ticket"

 "clientToken":"123"

 "timestamp":1628646783

 "params":

 "ModelId":"111"

 "miniProgramAppId":"111"

//ModelId: WeChat public platform application

//miniProgramAppId: WeChat appid of the mini program

{

,

,

,

{

,

}

}

"method":"get_wechat_sn_ticket_reply"

 "clientToken":"123"

 "code":0 // 0:normal, 1:exception

 "status":"" //error information, empty under normal circumstances

 "params":

 "snTicket":"111"

{

,

,

,

,

{

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 82 of 186

1. The device will report the $twecall/up/service/${productid}/${devicename} message to

activate the Twecall license. The request is as follows:

2. After the server receives the request reporting for retrieval, it replies to the device with the

activation status through $twecall/down/service/${productid}/${devicename} . The

message is in json format, with the following content:

1. The device publishes a message to $twecall/up/service/${productid}/${devicename}

through the MQTT protocol to query the device activation status. The message is in json

format, with the following content:

 }

}

Activate the TWecall Feature on the Device

 "method":"active_device_voip_license"

 "clientToken":"123"

 "timestamp":1628646783

 "params":

 "pkgType":1 // 0-trial; 1-security scenario; 2-wear scenario;

3-entertainment scenario; 4-intercom and other scenarios

 "miniProgramAppId":"111"

 "modelId":"modelId1"

//ModelId: WeChat public platform application

//miniProgramAppId: WeChat appid of the mini program

{

,

,

,

{

,

,

}

}

"method":"active_device_voip_license_reply"

 "clientToken":"123"

 "code":0 // 0:normal, 1:exception

 "status":"" //error information, normally empty

 "params":

{

,

,

,

,

{

}

}

Query Device TWecall Activation Details

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 83 of 186

2. After the server receives the query information reporting, it returns the device activation

status details to the device through the Topic

$twecall/down/service/${productid}/${devicename} . The message is in json format,

with the following content:

 "method":"get_voip_device_active_info"

 "clientToken":"123"

 "timestamp":1628646783

 "params":

 "miniProgramAppId":"111"

 "modelId":"modelId1"

//ModelId: WeChat public platform application

//miniProgramAppId: WeChat appid of the mini program

{

,

,

,

{

,

}

}

"method":"get_voip_device_active_info_reply"

 "clientToken":"123"

 "code":0 // 0:normal, 1:exception

 "status":"" //error information, empty under normal circumstances

 "params":

 "modelId":"modelId1"

 "sn":"sn1"

 "ExpireTime":1630425600

{

,

,

,

,

{

,

,

}

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 84 of 186

SDK Description and Download
Last updated：2025-04-27 17:53:04

Tencent Cloud IoT Explorer provides Device SDKs in multiple language versions for different

device development scenarios for customer use. See Developer Guide .

After creating products and devices on the IoT explorer platform <1>, select the development

method based on the customized MQTT AT module. The <3>AT SDK</3> code on the MCU

side will be automatically generated, and the data templates and events created on the

platform will generate corresponding configurations and initialization code.

Starting from V3.1.0, the Android SDK uses independent Github to host the code.

Java SDK uses independent Github to host the code.

Starting from V1.0.0, the Python device-side SDK code is hosted on Github .

C SDK Code Hosting

Starting from V3.1.0, the C Device SDK code is hosted independently on Github .

Download the latest version of C SDK .

C SDK versions prior to SDK 3.1.0 access here .

Notes:

Versions prior to V3.1.0 have a different code GitHub path compared with versions

V3.1.0 and later. Meanwhile, there are large differences in the interaction protocol with

the platform.

AT SDK Code Hosting

Android SDK Code Hosting

Java SDK Code Hosting

Python SDK Code Hosting

https://cloud.tencent.com/document/product/1081/48354#sdk-.E6.A6.82.E8.A7.88
https://github.com/tencentyun/iot-device-java/tree/master/explorer/explorer-device-android
https://github.com/tencentyun/iot-device-java/tree/master/explorer/explorer-device-java
https://github.com/tencentyun/iot-device-python
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c
https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c/releases
https://github.com/tencentyun/qcloud-iot-sdk-embedded-c/releases

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 85 of 186

Device-Side SDK Usage Reference

C SDK Usage Reference

Usage Overview
Last updated：2025-04-27 17:53:36

Tencent Cloud IoT Device SDK for C relies on a secure and high-performance data channel to

provide developers in the IoT domain with the ability to quickly integrate devices with the cloud

and perform two-way communication with the cloud.

The C SDK uses modularized design, separates the core protocol service from the Hardware

Abstraction Layer, and provides flexible configuration options and multiple compilation

methods. It is suitable for development platforms and usage environments of different

devices.

C SDK Applicable Scope

Devices with Network Communication Capability and Using Linux/Windows

Operating System

For devices with network communication capabilities and using standard Linux/Windows

systems, such as PCs/servers/gateway devices, and more advanced embedded devices,

such as Raspberry Pi, etc., you can directly compile and run the SDK on the device.

For embedded Linux devices that require cross-compilation, if the toolchain in the

development environment has glibc or similar libraries, it can provide system calls including

socket communication, select synchronous IO, dynamic memory allocation, acquisition

time/sleep/random number/print function, and critical data protection, such as the Mutex

mechanism (only when multi-threading is required). Just perform simple modifications (for

example, modifying the settings of the cross-compiler in CMakeLists.txt or make.settings)

to compile and run the SDK.

Devices with Network Communication Capability and Adopting RTOS System

For IoT devices with network communication capabilities and using RTOS, the C SDK

needs to perform porting adaptation work for different RTOS. Currently, the C SDK has

been adapted to multiple RTOS platforms for the Internet of Things, including

FreeRTOS/RT-Thread/TencentOS tiny.

When porting the SDK on an RTOS device, if the platform provides a C runtime library

similar to newlib and an embedded TCP/IP stack similar to lwIP, the porting adaptation

work can also be easily completed.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 86 of 186

The introduction to the directory structure and top-level files is as follows:

Devices with MCU+ Communication Module

For MCUs without network communication capabilities, generally use the MCU +

Communication Module approach. Communication modules (including Wi-Fi/2G/4G/NB-

IoT) generally provide an AT Command Protocol based on the serial port for MCUs to

perform network communication. For this type of scenario, the C SDK encapsulates the

AT-socket network layer. The core protocol and service layer above the network layer do

not need to be ported. And it provides HAL implementations based on two methods:

FreeRTOS and nonOS.

Besides, Tencent Cloud IoT also provides a dedicated AT Instruction Set. If the

Communication Module implements this instruction set, device connectivity and

communication become simpler, requiring less code volume. For this type of scenario,

please refer to the MCU AT SDK dedicated to Tencent Cloud.

Introduction to SDK Directory Structure

Name Description

CMakeLists.txt cmake compile description file.

CMakeSettings.json cmake Configuration File under visual studio.

cmake_build.sh Compilation script using cmake under Linux.

make.settings
Makefile configuration file for direct compilation under

Linux.

Makefile Direct compilation using Makefile under Linux.

device_info.json
Device Information File, from which device information will

be parsed when DEBUG_DEV_INFO_USED=OFF.

docs
Documentation directory, user guide for using the SDK on

different platforms.

external_libs
Third-party software package component, such as

mbedtls.

samples Application example.

include External header files for users.

platform Source code files related to the platform. Currently

provides implementations for different OS

https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based.git

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 87 of 186

C SDK supports three compilation methods:

For detailed instructions on compilation methods and compilation configuration options,

please refer to Compilation Configuration Instructions and Compilation Environment

Description .

The samples directory of C SDK contains examples of using each functionality. For detailed

instructions on running examples, please refer to all documents in the SDK documentation

directory.

For a quick experience of data interaction of Thing Model in IoT Explorer, please refer to Quick

Start for Smart Light .

(Linux/Windows/FreeRTOS/nonOS), TLS (mbedtls), and AT

Module.

sdk_src SDK Core Communication Protocol and Service Code.

tools
Supportive compilation and code generation script tools for

SDK.

SDK Compilation Method Description

cmake method.

Makefile method.

Code extraction method.

SDK Sample Experience

https://cloud.tencent.com/document/product/1081/48371
https://cloud.tencent.com/document/product/1081/48372
https://cloud.tencent.com/document/product/1081/48372
https://cloud.tencent.com/document/product/1081/41155
https://cloud.tencent.com/document/product/1081/41155

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 88 of 186

Compilation Configuration

Instructions
Last updated：2025-04-27 17:53:51

This document describes the compilation method and compilation configuration options of the

C SDK, and introduces the compilation environment setup and compilation examples in Linux

and Windows development environments.

The C SDK supports the following compilation methods.

You can find the relevant code files in output/qcloud_iot_c_sdk. The directory hierarchy is

as follows:

C SDK Compilation Method Description

cmake Method

Recommended for use cmake as a cross-platform compilation tool, supporting compilation

in Linux and Windows development environments.

Use cmake method, adopting CMakeLists.txt as the compilation configuration options

input file.

Makefile

For environments that do not support cmake, use the way of direct compilation with

Makefile.

Use the make.settings file as the compilation configuration options input file in the Makefile

method. After modification, execute make.

Code Extraction Method

This method allows you to select features as needed, extracting relevant code into a

separate folder. The hierarchical directory of the code in the folder is simple, making it

convenient for users to copy and integrate into their own development environment.

This method relies ON the cmake tool. Configure the switches of relevant feature modules

in CMakeLists.txt and set EXTRACT_SRC to ON. Run the following commands in a Linux

environment:

mkdir build

cd build

cmake ..

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 89 of 186

Most of the following configuration options are applicable to cmake and make.setting. The ON

value in cmake corresponds to y in make.setting, and OFF corresponds to n.

 qcloud_iot_c_sdk

 ├── include

 │ ├── config.h

 │ ├── exports

 ├── platform

 └── sdk_src

 └── internal_inc

The include directory contains APIs and variable parameters for users provided by the

SDK. Among them, config.h is a compilation macro generated according to compilation

options.

The platform directory contains platform-related code, which can be modified and

adapted according to the specific circumstances of the device.

sdk_src is the core logic and protocol-related code of the SDK. Generally, no

modification is required. Among them, internal_inc is the header file for internal use of

the SDK.

Description

Users can copy qcloud_iot_c_sdk to the compilation development environment of their

target platform and modify the compilation options as appropriate.

C-SDK Option Description

Compilation Configuration Options

Name
cmake

value
Overview

BUILD_TYPE
release/

debug

release: Disable IOT_DEBUG messages

and compile the output under the release

directory.

debug: Enable IOT_DEBUG messages and

compile the output under the debug

directory.

EXTRACT_SRC ON/OFF
Code extraction feature switch, only

applicable to cmake usage.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 90 of 186

The configuration items for using the SDK, AT framework and General TCP Module are as

follows:

COMPILE_TOOLS gcc
Support gcc and msvc, or cross-compilers.

For example, arm-none-linux-gnueabi-gcc.

PLATFORM Linux Including Linux/Windows/Freertos/Nonos.

FEATURE_OTA_COMM_

ENABLED
ON/OFF OTA feature enable switch.

FEATURE_AUTH_MODE
KEY/CE

RT
Access authentication method.

FEATURE_AUTH_WITH_

NOTLS
ON/OFF

OFF: Enable TLS.

 ON: Disable TLS.

FEATURE_EVENT_POST

_ENABLED
ON/OFF Event feature enable switch.

FEATURE_ACTION_ENA

BLED
ON/OFF Behavior function enable switch.

FEATURE_DEBUG_DEV_

INFO_USED
ON/OFF Device information acquisition source switch.

FEATURE_SYSTEM_CO

MM_ENABLED
ON/OFF Get background time switch.

FEATURE_DEV_DYN_RE

G_ENABLED
ON/OFF Device dynamic registration switch.

FEATURE_LOG_UPLOA

D_ENABLED
ON/OFF Log reporting switch.

Name
cmake

value
Overview

FEATURE_AT_TCP_ENA

BLED
ON/OFF AT Module TCP Function Switch.

FEATURE_AT_UART_RE

CV_IRQ
ON/OFF

AT Module Interrupt Reception Function

Switch.

FEATURE_AT_OS_USED ON/OFF AT Module Multithreading Function Switch.

FEATURE_AT_DEBUG ON/OFF AT Module Debugging Function Switch.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 91 of 186

There is a dependency relationship between configuration options. Some configuration

options are valid only when the value of the dependent option is a valid value. The main ones

are as follows:

After a device is created in the Tencent Cloud IoT console, you need to configure its

information (ProductID/DeviceName/DeviceSecret/Cert/Key file) in the SDK for proper

functioning. During the development phase, the SDK offers two ways to store device

information:

Name Dependent option Effective value

FEATURE_AUTH_WITH_

NOTLS
FEATURE_AUTH_MODE KEY

FEATURE_AT_UART_RE

CV_IRQ

FEATURE_AT_TCP_ENABLE

D
ON

FEATURE_AT_OS_USED
FEATURE_AT_TCP_ENABLE

D
ON

FEATURE_AT_DEBUG
FEATURE_AT_TCP_ENABLE

D
ON

Equipment Information Options

Stored in code (compilation option DEBUG_DEV_INFO_USED = ON), modify the equipment

information in platform/os/xxx/HAL_Device_xxx.c . This method can be used on platforms

without a file system.

