

굸 HDFS

【版权声明】

©2013-2025 腾讯云版权所有

本文档(含所有文字、数据、图片等内容)完整的著作权归腾讯云计算(北京)有限责任公司单独所有,未经腾讯云事先明确 书面许可,任何主体不得以任何形式复制、修改、使用、抄袭、传播本文档全部或部分内容。前述行为构成对腾讯云著作权的 侵犯,腾讯云将依法采取措施追究法律责任。

【商标声明】

🔗 腾讯云

及其它腾讯云服务相关的商标均为腾讯云计算(北京)有限责任公司及其关联公司所有。本文档涉及的第三方主体的商标,依 法由权利人所有。未经腾讯云及有关权利人书面许可,任何主体不得以任何方式对前述商标进行使用、复制、修改、传播、抄 录等行为,否则将构成对腾讯云及有关权利人商标权的侵犯,腾讯云将依法采取措施追究法律责任。

【服务声明】

本文档意在向您介绍腾讯云全部或部分产品、服务的当时的相关概况,部分产品、服务的内容可能不时有所调整。 您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定,除非双方另有约定,否则,腾讯云对 本文档内容不做任何明示或默示的承诺或保证。

【联系我们】

我们致力于为您提供个性化的售前购买咨询服务,及相应的技术售后服务,任何问题请联系 4009100100或95716。

文档目录

实践教程

使用 CHDFS 作为 Druid 的 Deep storage 原生 HDFS 数据迁移到腾讯云 CHDFS 使用 DataX 导入或导出 CHDFS 使用 Python 访问腾讯云 CHDFS CDH 配置 CHDFS 指引 CHDFS Ranger 权限体系解决方案 Tensorflow 读写 CHDFS 数据 跨账户访问 CHDFS 跨 VPC 访问 CHDFS

实践教程 使用 CHDFS 作为 Druid 的 Deep storage

最近更新时间: 2024-10-12 20:45:01

环境依赖

- CHDFS_JAR
- Druid 版本: Druid-0.12.1

下载与安装

获取 CHDFS JAR

在官方 Github 上下载 CHDFS_JAR。

安装 CHDFS JAR

使用 CHDFS 作为 Druid 的 Deep Storage,需要借助 Druid-hdfs-extension 实现。 下载 CHDFS JAR 后,将 chdfs_hadoop_plugin_network-1.7.jar 拷贝到 Druid 安装路径 extensions/druid-hdfs-storage 以及 hadoop-dependencies/hadoop-client/2.x.x 下。

使用方法

配置修改

修改 Druid 安装路径的 conf/druid/_common/common.runtime.properties 文件,将hdfs的 extension 加入
 到 druid.extensions.loadList 中,同时指定hdfs为 Druid 的 deep storage,而路径则填写为 CHDFS 的路
 径:

2. 在 conf/druid/_common/ 这个目录下,新建一个 hdfs 的配置文件 hdfs-site.xml,填入 CHDFS 的配置信息 等:


```
<value>com.qcloud.chdfs.fs.CHDFSDelegateFSAdapter</value>
<value>com.qcloud.chdfs.fs.CHDFSHadoopFileSystemAdapter</value>
<!--本地 cache 的临时目录,对于读写数据,当内存 cache 不足时会写入本地硬盘,这个路径若
不存在会自动创建-->
<value>/data/chdfs_tmp_cache</value>
<!--appId 用户需要换成自己的 appid,可前往
```

上述配置的支持项与 CHDFS 官网文档描述完全一致,详情可参见 挂载 CHDFS 文档。

开始使用

依次启动 Druid 进程,Druid 数据就可加载到 CHDFS 中。

原生 HDFS 数据迁移到腾讯云 CHDFS

最近更新时间: 2024-10-12 20:45:01

准备工作

- 1. 在腾讯云官网创建 CHDFS 文件系统和 CHDFS 挂载点,配置好权限信息。
- 2. 通过腾讯云 VPC 环境的 CVM 访问创建好的 CHDFS,详情请参见 创建 CHDFS。
- 3. 当挂载成功后,打开 hadoop 命令行工具,执行以下命令,验证 CHDFS 功能是否正常。