Stored in configuration files (compilation option DEBUG_DEV_INFO_USED = OFF), modify

the device information in the device_info.json file. In this method, there is no need to

recompile the SDK to change the device information. This approach is recommended for

development on Linux/Windows platforms.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 92 of 186

Compilation Environment

Description
Last updated：2025-04-27 17:54:04

The C SDK provides adaptation guides for integrating and using the IoT Explorer on multiple

platforms. The example Demo can be used to compile the SDK on Linux and Windows for a

quick trial.

Use cmake + gcc to compile the SDK on Linux. The cmake version should be v3.5 or higher.

The default installed cmake version is low. If the compilation fails, click Download and refer to

Installation Instruction to download and install the specified version of cmake.

Use the cmake tool in Visual Studio 2019 to compile the SDK on Windows.

Follow these steps to obtain and install the Visual Studio 2019 development environment:

1. Please visit Visual Studio download website , download and install Visual Studio 2019. The

version downloaded and installed in this document is v16.2 Community.

Compiling Environment

Linux Compiling Environment

$ sudo apt-get install -y build-essential make git gcc cmake

Windows Compiling Environment

https://cmake.org/download/
https://gitlab.kitware.com/cmake/cmake
https://my.visualstudio.com/Downloads?q=visual%20studio%202019&wt.mc_id=o~msft~vscom~older-downloads

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 93 of 186

2. Click desktop development using C++ and ensure that "CMAKE tool for Windows" is

checked.

Access Guide

For compilation and running on the Linux platform, please see Linux Platform Integration

Guide .

For compilation and running on the Windows platform, please see Windows Platform

Access Guide .

https://cloud.tencent.com/document/product/1081/48387
https://cloud.tencent.com/document/product/1081/48387
https://cloud.tencent.com/document/product/1081/48392
https://cloud.tencent.com/document/product/1081/48392

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 94 of 186

API and Variable Parameter

Descriptions
Last updated：2025-04-27 17:54:17

The header files for API function declarations, constants, and variable parameter definitions

that are provided for user invocation in the device-side C SDK are located under the include

directory. This document mainly describes the variable parameters and API functions under

this directory.

The C SDK is based on the MQTT protocol. It can configure appropriate parameters according

to specific scenario requirements to meet the needs of actual business operations. Variable

access parameters include:

1. The timeout period for MQTT blocking calls (including connection, subscribe, publish, etc.),

unit: millisecond. Recommend 5000 milliseconds.

2. The buffer size for sending and receiving messages of the MQTT protocol defaults to 2048

bytes, supports up to 16KB.

3. MQTT heartbeat message sending interval, maximum value: 690 seconds, unit: millisecond.

4. Maximum reconnection waiting time, unit: millisecond. When a device disconnects and

attempts to reconnect, if it fails, the waiting time will double. If it exceeds this maximum

waiting time, the reconnection will be exited.

Modify the include/qcloud_iot_export_variables.h file. The macro definition can modify the

parameter configuration of the corresponding access. After modification, the SDK needs to be

recompiled. Sample code is as follows:

Variable Parameter Configuration

/* default MQTT/CoAP timeout value when connect/pub/sub (unit: ms) */

#define QCLOUD_IOT_MQTT_COMMAND_TIMEOUT (5 *

1000)

/* default MQTT keep alive interval (unit: ms) */

#define QCLOUD_IOT_MQTT_KEEP_ALIVE_INTERNAL (240

* 1000)

/* default MQTT Tx buffer size, MAX: 16*1024 */

#define QCLOUD_IOT_MQTT_TX_BUF_LEN

(2048)

/* default MQTT Rx buffer size, MAX: 16*1024 */

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 95 of 186

The main features provided by C SDK v3.1.0 and the corresponding API descriptions are for

customers to write business logic, with more detailed explanations. For example: API

parameters and return values can be viewed in the comments of header files such as SDK

code include/exports/qcloud_iot_export_*.h .

Thing Model Protocol and feature introduction, please see Thing Model Protocol .

#define QCLOUD_IOT_MQTT_RX_BUF_LEN

(2048)

/* default COAP Tx buffer size, MAX: 1*1024 */

#define COAP_SENDMSG_MAX_BUFLEN

(512)

/* default COAP Rx buffer size, MAX: 1*1024 */

#define COAP_RECVMSG_MAX_BUFLEN

(512)

/* MAX MQTT reconnect interval (unit: ms) */

#define MAX_RECONNECT_WAIT_INTERVAL (60

* 1000)

API Function Description

Thing Model API

No. Function Name Description

1
IOT_Template_Co

nstruct

Construct a Thing Model client

Data_template_client and connect to the MQTT

cloud service.

2
IOT_Template_Des

troy

Close the Data_template MQTT connection and

terminate the Data_template Client.

3
IOT_Template_Yiel

d

Perform MQTT message reading, message

processing, timeout request, heartbeat packet,

and reconnection state management tasks in the

current Thread Context.

4
IOT_Template_Pub

lish

The Thing Model client publishes an MQTT

message.

5
IOT_Template_Sub

scribe

The Thing Model client subscribes to an MQTT

topic.

https://cloud.tencent.com/document/product/1081/34916

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 96 of 186

6
IOT_Template_Uns

ubscribe

The Thing Model client unsubscribes from the

subscribed MQTT topic.

7
IOT_Template_IsC

onnected

View whether the MQTT of the current Thing

Model client is connected.

Model attribute API

No. Function Name Description

1
IOT_Template_Register_P

roperty

Register the model attributes of the

current device.

2
IOT_Template_UnRegister

_Property
Delete the registered model attributes.

3 IOT_Template_Report
Submit Thing Model attribute data

asynchronously.

4
IOT_Template_Report_Sy

nc

Synchronously report the data of the

device model attribute.

5 IOT_Template_GetStatus
Retrieve Thing Model attribute data

asynchronously.

6
IOT_Template_GetStatus_

sync

Synchronize and obtain device model

attribute data.

7
IOT_Template_Report_Sy

sInfo

Submit system information

asynchronously.

8
IOT_Template_Report_Sy

sInfo_Sync

Synchronize and submit system

information.

9
IOT_Template_JSON_Con

structSysInfo

Construct the system information to be

reported.

10
IOT_Template_ControlRep

ly

Reply to the received device model

attribute control messages.

11
IOT_Template_ClearContr

ol

Delete the device model attribute control

messages and cooperate with

IOT_Template_GetStatus to obtain and

use the control messages.

Thing Model Event Interface

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 97 of 186

For more information on the OTA firmware download feature, please see Device Firmware

Update .

No. Function Name Description

1 IOT_Post_Event

Report device model events, import

events, and the SDK completes the

construction of event messages.

2 IOT_Post_Event_Raw

Report device model events, import data

that meets the event message format,

and the SDK completes the reporting.

3 IOT_Event_setFlag
Set event flag. The SDK supports 10

events by default and can be expanded.

4 IOT_Event_clearFlag Clear event flags.

5 IOT_Event_getFlag Retrieve event flags.

Thing Model Behavior Interface

No. Function Name Description

1 IOT_ACTION_REPLY
Reply to the Thing Model behavior

message.

Multi-threaded environment usage instructions

 SDK has the following precautions for use in a multi-threaded environment:

Multi-threaded calls to IOT_Template_Yield, IOT_Template_Construct and

IOT_Template_Destroy are not allowed.

IOT_Template_Yield, as a function to read and process MQTT messages from the

socket, should ensure a certain execution time and avoid being suspended or

preempted for a long time.

OTA API

No. Function Name Description

1 IOT_OTA_Init

Initialize the OTA module. The client needs

to initialize MQTT/COAP first before calling

this API.

2 IOT_OTA_Destroy
Release resources related to the OTA

module.

https://cloud.tencent.com/document/product/1081/39359
https://cloud.tencent.com/document/product/1081/39359

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 98 of 186

For a detailed description of the device log reporting functionality to the cloud, please refer to

the device log reporting feature section in the IoT communication platform document under

the SDK docs directory.

3 IOT_OTA_ReportVersion
Report local firmware version information

to the OTA server.

4 IOT_OTA_IsFetching
Check if it is in the state of downloading

firmware.

5 IOT_OTA_IsFetchFinish
Check if the firmware has been

downloaded completely.

6 IOT_OTA_FetchYield
Retrieve firmware from a remote server

with a specific timeout period.

7 IOT_OTA_Ioctl Retrieve specified OTA information.

8 IOT_OTA_GetLastError Retrieve the last error code.

9 IOT_OTA_StartDownload

Establish an HTTP connection with the

firmware server based on the obtained

firmware update address and the offset of

the local firmware information (whether to

resume from the breakpoint).

10
IOT_OTA_UpdateClientMd

5

Calculate the MD5 of the local firmware

before resuming from the breakpoint.

11
IOT_OTA_ReportUpgrade

Begin

Report the status of the upcoming

upgrade to the server before performing

the firmware upgrade.

12
IOT_OTA_ReportUpgrade

Success

Report the successfully upgraded status

to the server after the firmware upgrade is

successful.

13
IOT_OTA_ReportUpgrade

Fail

Report the upgrade failure status to the

server after the firmware upgrade fails.

Log API

No. Function Name Description

1 IOT_Log_Set_Level Set the print level of the SDK log.

2 IOT_Log_Get_Level Return the print level of the SDK log.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 99 of 186

3
IOT_Log_Set_MessageHa

ndler

Set the log callback function and redirect

the SDK log to other output methods.

4 IOT_Log_Init_Uploader
Enable the feature of SDK log reporting to

the cloud and initialize resources.

5 IOT_Log_Fini_Uploader
Disable the feature of SDK log reporting to

the cloud and release resources.

6 IOT_Log_Upload Report the SDK running log to the cloud.

7
IOT_Log_Set_Upload_Lev

el
Set the report level of the SDK log.

8
IOT_Log_Get_Upload_Lev

el
Return the report level of the SDK log.

9 Log_d/i/w/e Print the API for adding SDK logs by level.

System Time API

No. Function Name Description

1 IOT_Get_SysTime

Retrieve the time of the IoT Hub backend

system. Currently only support the

synchronization feature via MQTT

channel.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 100 of 186

Thing Model Code Generation
Last updated：2025-04-27 17:54:32

this document introduces how to generate product model code based on the thing model

created on the IoT Development Platform IoT Explorer.

There are following 3 steps to generate the Product Model code.

Create an object model. For details, see Thing Model document.

The Thing Model description file is a JSON file that describes the attributes, events, and other

information of the product definition.

click View Thing Model JSON. After confirming the content, click the download icon to export

the JSON file.

Step 1. Create an Object Model

Step 2: Export the Thing Model Description File

https://cloud.tencent.com/document/product/1081/44921

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 101 of 186

1. Perform the following command to copy the downloaded JSON file to the tools directory.

2. Generate the Thing Model and event configuration files for the defined product according

to the JSON file in the target directory, and copy this generated configuration file to the

same-level directory of data_template_sample.c.

Step 3: Generate Product Model Code

./codegen.py -c xx/config.json -d ../targetdir/

./codegen.py -c light.json -d ../samples/data_template/

Load light.json file successfully

File../samples/data_template/data_config.c generated successfully

File../samples/data_template/events_config.c generated successfully

Note:

data_template_sample.c describes a common Thing Model processing framework.

You can add business logic based on this framework.

Smart light example. The light_data_template_sample.c is a scenario example

based on this framework.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 102 of 186

Model Application Development
Last updated：2025-04-27 17:54:46

The Thing Model example data_template_sample.c has implemented a general processing

framework for data, event sending and receiving, and response. You can develop business

logic based on this example. The entry functions added for upstream and downstream

business logic are deal_up_stream_user_logic and deal_down_stream_user_logic

respectively. For details, see the scenario example light_data_template_sample.c of smart

light to add business processing logic.

The server downlink data has been parsed into JSON data by the SDK according to the Thing

Model Protocol. ProductDataDefine is a template structure generated in step 3 based on the

product Thing Model defined on the platform, and its member variables are composed of the

defined attributes. The attribute data pointed to by the input parameter pData has been parsed

by the SDK according to the Thing Model Protocol from the server downlink data. In the

downstream logic processing function, users can directly use the parsed data to add business

logic.

Downstream Business Logic Implementation

User performs corresponding business logic processing based on parsed device model

data (pData).

/*The business logic of downstream data that users need to implement.

The business logic remains to be implemented by users.*/

static void deal_down_stream_user_logic void *client

ProductDataDefine * pData

Log_d "someting about your own product logic wait to be done"

(,

)

{

();

}

Sample code is as follows:

/*Attribute Data Template for smart light*/

typedef struct _ProductDataDefine

 TYPE_DEF_TEMPLATE_BOOL m_light_switch

 TYPE_DEF_TEMPLATE_ENUM m_color

 TYPE_DEF_TEMPLATE_INT m_brightness

 TYPE_DEF_TEMPLATE_STRING m_name MAX_STR_NAME_LEN+1

 ProductDataDefine

/*Sample light control processing logic*/

{

;

;

;

[];

} ;

https://cloud.tencent.com/document/product/1081/41155
https://cloud.tencent.com/document/product/1081/41155

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 103 of 186

static void deal_down_stream_user_logic void *client ProductDataDefine

*light

int i

 const char * ansi_color = NULL

 const char * ansi_color_name = NULL

 char brightness_bar = "||||||||||||||||||||"

 int brightness_bar_len = strlen brightness_bar

/*light color*/

switch light->m_color

 case eCOLOR_RED:

 ansi_color = ANSI_COLOR_RED

 ansi_color_name = " RED "

 break

 case eCOLOR_GREEN:

 ansi_color = ANSI_COLOR_GREEN

 ansi_color_name = "GREEN"

 break

 case eCOLOR_BLUE:

 ansi_color = ANSI_COLOR_BLUE

 ansi_color_name = " BLUE"

 break

 default:

 ansi_color = ANSI_COLOR_YELLOW

 ansi_color_name = "UNKNOWN"

 break

 /* light brightness display bar */

 brightness_bar_len = light->m_brightness >= 100 ?

brightness_bar_len: int light->m_brightness *

brightness_bar_len /100

 for i = brightness_bar_len i < strlen brightness_bar i++

 brightness_bar i = '-'

if light->m_light_switch

 /* Show according to the control parameter when the light is

enabled */

HAL_Printf "%s[lighting]|[color:%s]|[brightness:%s]|

[%s]\n" ANSI_COLOR_RESET \

ansi_color ansi_color_name brightness_bar light-

>m_name

else

/* Show light off */

(,

)

{

;

;

;

[] ;

();

() {

;

;

;

;

;

;

;

;

;

;

;

;

}

()

()((

));

(; ();) {

[] ;

}

(){

(

,

, , ,

);

} {

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 104 of 186

Below is the sample code:

HAL_Printf ANSI_COLOR_YELLOW"[light is off]|[color:%s]|

[brightness:%s]|[%s]\n" ANSI_COLOR_RESET \

ansi_color_name brightness_bar light->m_name

#ifdef EVENT_POST_ENABLED

if eCHANGED == sg_DataTemplate 0 state

if light->m_light_switch

memset sg_message 0 MAX_EVENT_STR_MESSAGE_LEN

strcpy sg_message "light on"

sg_status = 1

else

memset sg_message 0 MAX_EVENT_STR_MESSAGE_LEN

strcpy sg_message "light off"

sg_status = 0

IOT_Event_setFlag client FLAG_EVENT0 /* Set event when the

switch status of the light changes. The set event will be reported in

eventPostCheck. */

#endif

(

,

, ,);

}

([].){

(){

(, ,);

(,);

;

} {

(, ,);

(,);

;

}

(,);

}

}

Uplink Business Logic Implementation

The device end adopts certain policies to monitor and process the device data attributes as

required by the business scenario.

Users can update the attributes that need to be reported to the input parameter

pReportDataList attribute in deal_up_stream_user_logic , including the report list, the

number of attributes to be reported, and the example processing framework of the Thing

Model. In IOT_Template_JSON_ConstructReportArray , the attribute data list will be

processed as the Protocol Format of the Thing Model. IOT_Template_Report sends data to

the server.

/* The user modifies the attribute value according to business, then

sets the attribute status to eCHANGED */

static void _refresh_local_property void

//add your local property refresh logic

/* The business logic of upstream data that users need to implement.

This is just an example. */

()

{

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 105 of 186

static int deal_up_stream_user_logic DeviceProperty *pReportDataList

int *pCount

int i j

/*Monitor whether local data needs to be updated*/

_refresh_local_property

/*Update the adjusted attributes to the report list*/

 for i = 0 j = 0 i < TOTAL_PROPERTY_COUNT i++

 if eCHANGED == sg_DataTemplate i state

 pReportDataList j++ = & sg_DataTemplate i data_property

sg_DataTemplate i state = eNOCHANGE

*pCount = j

return *pCount > 0 ?QCLOUD_RET_SUCCESS:QCLOUD_ERR_FAILURE

([],

)

{

, ;

();

(, ; ;) {

([].) {

[] ([].);

[]. ;

}

}

;

() ;

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 106 of 186

Device Information Storage
Last updated：2025-04-27 17:55:00

Tencent Cloud IoT Explorer allocates a unique identifier, ProductID, to each created product.

Users can customize the DeviceName to identify devices. The legitimacy of devices is verified

using the product identification + device identification + device certificate/key. And these

device identity information needs to be stored on the device side and will be used when

applying for triplet or quadruple information for device authentication. The C SDK provides

APIs and reference implementations for reading and writing device information, which can be

adapted based on the actual situation.

Device information burning is divided into preset burning and dynamic burning. There are

some differences in the convenience and security between the two as follows.

After creating a product, create devices one by one in IoT Explorer Console or through

TencentCloud API , and obtain the corresponding device information. Burn the above

quadruple or triplet information into non-volatile medium during the specific stage of device

production. The Device SDK runtime reads the stored device information to perform device

authentication.

Preset burning needs to execute personalized production actions in the mass production

process, which impacts production efficiency. To add convenience of application, the platform

supports dynamic burning via a way.

Device Identity Information

Certificate devices must have quadruple information to pass the platform's security

authentication: product ID (ProductID), device name (DeviceName), device certificate file

(DeviceCert), and device private key file (DevicePrivateKey). Among them, the certificate

file and private key file are generated by the platform and have a one-to-one

correspondence.

Key devices must have triplet information to pass the platform's security authentication:

product ID (ProductId), device name (DeviceName), and device secret (DeviceSecret),

among which the device secret is generated by the platform.

Device Identity Information Burn-In

Preset Burning

Dynamic Burning

Implementation approach: After product creation, enable the dynamic registration feature

of the product, and the product key (ProductSecret) will be generated. All devices under

https://console.cloud.tencent.com/iotexplorer
https://cloud.tencent.com/document/product/1081/37178

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 107 of 186

The SDK provides a HAL interface for device information read and write, which must be

implemented. You can refer to the implementation of device information read and write in

HAL_Device_Linux.c on the Linux platform.

Device information HAL interface:

After creating the device, you need to configure the device information (

ProductID/DeviceName/DeviceSecret/Cert/Key file) in the SDK to run the demo correctly.

During the development phase, the SDK offers two ways to store device information:

1. Stored in code (compilation option DEBUG_DEV_INFO_USED = ON), modify the device

information in platform/os/xxx/HAL_Device_xxx.c . This approach can be used on

platforms without a file system.

the same product can burn unified product information during the production process,

namely product ID (ProductId) and product key (ProductSecret). After the device leaves

the factory, the device identity information is retrieved via the dynamic registration method

and saved, which will be used when applying for triplet or quadruple information for device

authentication.

Device name (DeviceName) generation for dynamic burning:

If dynamic registration and automatic device creation are enabled at the same time, the

device name can be generated by the device itself, but it must ensure that the device

names under the same product ID (ProductId) are non-repeating, generally named

IMEI or MAC address.

If the dynamic registration is enabled while the automatic device creation is not

enabled, the device name needs to be entered into the platform in advance. During the

dynamic registration of the device, the applied device name will be verified as to

whether it is a legally entered device name. This method can reduce the security risk

after the product key leakage to a certain extent.

Note:

Dynamic registration needs to ensure the security of the product key (ProductSecret),

otherwise it will generate a potential security risk.

Device Information Read and Write API

HAL_API Overview

HAL_SetDevInfo Write device information.

HAL_GetDevInfo Read device information.

Device Information Configuration in Development Phase

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 108 of 186

2. Stored in configuration files (compilation option DEBUG_DEV_INFO_USED = OFF), modify

the device information in the device_info.json file. In this method, there is no need to

recompile the SDK to change the device information. This approach is recommended for

development on Linux/Windows platforms.

/* product Id */

static char sg_product_id MAX_SIZE_OF_PRODUCT_ID + 1 =

"PRODUCT_ID"

/* device name */

static char sg_device_name MAX_SIZE_OF_DEVICE_NAME + 1 =

"YOUR_DEV_NAME"

#ifdef DEV_DYN_REG_ENABLED

/* product secret for device dynamic Registration */

static char sg_product_secret MAX_SIZE_OF_PRODUCT_SECRET + 1 =

"YOUR_PRODUCT_SECRET"

#endif

#ifdef AUTH_MODE_CERT

/* public cert file name of certificate device */

static char sg_device_cert_file_name MAX_SIZE_OF_DEVICE_CERT_FILE_NAME

+ 1 = "YOUR_DEVICE_NAME_cert.crt"

/* private key file name of certificate device */

static char

sg_device_privatekey_file_name MAX_SIZE_OF_DEVICE_SECRET_FILE_NAME +

1 = "YOUR_DEVICE_NAME_private.key"

#else

/* device secret of PSK device */

static char sg_device_secret MAX_SIZE_OF_DEVICE_SECRET + 1 =

"YOUR_IOT_PSK"

#endif

[]

;

[]

;

[]

;

[

] ;

[

] ;

[]

;

 "auth_mode":"KEY/CERT"

 "productId":"PRODUCT_ID"

 "productSecret":"YOUR_PRODUCT_SECRET"

 "deviceName":"YOUR_DEV_NAME"

 "key_deviceinfo":

 "deviceSecret":"YOUR_IOT_PSK"

 "cert_deviceinfo":

{

,

,

,

,

{

},

{

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 109 of 186

 "devCertFile":"YOUR_DEVICE_CERT_FILE_NAME"

 "devPrivateKeyFile":"YOUR_DEVICE_PRIVATE_KEY_FILE_NAME"

 "subDev":

 "sub_productId":"YOUR_SUBDEV_PRODUCT_****"

 "sub_devName":"YOUR_SUBDEV_DEVICE_****"

,

},

{

,

}

}

Application Example

Initialize connection parameters

static DeviceInfo sg_devInfo

static int _setup_connect_init_params MQTTInitParams* initParams

 int ret

 ret = HAL_GetDevInfo void * &sg_devInfo

 if QCLOUD_ERR_SUCCESS != ret

 return ret

 initParams->device_name = sg_devInfo device_****

 initParams->product_id = sg_devInfo product_****

;

()

{

;

(());

(){

;

}

. ;

. ;

......

}

Generate authentication parameters for key devices

static int _serialize_connect_packet unsigned char *buf size_t

buf_len MQTTConnectParams *options uint32_t *serialized_len

 int username_len = strlen options->client_id +

strlen QCLOUD_IOT_DEVICE_SDK_APPID + MAX_CONN_ID_LEN +

cur_timesec_len + 4

 options->username = char* HAL_Malloc username_len

 get_next_conn_id options->conn_id

 HAL_Snprintf options->username username_len "%s;%s;%s;%ld"

options->client_id QCLOUD_IOT_DEVICE_SDK_APPID options->conn_id

(,

, ,) {

......

......

()

()

;

() ();

();

(, , ,

, , ,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 110 of 186

cur_timesec

#if defined(AUTH_WITH_NOTLS) && defined(AUTH_MODE_KEY)

 if options->device_secret != NULL && options->username != NULL

 char sign 41 = 0

 utils_hmac_sha1 options->username strlen options->username

sign options->device_secret options->device_secret_len

 options->password = char* HAL_Malloc 51

 if options->password == NULL

IOT_FUNC_EXIT_RC QCLOUD_ERR_INVAL

 HAL_Snprintf options->password 51 "%s;hmacsha1" sign

#endif

);

() {

[] { };

(, (),

, ,);

() ();

()

();

(, , ,);

}

......

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 111 of 186

Usage Reference
Last updated：2025-04-27 17:55:14

Tencent Cloud IoT Device-side C SDK relies on a secure and high-performance data channel

to provide developers in the IoT domain with the ability to quickly integrate devices with the

cloud and perform two-way communication with the cloud.

The SDK is managed on Github and can be accessed on Github to download the latest version

of the device-side C SDK .

SDK Acquisition

Software Architecture

https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c/releases

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 112 of 186

The SDK is designed in four layers, from top to bottom, namely platform service layer, core

protocol layer, network layer, and Hardware Abstraction Layer.

service layer

Above the network protocol layer, features such as device access authentication,

device shadow, gateway, dynamic registration, log reporting and OTA are implemented.

The core protocol for interaction between the device side and the IoT Explorer platform

is MQTT. Based on this core protocol, data template and OTA features are

implemented. The platform defines the Data Template Protocol through the common

abstraction of IoT devices. The cloud and devices implement data flow interaction of

the data template protocol data via the payload carried by MQTT. The upgrade

command, version and firmware information of the OTA feature are interacted through

the MQTT protocol channel, and the firmware download is interacted through the

HTTPS protocol channel.

protocol layer

 The network protocols for interaction between the device side and the IoT platform include

MQTT/CoAP/HTTP.

Network layer

 The implementation of the network layer supports bsd_socket method and AT_socket

method. For systems with abundant resources that have integrated TCP/IP or LwIP

network protocol stack, the network interface of bsd_socket can be chosen. For some

resource-constrained devices that achieve network access through the interaction

between communication modules (cellular modules/Wi-Fi modules, etc.) and MCU, the

at_socket framework provided by the SDK can be chosen. For communication modules not

supported by the SDK, refer to the implementation of the driver interface in the

at_device_op_t structure of the at_device struct supported by the SDK.

Hardware Abstraction Layer

 The Hardware Abstraction Layer needs to be ported for specific software and hardware

platforms, and is divided into two parts of HAL layer interfaces: essential implementations

and optional implementations. The essential implementation interfaces include time (obtain

the number of milliseconds), print, formatted print, memory operations, and device

information read and write. For the optional implementation interfaces, if using RTOS, it is

required to implement locks, semaphores, thread creation and termination, and delay

sleep. If using AT_Socket to access the network, it is required to implement the AT Serial

Port Driver and module driver. The SDK already supports the HAL layer example porting

implementation for four typical environments: Linux, Windows, FreeRTOS, and nonOS. The

relevant examples can be directly compiled and run in the Linux and Windows

environments.

Porting Guide

https://cloud.tencent.com/document/product/1081/34916

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 113 of 186

SDK-related documentation. For details, see SDK Usage Reference .

Development Platform Document

Linux Linux Platform Access Guide

Windows Windows Platform Access Guide

MCU+ General AT Module +

FreeRTOS

MCU+ General TCP AT Module (FreeRTOS) Access

Guide

MCU+ General AT Module +

nonOS

MCU+ General TCP AT Module (nonOS) Access

Guide

FreeRTOS+lwIP FreeRTOS+lwIP Platform Access Guide

other platforms C SDK Porting Integration Guide

SDK Related Documentation

https://cloud.tencent.com/document/product/1081/48370
https://cloud.tencent.com/document/product/1081/48387
https://cloud.tencent.com/document/product/1081/48392
https://cloud.tencent.com/document/product/1081/48396
https://cloud.tencent.com/document/product/1081/48396
https://cloud.tencent.com/document/product/1081/48397
https://cloud.tencent.com/document/product/1081/48397
https://cloud.tencent.com/document/product/1081/48388
https://cloud.tencent.com/document/product/1081/48389

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 114 of 186

AT SDK Usage Reference
Last updated：2025-04-27 17:56:37

The AT SDK is oriented to modules with built-in Tencent Cloud IoT AT commands and

provides an SDK for implementing and customizing module interactions.

After creating products and devices on the IoT explorer platform <1>, select the development

method based on MQTT AT customized module. The <3>AT SDK</3> code on the MCU side

will be automatically generated, and the corresponding configuration and initialization code for

the data template and events created on the platform will also be generated.

The architecture diagram of the AT SDK software is as follows:

SDK Acquisition

Software Architecture

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 115 of 186

 The SDK is designed in four layers, from top to bottom, namely the application layer, core

protocol layer, AT transport layer, and Hardware Abstraction Layer.

Service layer

 Above the network protocol layer, it implements features including device access

authentication, device shadow, gateway, dynamic registration, log reporting, and OTA.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 116 of 186

Protocol layer

 The network protocols for interaction between the device end and the IoT platform include

MQTT/COAP/HTTP.

AT Transport Layer

 Implement a network protocol stack customized for AT instructions based on Tencent

Cloud IoT.

Hardware Abstraction Layer

 Abstract encapsulation of underlying operations for different hardware platforms. Porting

is required targeting specific software and hardware platforms. It is divided into two parts

of HAL layer interfaces: required implementation and optional implementation.

Directory Structure

Name Overview

docs
Documentation directory, including the definition of

Tencent AT Instruction Set.

port

HAL layer porting directory. Implement the send and

receive interface (interrupt reception) of the serial port,

delay function, power on/off of the module, and OS-

related interfaces.

sample
Application examples, example usages of MQTT,

shadow, and data template.

src Implementation of AT framework and protocol logic.

─ event Event function protocol encapsulation.

─ module_at

Abstract of at client, implementation of RX parsing,

command downlink, urc match, and asynchronous resp

match.

─ shadow
Implementation of shadow logic based on AT

framework.

─ mqtt
Implementation of MQTT protocol based on AT

framework.

─ utils json, timer, linked list applications.

─ include
External SDK header files and device information

configuration header files.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 117 of 186

For more usage methods and understanding of APIs about the SDK, please refer to

qcloud_iot_api_export.h .

usr_logic
Automatically generated skeleton code for business

logic defined by your own product.

─ data_config.c User-defined data point.

─ events_config.c User-defined event.

─data_template_usr_logic.c

Skeleton framework for users' services processing

logic. Just implement the reserved uplink and downlink

business logic processing functions.

tools Code generation script.

README.md SDK Usage Instructions.

Porting Guide

Development platform Reference Documentation

Customize AT Module

(Cellular type) for MCU+

Integration guide for custom MQTT AT module (cellular

type) for MCU+

Customize AT Module (Wi-Fi

type) for MCU+

Access guide for custom MQTT AT module (Wi-Fi type)

for MCU+

SDK API Description

https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based/tree/master/include
https://cloud.tencent.com/document/product/1081/48395
https://cloud.tencent.com/document/product/1081/48395
https://cloud.tencent.com/document/product/1081/48394
https://cloud.tencent.com/document/product/1081/48394

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 118 of 186

Using Android SDK Reference
Last updated：2025-04-27 17:56:56

Android SDK for platforms using Java language to integrate with Tencent Cloud IoT Explorer.

The SDK is managed on Github and accessible on Github to download the latest version of the

device-side iot-device-android .

The architecture diagram of Tencent Cloud IoT Explorer Android SDK is as follows:

SDK Acquisition

Software Architecture

Class Name Feature

TXMqttConnection Connect to IoT Explorer.

TXDataTemplate Implement basic features of Thing Model.

TXDataTemplateClient
Implement direct devices to connect to the IoT development

platform according to the Thing Model.

TXGatewayClient
Implement gateway devices to connect to the IoT

development platform according to the Thing Model.

TXGatewaySubdev
Implement the connection of gateway subdevices to the IoT

development platform according to the Thing Model.

https://github.com/tencentyun/iot-device-java/tree/master/explorer/explorer-device-android

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 119 of 186

Android SDK porting guide. For details, see Android Platform Access Guide .

Porting Guide

SDK API Description

TXMqttConnection

Method Name Description

connect MQTT connection.

reconnect MQTT reconnection.

disConnect Disconnect MQTT connection.

publish Publish an MQTT message.

https://cloud.tencent.com/document/product/1081/48390

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 120 of 186

subscribe Subscribe to an MQTT topic.

unSubscribe Unsubscribe from MQTT topic.

getConnectStatus Get MQTT connection status.

setBufferOpts Set Disconnection Status buffer.

initOTA Initialize the OTA function.

reportCurrentFirmwar

eVersion

Submit the current version information of the device to the

backend server.

reportOTAState Report device upgrade status to backend server.

TXDataTemplate

Method Name Description

subscribeTemplateTop

ic
Subscribe to Thing Model-related topics.

unSubscribeTemplate

Topic
Unsubscribe from Thing Model-related topics.

propertyReport Reported attribute.

propertyGetStatus Update status.

propertyReportInfo Submit device information.

propertyClearControl Clear control information.

eventSinglePost Submit a single event.

eventsPost Submit multiple events.

TXDataTemplateClient

Method Name Description

isConnected
Whether it has been connected to the IoT development

platform.

subscribeTemplateTo

pic
Subscribe to Thing Model-related topics.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 121 of 186

unSubscribeTemplate

Topic
Unsubscribe from Thing Model-related topics.

propertyReport Reported attribute.

propertyGetStatus Update status.

propertyReportInfo Submit device information.

propertyClearControl Clear control information.

eventSinglePost Submit a single event.

eventsPost Submit multiple events.

TXGatewayClient

Method Name Description

findSubdev Find a sub-device (based on product ID and device name).

removeSubdev Delete a subdevice.

addSubdev Add a sub-device.

subdevOffline Launch a subdevice.

subdevOnline Decommission a sub-device.

TXGatewaySubdev

Method Name Description

getSubdevStatus Get the connection status of the sub-device.

setSubdevStatus Set the connection status of the sub-device.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 122 of 186

Java SDK Usage Reference
Last updated：2025-04-27 17:59:25

Java SDK realizes the integration of platforms oriented to Java language with Tencent Cloud

IoT Explorer.

The SDK is hosted on Github and can be accessed from Github to download the latest version

of the device-side explorer-device-java .

If you want to perform project development through jar reference method, you can add

dependencies in the build.gradle under the module directory, as follows:

The architecture diagram of Tencent Cloud IoT Explorer Java SDK is as follows:

SDK Acquisition

dependencies

 .

 implementation 'com.tencent.iot.explorer:explorer-device-java:x.x.x'

{

..

}

Note:

Users can set the above x.x.x to the latest version based on version description .

Software Architecture

Class Name Feature

TXMqttConnection Connect to the IoT development platform.

TXDataTemplate Implement basic features of Thing Model.

TXDataTemplateClient
Connect directly connected devices to IoT Explorer

according to Thing Model.

TXGatewayClient
Implement gateway devices to connect to the IoT

development platform according to the Thing Model.

TXGatewaySubdev
Implement gateway subdevices to connect to the IoT

development platform according to the Thing Model.

https://github.com/tencentyun/iot-device-java/tree/master/explorer/explorer-device-java
https://cloud.tencent.com/document/product/1081/48355

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 123 of 186

Java SDK Porting Guide. For details, see Java Platform Access Guide .

Porting Guide

SDK API Description

TXMqttConnection

Method Name Description

connect MQTT connection.

reconnect MQTT reconnection.

disConnect Disconnect the MQTT connection.

publish Publish an MQTT message.

https://cloud.tencent.com/document/product/1081/48391

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 124 of 186

subscribe Subscribe to an MQTT topic.

unSubscribe Unsubscribe from an MQTT topic.

getConnectStatus Get MQTT connection status.

setBufferOpts Set the disconnection status buffer.

initOTA Initialize the OTA function.

reportCurrentFirmwareVersio

n

Submit the current version information of the device to

the backend server.

reportOTAState Report device upgrade status to backend server.

TXDataTemplate

Method Name Description

subscribeTemplateTopic Subscribe to topics related to Thing Model.

unSubscribeTemplateTopic Unsubscribe from topics related to Thing Model.

propertyReport Reported attribute.

propertyGetStatus Update status.

propertyReportInfo Submit device information.

propertyClearControl Clear control information.

eventSinglePost Submit a single event.

eventsPost Submit multiple events.

TXDataTemplateClient

Method Name Description

isConnected
Whether it has been connected to the IoT

development platform.

subscribeTemplateTopic Subscribe to topics related to Thing Model.

unSubscribeTemplateTopic Unsubscribe from topics related to Thing Model.

propertyReport Reported attribute.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 125 of 186

propertyGetStatus Update status.

propertyReportInfo Submit device information.

propertyClearControl Clear control information.

eventSinglePost Submit a single event.

eventsPost Submit multiple events.

TXGatewayClient

Method Name Description

findSubdev Find a sub-device (by product ID and device name).

removeSubdev Delete a subdevice.

addSubdev Add a sub-device.

subdevOffline Launch a subdevice.

subdevOnline Decommission a sub-device.

TXGatewaySubdev

Method Name Description

getSubdevStatus Get the connection status of the sub-device.

setSubdevStatus Set the connection status of the sub-device.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 126 of 186

Python SDK Usage Reference
Last updated：2025-04-27 17:59:41

Tencent Cloud IoT Device SDK for Python relies on a secure and high-performance data

channel to provide developers in the IoT domain with the ability to quickly access the cloud

from the device end and perform two-way communication with the cloud. Developers only

need to complete the corresponding configuration of the project to complete the access of the

device.

The product and device have been created on the Explorer platform.

If you need to view the used SDK version, use the following command:

If you need to upgrade the SDK version, use the following command:

The relevant APIs of MQTT are defined in the explorer.py class, supporting publish and

subscribe functionality. The introduction is as follows:

Prerequisites

Reference Method

If you need to perform project development by reference method, you can install SDK, as

follows:

pip3 install tencent-iot-device

pip3 show --files tencent-iot-device

pip3 install --upgrade tencent-iot-device

If you need to perform project development through code integration, you can visit Github

to download the Python SDK source code.

MQTT API

Method Name Description

connect MQTT connection.

disconnect Disconnect the MQTT connection.

https://github.com/tencentyun/iot-device-python/blob/master/explorer/explorer.py
https://github.com/tencentyun/iot-device-python

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 127 of 186

The API definitions related to the MQTT gateway are in the gateway.py Class Interface, as

follows:

subscribe MQTT subscribe.

unsubscribe MQTT unsubscribe.

publish MQTT publish a message.

registerMqttCallback Register the MQTT callback function.

registerUserCallback Registered user callback function.

isMqttConnected Checks whether MQTT is connected normally.

getConnectState Get MQTT connection status.

setReconnectInterval Set MQTT reconnection attempt interval.

setMessageTimout Set the message sending timeout.

setKeepaliveInterval Set MQTT keep-alive interval.

MQTT Gateway API

For devices that cannot be directly accessed to the Ethernet network, you can first

integrate them into the network of the local gateway device, and use the communication

feature of the gateway device to integrate the proxy device into the explorer platform.

For subdevices in the local area network that join or exit the network, binding or unbinding

operations need to be performed through the platform.

Note:

When a sub-device initiates going online, subsequently, as long as the gateway

connects successfully, the backend will display the sub-device online unless the

device has initiated an offline operation.

Method Name Description

gatewayInit Gateway initialization.

isSubdevStatusOnline Determine whether sub-devices are online.

updateSubdevStatus Update sub-device online status.

https://github.com/tencentyun/iot-device-python/blob/master/explorer/services/gateway/gateway.py

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 128 of 186

If you need to use the Thing Model feature, you need to use the APIs in the template.py class.

The introduction is as follows:

gatewaySubdevGetConfigLis

t
Obtain sub-device list from configuration file.

gatewaySubdevOnline Proxy sub-device online.

gatewaySubdevOffline Agent Subdevice Offline.

gatewaySubdevBind Bind sub-device.

gatewaySubdevUnbind Unbind sub-device.

gatewaySubdevSubscribe Sub-device subscription.

Thing Model Interface

API Name API Description

templateInit Thing model initialization.

getEventsList Obtain device event list.

getActionList Obtain device action list.

getPropertyList Obtain device property list.

templateSetup Parse Thing Model.

templateEventPost events reporting.

templateJsonConstructRepor

tArray
Construct the json structure for reporting.

templateReportSysInfo Device information reporting.

templateControlReply Control message response.

templateActionReply action message response.

templateGetStatus Obtain the latest status of the device.

templateReport Device attribute reporting.

clearControl Clear control.

templateDeinit Terminate the Thing Model.

https://github.com/tencentyun/iot-device-python/blob/master/explorer/sample/template/example_template.py

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 129 of 186

If you need to use the dynamic registration function, you need to use the API in the

explorer.py class. The introduction is as follows:

If you need to use the OTA feature, you need to use the API in the explorer.py class. The

introduction is as follows:

Dynamic Registration API

Method Name Description

dynregDevice Retrieve information on dynamic device registration.

OTA API

Method Name Description

otaInit Initialize OTA.

otaIsFetching Determine whether it is downloading.

otaIsFetchFinished Determine whether the download is complete.

otaReportUpgradeSuccess Submit an upgrade success message.

otaReportUpgradeFail Submit an upgrade failure message.

otaIoctlNumber
Retrieve int type information such as firmware size for

download.

otaIoctlString
Retrieve string type information such as firmware md5

for download.

otaResetMd5 Reset the md5 information.

otaMd5Update Update the md5 information.

httpInit Initialize HTTP.

otaReportVersion Submit the current firmware version information.

otaDownloadStart Start firmware download.

otaFetchYield Read the firmware.

https://github.com/tencentyun/iot-device-python/blob/master/explorer/explorer.py
https://github.com/tencentyun/iot-device-python/blob/master/explorer/explorer.py

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 130 of 186

C# Integration Reference
Last updated：2025-04-27 17:59:59

C# is a modern, common, object-oriented programming language developed and launched by

Microsoft in the.NET framework. It combines the powerful features of C++ and the ease of use

of Java, enabling developers to build various types of applications, including Windows client

applications, Web applications, database applications, mobile applications, and games.

Tencent Cloud IoT Explorer supports integration using C#. This article introduces how to use

the MQTTnet Client library in a C# project to achieve connection, topic subscription, uplink and

downlink message interaction, and other features with Tencent Cloud IoT Explorer.

A smart light is integrated into the IoT Explorer. Through the IoT Explorer, the brightness,

color, and switch of the light can be remotely controlled, and the data reported to the IoT

Explorer by the smart light can be accessed in real time.

1. Apply for Tencent Cloud IoT Explorer service.

2. One Windows computer with VS2017 and above versions installed.

1. Log in to IoT Explorer Console , select the platform default public instance or the enterprise

instance purchased by user.

2. Click an instance. By default, enter the project list page and click Create a New Project.

Note:

1. This example is based on donet 6.0.

2. The versions of third-party libraries used are as follows:

MQTTnet:v3.0.11

MQTTnet.Extensions.ManagedClient:v3.0.11

Newtonsoft.Json:v12.0.3

NLog:v5.2.3

Overview

Preparations

Operation Steps

Project Creation

Project name: required, input "Smart Light Demo" or other name.

Project description: Fill in the project description according to actual needs.

https://cloud.tencent.com/product/iotexplorer
https://console.cloud.tencent.com/iotexplorer

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 131 of 186

3. After completing the basic information filling of the project, click Save to complete the

creation of the new project.

4. After the project is successfully created, you can create a product.

1. Click the project name, enter the product list page, and click Create Product.

2. On the create product page, fill in the basic information of the product.

Create Product

Product name: required, manually input "Smart Light" or other product names.

Product category: Select the standard category "Intelligent Life" > "Electrical Lighting"

> "Lights".

Device type: Select "device".

Authentication method: Select "key authentication".

Communication method: select as needed.

Others are default options.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 132 of 186

3. After the product information is filled in, click Save to complete the creation of the product.

4. After the product is successfully created, you can view "Smart Light" on the product list

page.

After selecting the "Light" type, the system automatically generates standard features.

Define the Thing Model of a Product

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 133 of 186

Creating Device

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 134 of 186

On the device debugging page, click Create New Device. The device name is dev001.

 ﻿

For an introduction to the protocol of the Thing Model, please see Thing Model Protocol .

Through these steps, you have already successfully obtained the triplet information of the

device on Tencent Cloud IoT Explorer. Next, you can use this sample code to integrate with

C#.

Click the name of the created device to obtain the device triplet information.

Generate MQTT's clientId , userName , and password using the triplet information just filled

in.

Using C# MQTT Client

Input Triplet Information

// Cloud-generated triplet information

static string PRODUCT_ID = "YOUR_PRODUCT_ID" // PRODUCT ID

static string DEVICE_NAME = "YOUR_DEVICE_NAME" // device name

static string DEVICE_SECRET = "IOT_PSK" // device key

;

;

;

Generating MQTT client Connection Parameters

// Generate MQTT connection parameters

byte[] decodeBytes = Convert FromBase64String DEVICE_SECRET

string clientId = PRODUCT_ID + DEVICE_NAME

string usrNmae = clientId + ";21010406;" + GetNextConnId +";"+

0x7fffffff ToString

string password = ComputeHmacSha1 usrNmae decodeBytes + ";hmacsha1"

. ();

;

()

. ();

(,) ;

Create an MQTT client and Connect to the Cloud Platform

https://cloud.tencent.com/document/product/1081/34916

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 135 of 186

If you use TLS encryption for access, configure as follows:

IManagedMqttClient mqttClient = new

MqttFactory CreateManagedMqttClient

var mqttOptions = new ManagedMqttClientOptionsBuilder

 WithAutoReconnectDelay TimeSpan FromSeconds 10

 WithClientOptions new MqttClientOptionsBuilder

 WithClientId clientId

 WithCredentials usrNmae password

 WithTcpServer url 1883 // Non-tls mode

 WithCleanSession

 Build

 Build

(). ();

()

. (. ())

. (()

. ()

. (,)

. (,)

. ()

. ())

. ();

IManagedMqttClient mqttClient = new

MqttFactory CreateManagedMqttClient

var mqttOptions = new ManagedMqttClientOptionsBuilder

 WithAutoReconnectDelay TimeSpan FromSeconds 10

 WithClientOptions new MqttClientOptionsBuilder

 WithClientId clientId

 WithCredentials usrNmae password

 WithTcpServer url 8883 // tls integration

 WithTls new MqttClientOptionsBuilderTlsParameters

 UseTls = true

 IgnoreCertificateChainErrors = true

 IgnoreCertificateRevocationErrors = true

 AllowUntrustedCertificates = true

 WithCleanSession

 Build

 Build

(). ();

()

. (. ())

. (()

. ()

. (,)

. (,)

. ({

,

,

,

,

})

. ()

. ())

. ();

Listen for MQTT Connection, Disconnection or Receipt Events

// Listen for connection events

mqttClient UseConnectedHandler e =>

 log Info "mqtt connect success with " + deviceId

 return Task CompletedTask

. (

{

. ();

. ;

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 136 of 186

// Listen for disconnection events

mqttClient UseDisconnectedHandler e =>

 log Error "mqtt disconnect with " + deviceId

 return Task CompletedTask

// Listen to received messages.

mqttClient UseApplicationMessageReceivedHandler e =>

 // Process model data

 string topic = e ApplicationMessage Topic

 string payload =

Encoding UTF8 GetString e ApplicationMessage Payload

 log Debug $"down message topic: {topic} paylaod : {payload}"

 if topic Contains "/property/"

 // Attribute processing

 else if topic Contains "/event/"

 // Event handling

 else if topic Contains "/action/"

 // Handle behavior

 return Task CompletedTask

});

. (

{

. ();

. ;

});

. (

{

. . ;

. . (. .);

. ();

(. ())

{

} (. ())

{

} (. ())

{

}

. ;

});

Connecting to Cloud Platform

// Connect to the platform

await mqttClient StartAsync mqttOptions. ();

Subscribe to the Thing Model topic

 // Subscribe to Thing Model topic

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 137 of 186

The complete sample code is as follows:

var topicFilters = new

 new

MqttTopicFilterBuilder WithTopic "$thing/down/property/"+deviceId Bui

ld

 new

MqttTopicFilterBuilder WithTopic "$thing/down/event/"+deviceId Build

 new

MqttTopicFilterBuilder WithTopic "$thing/down/action/"+deviceId Build

await mqttClient SubscribeAsync topicFilters

[]

{

(). ().

(),

(). (). (

),

(). ().

()

};

. ();

Brightness Example Submission

 int brightness = 25

 var payload_json = new JObject

 "method" = "report"

 "clientToken" =

DateTimeOffset Now ToUnixTimeSeconds ToString

 "params" = new JObject

 "brightness" = brightness

 string payload = JsonConvert SerializeObject payload_json ToString

 var message = new MqttApplicationMessageBuilder

 WithTopic "$thing/up/property/" + deviceId

 WithPayload payload

 WithQualityOfServiceLevel 0

 WithRetainFlag false

 Build

 await mqttClient PublishAsync message

;

{

[] ,

[]

. . (). (),

[]

{

[]

}

};

. (). ();

()

. ()

. ()

. ()

. ()

. ();

. ();

using

using

using

using

System;

System.Collections.Generic;

System.Text;

System.Security.Cryptography;

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 138 of 186

using

using

using

using

using

using

namespace

 class DatatemplateTest

 private static Logger log = LogManager GetCurrentClassLogger

 // Cloud-generated triplet information

 static string PRODUCT_ID = "F2F43QKKA4"

 static string DEVICE_NAME = "5629fbfa12f4"

 static string DEVICE_SECRET = "a91V4htL41oILv80lgCeLA=="

 public static string GetNextConnId

 char[] connId = new char 6

 Random random = new Random

 for int i = 0 i < 6 - 1 i++

 int flag = random Next 3

 switch flag

 case 0

 connId i = char random Next 26 + 'a'

 break

 case 1

 connId i = char random Next 26 + 'A'

 break

 case 2

 connId i = char random Next 10 + '0'

 break

 connId 6 - 1 = '\0'

 return new string connId

NLog;

MQTTnet;

MQTTnet.Client.Options;

MQTTnet.Extensions.ManagedClient;

Newtonsoft.Json;

Newtonsoft.Json.Linq;

IoT.Explorer.Test

{

{

. ();

;

;

;

()

{

[];

();

(; ;)

{

. ();

()

{

:

[] ()(. ());

;

:

[] ()(. ());

;

:

[] ()(. ());

;

}

}

[] ;

();

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 139 of 186

 public static string ComputeHmacSha1 string inputString byte[]

keyBytes

 byte[] inputBytes = Encoding UTF8 GetBytes inputString

 using HMACSHA1 hmac = new HMACSHA1 keyBytes

 byte[] hashBytes = hmac ComputeHash inputBytes

 string hashString =

BitConverter ToString hashBytes Replace "-" "" ToLower

 return hashString

 static async Task Main string[] args

 // Generate MQTT connection parameters

 byte[] decodeBytes =

Convert FromBase64String DEVICE_SECRET

 string clientId = PRODUCT_ID + DEVICE_NAME

 string usrNmae = clientId + ";21010406;" + GetNextConnId

+";"+ 0x7fffffff ToString

 string password = ComputeHmacSha1 usrNmae decodeBytes +

";hmacsha1"

 string url = PRODUCT_ID + ".iotcloud.tencentdevices.com"

 string deviceId = PRODUCT_ID + "/" + DEVICE_NAME

 try

 IManagedMqttClient mqttClient = new

MqttFactory CreateManagedMqttClient

 var mqttOptions = new ManagedMqttClientOptionsBuilder

 WithAutoReconnectDelay TimeSpan FromSeconds 10

 WithClientOptions new MqttClientOptionsBuilder

 WithClientId clientId

 WithCredentials usrNmae password

 WithTcpServer url 8883

 WithTls new

MqttClientOptionsBuilderTlsParameters

 UseTls = true

 IgnoreCertificateChainErrors = true

 IgnoreCertificateRevocationErrors = true

(,

)

{

. . ();

(())

{

. ();

. (). (,). ();

;

}

}

()

{

. ();

;

()

. ();

(,)

;

;

;

{

(). ();

()

. (. ())

. (()

. ()

. (,)

. (,)

. (

{

,

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 140 of 186

 AllowUntrustedCertificates = true

 WithCleanSession

 Build

 Build

 // Listen for connection events

 mqttClient UseConnectedHandler e =>

 log Info "mqtt connect success with " + deviceId

 return Task CompletedTask

 // Listen for disconnection events

 mqttClient UseDisconnectedHandler e =>

 log Error "mqtt disconnect with " + deviceId

 return Task CompletedTask

 // Listen to received messages.

 mqttClient UseApplicationMessageReceivedHandler e =>

 // Process model data

 string topic = e ApplicationMessage Topic

 string payload =

Encoding UTF8 GetString e ApplicationMessage Payload

 log Debug $"down message topic: {topic} paylaod :

{payload}"

 if topic Contains "/property/"

 // Attribute processing

 else if topic Contains "/event/"

 // Event handling

 else if topic Contains "/action/"

 // Handle behavior

,

})

. ()

. ())

. ();

. (

{

. ();

. ;

});

. (

{

. ();

. ;

});

. (

{

. . ;

. . (. .);

. (

);

(. ())

{

} (. ())

{

} (. ())

{

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 141 of 186

 return Task CompletedTask

 // Connect to the platform.

 await mqttClient StartAsync mqttOptions

 Thread Sleep 2000

 // Subscribe to Thing Model topic

 var topicFilters = new

 new

MqttTopicFilterBuilder WithTopic "$thing/down/property/"+deviceId Bui

ld

 new

MqttTopicFilterBuilder WithTopic "$thing/down/event/"+deviceId Build

 new

MqttTopicFilterBuilder WithTopic "$thing/down/action/"+deviceId Build

 await mqttClient SubscribeAsync topicFilters

 int brightness = 0

 while true

 // Submit brightness periodically

 var payload_json = new JObject

 "method" = "report"

 "clientToken" =

DateTimeOffset Now ToUnixTimeSeconds ToString

 "params" = new JObject

 "brightness" = brightness

 string payload =

JsonConvert SerializeObject payload_json ToString

 var message = new MqttApplicationMessageBuilder

 WithTopic "$thing/up/property/" + deviceId

 WithPayload payload

 WithQualityOfServiceLevel 0

 WithRetainFlag false

 Build

 await mqttClient PublishAsync message

. ;

});

. ();

. ();

[]

{

(). ().

(),

(). (). (

),

(). ().

()

};

. ();

;

() {

{

[] ,

[]

. . (). (),

[]

{

[]

}

};

. (). ();

()

. ()

. ()

. ()

. ()

. ();

. ();

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 142 of 186

Running logs are as follows:

 log Debug "publish message :" + payload

 brightness++

 if !mqttClient IsConnected

 break

 Thread Sleep 10000

 // disconnect

 await mqttClient StopAsync

 catch Exception ex

 var name = ex GetType FullName

 log Error "Exception: " + ex Message

. ();

;

(.)

{

;

}

. ();

}

. ();

}

()

{

. (). ;

. (.);

}

}

}

}

2023-08-09 12 04 20.0860 INFO IoT Explorer Test DatatemplateTest - mqtt

connect success with F2F43QKKA4/5629fbfa12f4

2023-08-09 12 04 21.7918 DEBUG IoT Explorer Test DatatemplateTest -

publish message "method" "report" "clientToken" "1691553861" "params"

"brightness" 0

2023-08-09 12 04 21.8791 DEBUG IoT Explorer Test DatatemplateTest - down

message topic $thing/down/property/F2F43QKKA4/5629fbfa12f4 paylaod

"method" "report_reply" "clientToken" "1691553861" "code" 0 "status" "s

uccess"

2023-08-09 12 04 25.6359 DEBUG IoT Explorer Test DatatemplateTest - down

message topic $thing/down/property/F2F43QKKA4/5629fbfa12f4 paylaod

"method" "control" "clientToken" "v2149648760ozOCb::af400362-c384-40dd-

b39c-94d82950e1ad" "params" "power_switch" 1

2023-08-09 12 04 29.4171 DEBUG IoT Explorer Test DatatemplateTest - down

message topic $thing/down/property/F2F43QKKA4/5629fbfa12f4 paylaod

"method" "control" "clientToken" "v2146761678bxCmt::295125a1-6b64-4cba-

b2ca-036bbef43390" "params" "power_switch" 0

2023-08-09 12 04 31.7989 DEBUG IoT Explorer Test DatatemplateTest -

publish message "method" "report" "clientToken" "1691553871" "params"

: : . . .

: : . . .

:{ : , : , :

{ : }}

: : . . .

: :

{ : , : , : , :

}

: : . . .

: :

{ : , :

, :{ : }}

: : . . .

: :

{ : , :

, :{ : }}

: : . . .

:{ : , : , :

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 143 of 186

"brightness" 1

2023-08-09 12 04 31.8919 DEBUG IoT Explorer Test DatatemplateTest - down

message topic $thing/down/property/F2F43QKKA4/5629fbfa12f4 paylaod

"method" "report_reply" "clientToken" "1691553871" "code" 0 "status" "s

uccess"

{ : }}

: : . . .

: :

{ : , : , : , :

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 144 of 186

Gateway and Sub-Device

Development

Gateway and Subdevice Integration

Instruction
Last updated：2025-04-28 10:41:25

For devices such as BLE, Zigbee and 485 that do not have direct network access capabilities,

it is necessary to connect to an access gateway first, and then indirectly realize device

connectivity to Tencent IoT Explorer through a gateway proxy. The specific process solution

framework diagram is as follows:

…

Rule

engine

Tencent-iot-sdk

网关

BT Zigbee 485 CAN ……

Tencent

IoT Explorer

platform

区域通信

类设备

Term Definition

Gateway device: Possess northbound and southbound communication capabilities

Northbound: Can communicate with the cloud for data interaction.

Southbound: Can mount sub-devices through wired or wireless methods, and possess

the ability to manage sub-devices and proxy their communication.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 145 of 186

For scenarios of gateways and subdevices, development needs to be carried out on both the

gateway side and the subdevice side. Please refer to the following documentation links

respectively.

Sub-device: A device that does not have the ability to directly access the network and

indirectly realizes data interaction with the cloud through a gateway proxy, such as BLE,

Zigbee, 485, 433 devices.

Topology relationship: The association between sub-devices and gateways is a topology

relationship. Gateways and sub-devices need to establish an associated topology

relationship so that gateways can proxy sub-devices to go online or offline and

communicate. To establish an association between gateway devices and sub-devices, it is

required to be implemented at the product level and then at the device level. That is, first

associate the product corresponding to the sub-device with the product corresponding to

the gateway, and then associate the specific sub-device with the specific gateway device.

Development Process

Gateway device development

Sub-device development

https://cloud.tencent.com/document/product/1081/48401
https://cloud.tencent.com/document/product/1081/48402

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 146 of 186

Gateway Device Access Guide
Last updated：2025-04-28 10:45:53

this document introduces How to develop gateway access to Tencent IoT Explorer based on

IoT Explorer C SDK .

The device information management APIs of the HAL layer for gateways and subdevices have

differences from those for directly connected devices. Call HAL_GetGwDevInfo to obtain the

device information of gateways and subdevices. This API needs to be adapted and

implemented. That is, developers need to manage device information according to the target

platform and use cases, especially the device information mapping of real subdevices and

platform subdevices.

Gateway Example gateway_sample.c introduces how to use the APIs provided by the C SDK

to implement device information acquisition, gateway-cloud connection, proxy sub-device

online and offline, proxy sub-device communication, and shows how sub-devices

communicate based on data templates.

After the gateway is online, perform sub-device management via specific protocols (for

example: BLE, Zigbee).

The gateway can proxy the online and offline status and communication of subdevices,

provided that the gateway device and subdevices have established a topological association

relationship on the platform.

C SDK Gateway Features

Gateway and Sub-Device Information Management

Gateway and Cloud Connection

Proxy Sub-Device Online/Offline

For subdevices that have already established communication, call

IOT_Gateway_Subdev_Online to implement the online operation of subdevices in the cloud.

For details, see Online Data Request Format .

For a sub-device that has lost communication, call IOT_Gateway_Subdev_Offline to

implement the decommissioning of the sub-device in the cloud. For details, see Request

Format for Decommissioning Data .

Dynamic Binding and Unbinding Sub-Devices

Product-level correlation, that is, the correlation between the product of the subdevice and

the gateway product must be established in the console .

https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c.git
https://cloud.tencent.com/document/product/1081/47442#.E4.BB.A3.E7.90.86.E5.AD.90.E8.AE.BE.E5.A4.87.E4.B8.8A.E7.BA.BF
https://cloud.tencent.com/document/product/1081/47442#.E4.BB.A3.E7.90.86.E5.AD.90.E8.AE.BE.E5.A4.87.E4.B8.8B.E7.BA.BF
https://cloud.tencent.com/document/product/1081/47442#.E4.BB.A3.E7.90.86.E5.AD.90.E8.AE.BE.E5.A4.87.E4.B8.8B.E7.BA.BF
https://cloud.tencent.com/document/product/1081/43417

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 147 of 186

Upon success of the proxy sub-device online, you can call IOT_Gateway_Subscribe for the

subscription messages of the proxy sub-device, and call IOT_Gateway_Publish to push

messages to the cloud.

Gateway Example gateway_sample.c introduces how to use the APIs provided by the C SDK

to implement device information acquisition, gateway-cloud connection, proxy sub-device

online and offline, proxy sub-device communication, and shows how sub-devices

communicate based on data templates.

Device-level correlation can be established on the console and can be dynamically bound

and unbound. For dynamic binding and unbinding, the gateway needs the subdevice key to

implement signature. If the signature is calculated on the gateway side, the gateway needs

the key corresponding to the subdevice to be bound. Dynamic Binding and Unbinding Data

Request Format .

Proxy Sub-Device Communication

Gateway Example

Gateway Development Implementation

https://cloud.tencent.com/document/product/1081/47441
https://cloud.tencent.com/document/product/1081/47441

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 148 of 186

The typical development process of gateway products is as follows:

 ﻿

The three steps within the dotted line are implemented by the gateway manufacturer. It is

usually recommended as follows:

For gateway devices connected to the internet via Wi-Fi, it is necessary to refer to Wi-Fi

Distribution Network Protocol and cooperate with Tencent Lianlian Mini Program to

complete the configuration.

For the communication between the gateway and the subdevice, the platform has no

restrictions and it is freely defined by the gateway manufacturer and the subdevice.

However, for the gateway to implement device information management and legitimacy

verification of the subdevice, it needs to map well with the subdevice associated with the

cloud. Generally, the unique information (MAC/EUI) of the subdevice is used as the device

https://cloud.tencent.com/document/product/1081/48403
https://cloud.tencent.com/document/product/1081/48403

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 149 of 186

name of the platform subdevice, and the gateway manages the mapping relationship

during the inbound process of the subdevice.

The communication protocol between the gateway and IoT Explorer must be Data

Template Protocol . Each product type and data template are different. The communication

between the gateway and the subdevice is generally binary. Therefore, the gateway needs

to implement two-way conversion from the binary data of the subdevice to the data of the

Data Template Protocol based on different types of products. The general practice is to

create two message queues: the message queue from the subdevice to the gateway

stack_msg_queue and the message queue from the cloud to the gateway

cloud_msg_queue . Independently retrieve messages from the message queues in an

independent thread, perform corresponding conversions, and then distribute and push the

messages.

For Bluetooth scenarios, Tencent has defined LianLian LLSync Protocol . For gateways

integrated with Tencent IoT Platform, it is recommend using LianLian LLSync Protocol as

the communication protocol between the gateway and sub-devices.

https://cloud.tencent.com/document/product/1081/34916
https://cloud.tencent.com/document/product/1081/34916
https://cloud.tencent.com/document/product/1081/48398

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 150 of 186

Sub-Device Access Guide
Last updated：2025-04-28 10:46:15

The IoT Explorer C SDK is oriented to devices that can communicate directly with the

platform. Since subdevices are unable to communicate directly with the platform, they do not

need to integrate the IoT Explorer C SDK. Theoretically, users can fully customize the

interaction logic between subdevices and gateways. However, to enable subdevices to

interact with the platform, this document provides some commonly used handling

suggestions.

The gateway needs to get the device information of subdevices before it can proxy them to

realize corresponding features.

The discovery logic of gateways for subdevices can be implemented freely based on different

communication methods (for example, BLE, Zigbee, and 485). However, after device

discovery, it is usually recommended to perform legitimacy authentication of devices.

Authentication can be implemented by combining the device information of the platform. It is

usually recommended that the product corresponding to a subdevice select the key

authentication method. Each subdevice has corresponding triplet information on the platform,

that is, productId + deviceName + psk. If the gateway side saves the psk information of a

subdevice, signature verification can be performed based on the psk.

1. Click the Discover Sub-devices button in the Tencent Lianlian Mini Program.

There are two ways to enter the process of binding a primary device in the Tencent Lianlian

Mini Program:

Sub-Device Information Management

Sub-Device Discovery and Authentication

On the gateway device interface, click the "+" button to add a sub-device.

Scan the Device QR Code in the Batch Production section of the Product Development

interface for the sub-device in the console.

https://github.com/tencentyun/qcloud-iot-explorer-sdk-embedded-c.git

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 151 of 186

2. The gateway device will receive a search_devices message. At this point, the gateway

device can start the process of discovering and searching for subdevices. The gateway

receives the payload for searching subdevices:

{"payload":{"status":1},"type":"search_devices"} . The gateway replies with the

payload to start search:

3. The search logic here is implemented by the customer. After successfully discovering

subdevices (discovery conditions are customer-defined), the subdevice can be bound to

the gateway. For specific binding, refer to the implementation of

IOT_Gateway_Subdev_Bind. Then, the Mini Program Interface will display the device that

 ﻿

"type":"search_devices"

"payload": "status":1 "result":0

{ ,

{ , }}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 152 of 186

was successfully bound just now.

 ﻿

The topological binding relationship between gateway devices and subdevices can be pre-

completed on the console or dynamically bound during the running process. The prerequisite

for gateway devices and subdevices to perform dynamic binding is that the binding

relationship between the gateway product and the subdevice product has been completed on

the console. After a gateway device discovers a subdevice, the judgment logic on whether to

initiate dynamic binding needs to be developed and implemented by the gateway side based

on the device management logic of the gateway side. Dynamic binding requires signature

information based on the subdevice key. For signature calculation, refer to the C SDK API

subdev_bind_hmac_sha1_cal . The signature calculation can be sent to the gateway after

Note:

A subdevice generally refers to a device that cannot directly connect to IoT Explorer

and needs to connect to the platform through a gateway. A gateway product needs to

add a subproduct before it can add subdevices under the gateway device. Please refer

here for the description of the topological relationship and parameter fields of gateway

subdevices.

Dynamic Binding of Sub-Devices

https://cloud.tencent.com/document/product/1081/47441

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 153 of 186

being completed on the subdevice or completed on the gateway side. The latter requires the

gateway to save the psk information of the subdevice.

A successful binding log, see the following content:

Considering the mass production convenience of the product, subdevices can use the

dynamic registration method to obtain the triplet information of subdevices. Dynamic

registration requires the product key of the subdevice as a signature. The calculation of the

signature can be sent to the gateway after being completed on the subdevice side, or it can be

completed on the gateway side. The latter requires the gateway to save the psk information of

the subdevice. It is recommended that the name of the dynamically registered subdevice be

unique information that the gateway can obtain during the device discovery process, such as

MAC address, EUI, etc.

The communication protocol and data format between the gateway and subdevices are not

restricted by the platform. However, when the gateway proxy communicates with the cloud on

behalf of the subdevice, it needs to convert the messages of the subdevice into formatted data

of data template .

DBG|2022-01-14

16:57:25|mqtt_client_publish c|qcloud_iot_mqtt_publish 346 : publish

packetID=0|topicName=$gateway/operation/TZ9Y9CLTEA/gateway_001|payload=

"type":"bind" "payload": "devices":

"product_id":"xxxx" "device_name":"subdev_003" "signature":"xxxxx" "ra

ndom":1820758684 "timestamp":1642150644 "signmethod":"hmacsha1" "authtyp

e":"psk"

INF|2022-01-14 16:57:25|gateway_sample c|_message_handler 138 : Receive

Message With topicName:$thing/down/property/HW9ME416BI/subdev_002

payload: "method":"report_reply" "clientToken":"xxxx-

45" "code":0 "status":"success"

DBG|2022-01-14 16:57:25|gateway_common c|_gateway_message_handler 419 :

gateway recv : "type":"bind" "payload": "devices":

"result":0 "product_id":"HW9ME416BI" "device_name":"subdev_003"

INF|2022-01-14 16:57:25|gateway_common c|_gateway_message_handler 510 :

client_id HW9ME416BI/subdev_003 bind result 0

DBG|2022-01-14 16:57:25|gateway_sample c|show_subdev_bind_unbind 262 :

bind HW9ME416BI/subdev_003 success

. ()

{ , {

[{ , , ,

, , ,

}]}}

. ()

,

{ ,

, , }

. ()

{ , {

[{ , , }]}}

. ()

(),

. ()

Dynamic Registration of Sub-Devices

Sub-Device Communication

Gateway and Subdevice Communicate

https://cloud.tencent.com/document/product/1081/47612
https://cloud.tencent.com/document/product/1081/47612
https://cloud.tencent.com/document/product/1081/47494
https://cloud.tencent.com/document/product/1081/34916

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 154 of 186

Configure the message forwarding rules between subdevices through the console or Mini

Program Configuration to achieve device interconnection between subdevices.

Sub-Device and Sub-Device Interconnection

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 155 of 186

Audio/Video Device Development

P2P Access Guide
Last updated：2025-04-28 10:47:01

The Internet of Things development platform provides users with P2P access capability based

on the X-P2P protocol. This document introduces relevant content about P2P access.

Users need to use X-P2P to perform audio and video transmission between the application

side and the bound device side. They need to establish a P2P connection first. Users query

device status and device properties through the IoT development platform console to obtain

_sys_xp2p_info. The specific process is as follows:

Feature Overview

Currently, one device supports the creation of a maximum of 4 P2P transmission channels.

P2P channels support not only audio/video transmission but also user-defined data

transmission.

Operation Steps

Establishing a P2P Connection

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 156 of 186

After the application side and device side have established a P2P channel, audio and video

and custom data transmission can be performed. The process is as follows:

P2P Audio and Video Transmission

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 157 of 186

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 158 of 186

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 159 of 186

Cloud Storage Access Guide
Last updated：2025-04-28 10:47:17

The IoT development platform provides users with a cloud-based storage feature. It supports

the storage of audio and video data from the device side in the cloud. When viewing is

required, the application side pulls data from the cloud.

Before using the cloud storage feature, you need to enable the Cloud Storage Package for the

device. By calling the TencentCloud API, you can purchase a cloud storage package for the

device. After the cloud storage package is successfully purchased, the device will obtain the

status of the device's cloud storage package through the Thing Model.

Cloud Storage Packages are divided into Full-time Cloud Storage Package and Event Cloud

Storage Package:

Operation Steps

Enabling Cloud Storage Package

Cloud Storage Recording Upload (Video Stream Device)

All-time Cloud Storage: Refers to the ability of devices to upload all generated video

recordings to cloud storage for storage during the package activation time.

Event Cloud Storage: Refers to the ability of devices to upload video recordings of events

to the cloud for storage when an event trigger occurs during the package activation time.

https://cloud.tencent.com/document/product/1081/104654

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 160 of 186

The process of uploading video recordings to cloud storage is as follows:

IoT Video (Consumer Version) provides TencentCloud API support for querying dates with

video recordings and event lists , and concatenates the returned dates and VideoURL into an

m3u8 playback address to obtain the video stream through the m3u8 address.

Note:

A device can exist only one Cloud Storage Package at the same time.

Viewing Cloud Storage Recordings (Video Stream Device)

https://cloud.tencent.com/document/product/1081/104651
https://cloud.tencent.com/document/product/1081/104650

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 161 of 186

1. Retrieve the Cloud Storage Date by calling the acquire Cloud Storage Date API.

2. Call the get Cloud Storage Timeline for a certain day API to retrieve the playback address

(VideoUrl) of the cloud storage recording for the specified date and the start time

(StartTime) and end time (EndTime) of each recording clip.

3. Concatenate the returned VideoUrl, StartTime, and EndTime in the following format in

UNIX timestamp format.

4. Call the get anti-hotlinking playback URL for video API with the concatenated VideoURL

as a calling parameter to obtain the anti-hotlinking playback address of the cloud storage

m3u8 Playback Address Concatenation

VideoUrl ?starttime_epoch= StartTime &endtime_epoch= EndTime{ } { } { }

https://cloud.tencent.com/document/product/1081/104651
https://cloud.tencent.com/document/product/1081/104642
https://cloud.tencent.com/document/product/1081/104637

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 162 of 186

video, and then use the Mini Program Plugin capacity to achieve normal playback.

There is only an Event Cloud Storage Package in Cloud Storage Packages.

Event Cloud Storage: It refers to that when an event is triggered during the package activation

time, the device can upload the video recording taken when the event occurs to the cloud for

storage.

The platform offers TencentCloud API support for retrieving Event Cloud Storage video

recordings of image stream devices (mjpg format video + acc format audio).

Cloud Storage Recording Upload (Image Stream Device)

Note:

A device can have only one Cloud Storage Package at the same time.

Viewing Cloud Storage Recordings (Image Stream Device)

https://cloud.tencent.com/document/product/1081/104645

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 163 of 186

1. Retrieve the Event Cloud Storage Date by calling the acquire Cloud Storage Date API.

2. Retrieve the event list on a certain date by calling the retrieve cloud storage event list API,

including each event's StartTime (start time), EndTime (end time), Thumbnail (thumbnail

file name), and EventId (event ID).

3. Call the pull Cloud Storage Event thumbnail API to get the access address of the specified

event thumbnail.

4. Call the retrieve device image stream data API to obtain the playback addresses of the

event's image stream video and audio, and then utilize the Mini Program Plugin capability to

achieve normal playback.

Get Image Stream Playback Address

Note:

The storage time of each event record does not exceed 10 s.

https://cloud.tencent.com/document/product/1081/104651
https://cloud.tencent.com/document/product/1081/104650
https://cloud.tencent.com/document/product/1081/104644
https://cloud.tencent.com/document/product/1081/104645

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 164 of 186

Signal Interaction Instructions

between Device Side and Application

Side
Last updated：2025-04-28 10:47:33

After the P2P transmission channel between the underlying application side and device side is

established, P2P message sending and audio and video transmission features will be

implemented based on this channel. The following will describe in detail the signaling

interaction process between the device side and the application side, which is divided into

audio and video transmission (the device pushes audio and video streams to the application

side), intercom audio and video transmission (the application side pushes audio and video

streams to the device side, suitable for voice intercom or audio and video intercom), receiving

signaling (the application side sends messages to the device), and sending signaling (the

device sends information to the application side).

Request Method get

Request path /ipc.flv

Type: optional

Visibility: external parameters

Description: encryption switch. The value is on or off. If this parameter does not exist or is not

off, encryption is enabled by default.

Example

Overview

Note:

Unmentioned parameters are internal parameters. Do not use them.

Audio and Video Transmission

Basic Request Parameters

_crypto

_crypto=off

action

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 165 of 186

Type: Required

Visibility: external parameters

Description: The type of this stream pull request can be live for live stream, playback for

replay, or download for download.

Example

Type: Required

Visibility: external parameters

Description: The channel number of this stream pull request. For a single camera, it is 0. For a

multi-camera device, it refers to the sequence number of the camera. For an nvr device, it

refers to the sequence number of the data. Counting begins from 0.

Example

Type: Selectable

Visibility: external parameters

Description: User-defined parameter. It should not be too long. Keep it below 1 KB. Content

and format are unlimited, but illegal URL characters should not appear.

Example

Type: Optional (recommended to be a required parameter in subsequent development)

Visibility: external parameters

Description: The role that initiates the stream pull request. It should not be too long and is

recommended to be within 64 bytes. Currently, there are several types: app-android, app-ios,

wxmp-android, wxmp-ios, server-voip. If necessary, additional information such as version

numbers can be included, for example: app-android-xiaomi, wxmp-ios-p2p-player-

version123.

Example

action=live

channel

channel=0

user_args

user_args=this_is_user_args%E4%BD%A0%E5%A5%BD

requester

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 166 of 186

Used for viewing real-time trtc content from the camera

live stream request parameter action = live

Type: Required

Visibility: external parameters

Description: The video quality of this stream pull request has three levels: low, medium, high,

which are standard, high, super, respectively.

Example

Used for replaying video recordings on the camera's SD card

Replay request parameter action=playback

Type: Required

Visibility: external parameters

Description: Request the start time of the replay, UNIX second-level timestamp. The interval

with end_time is recommended to be more than 5 seconds. Too small an interval may cause

an index error.

Example

requester=app-android

Live Streaming Request

Additional Request Parameters

quality

quality=standard

Request Example

http://ipc.p2p.com/ipc.flv?

action=live&channel=0&quality=high&_token=123456789&_peername=xxxxxxxx&r

equester=app-

android&req_id=xxxxxxxx&user_args=this_is_user_args%E4%BD%A0%E5%A5%BD

Replay Request

Additional Request Parameters

start_time

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 167 of 186

Required

Visibility: external parameters

Description: The end time of the replay request, a UNIX second-level timestamp. The interval

with start_time is recommended to be more than 5 seconds. Too small an interval may cause

an index error.

Example

Used for downloading files in the SD card, in conjunction with the "query file list" signaling.

Replay request parameter action=download

Type: Required

Visibility: external parameters

Description: The name of the downloaded file. If it contains a file path, please perform URL

encoding.

Example

Type: Required

Visibility: external parameters

start_time=123456789

end_time

end_time=123456789

Request Sample

http://ipc.p2p.com/ipc.flv?

action=playback&channel=0&start_time=1633060850&end_time=1633060880&_tok

en=123456789&_peername=xxxxxxxx

Download Request

Additional Request Parameters

file_name

file_name=test_file.mp4

offset

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 168 of 186

Description: The starting position of the downloaded file. Users can develop the breakpoint

resume function with the aid of this parameter.

Example

Request method: post.

Request path /voice

Refer to other parameters in "audio and video transmission - basic request parameters"

except action and channel.

Type: Selectable for camera devices, required for NVR devices.

Visibility: external parameters

Description: The channel number of this intercom request. This parameter is not yet used for

camera devices and can be omitted; for NVR devices, it refers to the sequence number,

counting begins from 0.

Example

offset=0

Request Sample

http://ipc.p2p.com/ipc.flv?

action=download&channel=0&file_name=test_file.mp4&offset=0&_crypto=off&_

peername=xxxxxxxx

Intercom Audio and Video Transmission

Request Parameters

Basic Request Parameters

Additional Request Parameters

channel

channel=0

Request Example

http://ipc.p2p.com/voice?channel=0&_token=123456789&_peername=xxxxxxxx

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 169 of 186

Request Method post

Request path /command

Encryption is enabled by default and cannot be closed.

Required

Visibility: external parameters

Description: inner_define is an internal signaling. Do not use it; user_define is an external

signaling, i.e., custom signaling.

Example

Type: Selectable for camera devices, required for NVR devices.

Visibility: external parameters

Description: The channel number of this intercom request. This parameter is not yet used for

camera devices and can be omitted; for NVR devices, it refers to the sequence number,

counting begins from 0.

Example

Type: Required

Visibility: external parameters

Description: Message type

Example

Receiving Signaling

Request Parameters

action

action=inner_define

action=user_define

channel

channel=0

cmd

cmd=my_message

Internal Signaling

Local Recording Playback Related Signaling

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 170 of 186

Request Parameter

Return Value

json format video recording index list, basic format as follows:

Request sample:

Query Video Recordings by Start and End Time

Key Value Description

cmd
get_recor

d_index
Signaling Type

start_

time

UNIX

timestamp

Query the start time of the video recording, in seconds. It is

recommended that the interval with the end_time be more than

5 seconds. An interval that is too small may cause an index

error.

end_t

ime

UNIX

timestamp

The end time of querying the video recording, in seconds. The

interval with start_time is recommended to be more than 5

seconds. Too small an interval may cause an index error.

type
Error

Example

Indicates the type of video recording, which is an integer. The

user defines its specific meaning. Currently not supported.

{

 "video_list": [

 {

 "type": 0,

 "start_time": "<unix timestamp>"

 "end_time": "<unix timestamp>"

 },

 {

 "type": 0,

 "start_time": "<unix timestamp>"

 "end_time": "<unix timestamp>"

 }

]

}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=get_record_i

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 171 of 186

Request Parameter

Return Value

json format, where the value of video_list is converted to a 32-bit integer. Each bit from the

low position to the high position represents whether there is a video recording on the

corresponding day of the month; for example: 8320 (0010000010000000) means there are

video recordings on the 8th and 14th.

Request sample:

Request Parameter

Return Value

json format, json format, <code> is the signaling execution result return value, 0 for normal,

other for exceptions.

Request sample:

ndex&start_time=000&end_time=111

Monthly Query of Video Recordings

Key Value Description

cmd get_month_record Signaling Type

time Time
A 6-bit integer, the first 4 bits represent the year,

and the last 2 bits represent the month

{"video_list":"123456"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=get_month_re

cord&time=202401

Replay Suspension

Key Value Description

cmd playback_pause Signaling Type

{"status":"<code>"}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 172 of 186

Request Parameter

Return Value

json format, json format, <code> is the signaling execution result return value, 0 for normal,

other for exceptions.

Request sample:

Request Parameter

Return Value

json format, json format, <code> is the return value of the signaling execution result. 0 means

normal, and other values indicate exceptions.

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=playback_see

k&progress=123456

Replay Continues

Key Value Description

cmd playback_resume Signaling Type

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=playback_res

ume

Set Playback Position

Key Value Description

cmd
playback_see

k
Signaling Type

progres

s
Integer

Timestamp in millisecond unit, indicating the playable

position within the current file where you hope to redirect

for playback.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 173 of 186

Request sample:

Request Parameter

Return Value

json format, json format, <code> is the signaling execution result return value, 0 for normal,

other for exceptions; <timestamp> is the current playback progress in milliseconds.

Request sample:

Request Parameter

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=playback_see

k&progress=123456

Get Playback Position

Key Value Description

cmd playback_progress Signaling Type

{

 "status":"<code>",

 "progress":"<timestamp>"

}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=playback_pro

gress

Set Fast-Forward

Key Value Description

cmd playback_ff Signaling Type

value Integer 0 means normal playback.

1 means playing only I frames.

2 means playing one I frame from two adjacent I frames.

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 174 of 186

Return Value

json format. json format. <code> is the return value of signaling execution result. 0 means

normal, and others mean exceptions.

Request sample:

Request Parameter

Return Value

json format, json format, <code> is the return value of signaling execution result, 0 for normal,

other for exceptions.

Request sample:

3 means playing one I frame from three adjacent I frames.

And so on

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=playback_ff&

value=1

Set Fast Refund

Key Value Description

cmd playback_rewind Signaling Type

start_time Timestamp
Milliseconds, indicating the end time of

reverse playback.

end_time Timestamp
Milliseconds, indicates the start time of

reverse playback.

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=playback_rew

ind&start_time=100&end_time=200

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 175 of 186

Request Parameter

Return Value

json format, json format, <code> is the return value of signaling execution result, 0 for normal,

other for exceptions.

Request sample:

Sent by the client to the device, used to answer later, indicating proactive hang up.

Request Parameter

Return Value

Set Playback Speed

<Ke

y.>
Value Description

cmd
playback_spee

d
Signaling Type

spee

d
Integer

Unit milliseconds, which indicates the frame interval.

Synchronize based on the video. Assume the normal frame

rate of the video is 25fps, i.e., the frame interval is 50ms. A

value smaller than the normal frame interval means fast

playback. For example, setting it to 10 is equivalent to 5x

fast playback; a value greater than the normal frame

interval means slow playback. For example, setting it to 100

is equivalent to 0.5x slow playback.

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=playback_spe

ed&speed=50

TWeCall and Voice Intercom Related Signaling

Hangup

Key <Value> Description

cmd call_hang_up Signaling Type

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 176 of 186

json format, json format, <code> is the signaling execution result return value, 0 for normal,

other for exceptions.

Request sample:

Description: Sent from the client side to the device side, used before answering to indicate

rejection.

Request Parameter

Return Value

json format, json format, <code> is the signaling execution result return value, 0 for normal,

other for exceptions.

Request sample:

Description: Sent from the client side to the device side, used before answering to proactively

cancel the call.

Request Parameter

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=call_hang_up

Reject Call

Key <Value> Description

cmd call_reject Signaling Type

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=call_reject

Cancel

Key Value Description

cmd call_cancel Signaling Type

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 177 of 186

Return Value

json format. json format. <code> is the signaling execution result return value, 0 for normal,

other for exceptions.

Request sample:

Description: Sent from the client side to the device side, used after answering to indicate that

another device is in an ongoing call.

Request Parameter

Return Value

json format, json format, <code> is the return value of signaling execution result, 0 for normal,

other for exceptions.

Request sample:

Description: Sent from the client side to the device side, used before answering to indicate

that the call timed out and was not answered.

Request Parameter

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=call_cancel

Line Busy

Key Value Description

cmd call_busy Signaling Type

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=call_busy

No Response

Key Value Description

cmd call_timeout Signaling Type

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 178 of 186

Return Value

json format, json format, <code> is the return value of the signaling execution result, 0 for

normal, other for exceptions.

Request sample:

Request Parameter

Return Value

json format, status code, 0 means accepting connection request, other values mean refusing

connection request; appConnectNum the number of Apps or mini-programs currently

connected to the device; maxConnectNum the maximum number of connections supported by

the device.

Request sample:

{"status":"<code>"}

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=call_timeout

Other Signaling

Query Device Status

Key Value Description

cmd get_device_st Signaling Type

type
live / voice /

playback

Required, ask the device whether to accept live stream,

intercom, and replay requests.

qualit

y

standard / high /

super

Required when the type is live, ask the device whether it

supports live streaming requests with low, medium, and

high image quality.

[

 {

 "status":"code",

 "appConnectNum":"2",

 "maxConnectNum": "3"

 }

]

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 179 of 186

Request Parameter

Return Value

json format, file_type file type; file_name file name; file_size file size; start_time

start time; end_time end time; extra_info extended information, which can be used to carry

hash value or other custom file information.

Request sample:

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=get_device_s

t&type=live&quality=standard

Query File List

Key Value Description

cmd get_file_list Signaling Type

{

 "file_list": [

 {

 "file_type": "video",

 "file_name": "1234.mp4",

 "file_size": "1024000",

 "start_time": "2024-01-23_12-34-00",

 "end_time": "2024-01-23_12-34-59",

 "extra_info": {

 "md5": "abvdefg"

 }

 },

 {

 "file_type": "picture",

 "file_name": "abcd.jpg",

 "file_size": "10240",

 "start_time": "2024-01-23_12-34-56",

 "end_time": "2024-01-23_12-34-56"

 }

]

}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 180 of 186

Request Parameter

Return Value

json format, DeviceName device name; Channel located in which channel; Online whether

online.

Request sample:

i.e., user-customized signaling

Request Parameter

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=get_file_lis

t

Query Device Names under NVR

Key Value Description

cmd get_nvr_list Signaling Type

[

 {

 "DeviceName": "name1",

 "Channel": "1",

 "Online": "0"

 },

 {

 "DeviceName": "name2",

 "Channel": "2",

 "Online": "1"

 }

]

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=inner_define&cmd=get_nvr_list

External Signaling

Key Value Description

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 181 of 186

Return Value

Unlimited format and type. It should not be too long. Keep it below 1 KB.

Request sample:

Request Method: post

Request path /feedback

Encryption is enabled by default and cannot be closed.

Messages are sent in the HTTP message body using json format.

cmd

signalin

g

content

User-customized signaling should not be too long. Keep it below 1

KB. Content and format are unlimited, but illegal URL characters

should not appear.

Custom signaling for performing Panning Control example:

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=user_define&cmd=ptz_left_spee

d_1

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=user_define&cmd=ptz_right_spe

ed_1

Transmit a small amount of binary data via custom signaling:

http://ipc.p2p.com/command?

_token=123456789&_peername=xxxxxxxx&action=user_define&cmd=36D7F336FCEC9

E57318ECA0323BA94970296A776CE028D19F5CA5AC44E92952B4CE77642354CBAE7036F4

DA954317462C61A1BC033DAC882FAAB9EDCBFEE47DA

Sending Signaling

Request Parameters

Key Value Description

product_id
Device triple

information

For scenarios such as device identification,

message management for the other party to

recognize

device_name
Device triple

information

For scenarios such as equipment

identification, message management, etc. for

the other party to identify

Request Example

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 182 of 186

The custom message format adopted by the user shall be in json format. It shall not contain

the iv_private_cmd field. The remaining content is unlimited. The length should not be too

large. Keep it below 16 KB.

Example

<code> is the return value. 0 means normal, and other values indicate exceptions.

Internal messages use the following json format.

Description: Sent from the device side to the client side, used to answer later, indicating

proactive hangup.

Response

http://127.0.0.1:34567/ipc.p2p.com/forward/xxxxxxxxxxxxx/proxy.sample.se

rver/feedback?_token=123456789&product_id=xxxxxxxx&device_name=xxxxxxxx

User-Customized Signaling

send

{

"my_message":"hello world"

}

receipt

{

"status":"<code>"

}

Internal Signaling

send

{"iv_private_cmd":"<cmd>"}

receive

{"status":"<code>"}

Hangup

{"iv_private_cmd":"call_hang_up"}

{"status":"<code>"}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 183 of 186

<code> is the return value. 0 means normal, and other values indicate exceptions.

Description: Sent from the device side to the client side, used before answering to proactively

cancel the call.

Response

<code> is the return value. 0 means normal, and other values indicate exceptions.

Description: Sent from the device side to the client side, used in the two-way intercom

scenario.

Response

<code> is the return value. 0 means normal, and other values indicate exceptions.

Cancel

{"iv_private_cmd":"call_cancel"}

{"status":"<code>"}

Other Signaling

Device Actively Stops Receiving Audio/Video Data Sent by Peer

{"iv_private_cmd":"recv_stop"}

{"status":"<code>"}

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 184 of 186

Tencent Lianlian Mini Program

Interactive Signaling Description
Last updated：2025-04-28 10:47:49

The signaling interaction protocol used for device-side integration with the Tencent Lianlian

Mini Program IoT Video standard panel.

Refer to Signal Interaction Description between Equipment Side and Application Side_Internal

Signal .

Request Field

Request Method

/**

 * command is a string or object

 */

function sendCommand command

 message_id++

 if typeof command !== 'string' command =

'action=user_define&channel=0&cmd=' + JSON stringify command

 return p2pExports sendCommand id command

() {

()

. ()

. (,)

}

Internal Signaling

External Signaling

Operating the Gimbal

Field Type Description

topic string ptz operation type.

messag

e_id

number |

string
Request ID.

cmd string ptz_release_pre: release.

ptz_up_press: Up.

ptz_right_press: Rotate right.

ptz_down_press: Down.

https://cloud.tencent.com/document/product/172554600675913728
https://cloud.tencent.com/document/product/172554600675913728

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 185 of 186

ptz_left_press: Left.

Request Example

 "topic": "ptz"

 "message_id": 0

 "data":

 "cmd": "ptz_release_pre"

{

,

,

{

}

}

Returned Field

Field Type Description

apex string

Whether it is at the top.

yes: Reached the top.

no: Not at the top.

current_

x
number Horizontal position.

current_

y
number Vertical position.

max_x number Maximum horizontal position

max_y number Maximum vertical position

min_x number Minimum horizontal position.

min_y number Minimum vertical position.

Response Sample

 "confirmation_topic": "ptz"

 "result": "0"

 "apex": "yes"

 "current_x": 123

 "current_y": 123

 "max_x": 123

 "max_y": 123

{

,

,

,

,

,

,

,

IoT Explorer

©2013-2025 Tencent Cloud. All rights reserved. Page 186 of 186

 "min_x": 123

 "min_y": 123

 "message_id": 0

,

,

}