hadoop fs -ls ofs://f4xxxxxxxxxxxx.chdfs.ap-beijing.myqcloud.com/

如果能看到以下类似的输出,则表明云 HDFS 功能一切正常。

[hadoop@10 ~	·]\$ ha	doop fs -ls	ofs://	dfs.ap-beijing.my	/qcloud.com/
SLF4J: Class	path	n contains m	ultiple SLF4J bindings.		
SLF4J: Found	l bind	ling in [jar	:file:/usr/local/service/h	adoop/share/hadoo	<pre>op/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]</pre>
SLF4J: Found	l bind	ling in [jar	file:/usr/local/service/t	ez/lib/slf4j-log4	ij12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See h	ttp:/	/www.slf4i.o	org/codes.html#multiple_bi	ndings for an exp	lanation.
SLE4J: Actua	l bin	ding is of	type [org.s]f4i.impl.log4i	LoggerFactory]	
Found 31 ite	ms		-)F- [88-]		
drwxr-xr-x	- ro	ot root	0 2019-12-30 17:	03 ofs://	hdfs.ap-beijing.mvgcloud.com/0x
drwxr-xr-x	– ha	doop hadoop	0 2019-12-30 18:	20 ofs://	.chdfs.ap-beijing.myqcloud.com/data
-rw-rr	1 ro	ot root	1048576000 2019-12-13 23:	20 ofs:/	chdfs.ap-beijing.myqcloud.com/dd 1G
drwxrwxrwx	– ha	doop hadoop	0 2019-12-18 12:	08 ofs://	chdfs.ap-beijing.myqcloud.com/emr
drwxrwxr-x	- ro	ot root	0 2019-12-05 17:	13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-dir-0
drwxrwxr-x	- ro	ot root	0 2019-12-05 17:	13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-dir-1
drwxrwxr-x	- ro	ot root	0 2019-12-05 17:	13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-dir-2
drwxrwxr-x	- r o	ot root	0 2019-12-05 17:	24 ofs:/	.chdfs.ap-beijing.myqcloud.com/fuse-dir-3
drwxr-xr-x	- ro	ot root	0 2019-12-05 17:	25 ofs	.chdfs.ap-beijing.myqcloud.com/fuse-dir-4
-rwxrwxr-x	1 ro	ot root	0 2019-12-05 17:	13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-file-0
	1 00	not root	0 2010 12 05 17.	12 ofc //	chdfs an boijing muscloud com/fuso filo 1

迁移

使用 COSDistcp 工具迁移

COSDistcp 工具是由 COS 团队研发的适用于对象存储和 HDFS 系统之间进行数据高效传输的工具,针对对象存储系统和 HDFS 系统之间的差异,COS 团队对该工具进行了许多的优化和改进,其中包括:

- 跨系统之间的数据 CRC 在线校验
- 小文件性能
- 增量复制拷贝

更多工具详情,请参见 COSDistcp 工具文档。

当准备工作就绪后,即可使用 COSDistcp 工具进行数据迁移。COSDistcp 是一个 Jar 包工具,依赖 Hadoop 的 MapReduce 框架来执行。

执行命令提交 COSDistcp 程序到 Hadoop 系统。例如:

```
hadoop jar cos-distcp-1.6-2.8.5.jar -Dmapred.job.queue.name=root.users.presto -
-src /user/hive/warehouse/dw.db/logbak/ --srcPrefixesFile
file:///home/hadoop/filebeat_gaotu_service0000 --dest ofs://f4xxxxxxx-
xxxx.chdfs.ap-beijing.myqcloud.com/user/hive/warehouse/dw.db/logbak/ --
taskNumber=25 --workerNumber=10 --bandWidth=10 &
```

```
#具体参数可以参考 COSDistcp 工具的文档
```

版权所有:腾讯云计算(北京)有限责任公司

其中 f4xxxxxxxxxx.chdfs.ap-beijing.myqcloud.com 为挂载点域名,需要根据实际申请的挂载点信息进行替 换。

使用 Distcp 工具迁移

当准备工作就绪后,也可以使用 hadoop 社区标准的 Distcp 工具实现全量或者增量的 HDFS 数据迁移,详情请参见 Distcp 官方指引文档 。

注意事项

1. 在 hadoop distcp 工具中,提供了一些 CHDFS 不兼容的参数。如果指定如下表格中的一些参数,则不生效。

参数	描述	状态
-p[rbax]	r: replication, b: block-size, a: ACL, x: XATTR	不生效

2. 由于 Hadoop 2.x 中的 HDFS 系统的 CRC 计算方式和对象存储文件的 CRC 计算方式不一致,导致在迁移过程中无法 利用 crccheck 来对数据进行在线迁移校验。因此,在迁移过程中,一般都需要加上-skipcrccheck 选项。 如果需要校验迁移后的数据是否完整,需要借助 COS 研发的 COS 离线校验工具 进行离线校验。 Hadoop 3.1.1版本及以上,可以采用 COMPOSITE_CRC 算法进行在线校验,示例如下:

```
hadoop distcp -Ddfs.checksum.combine.mode=COMPOSITE_CRC -checksum
hdfs://10.0.1.11:4007/testcp ofs://f4xxxxxxx-xxxx.chdfs.ap-
beijing.myqcloud.com/
```

示例说明

1. 当 CHDFS 准备就绪后,执行以下 hadoop 命令进行数据迁移。

```
hadoop distcp hdfs://10.0.1.11:4007/testcp ofs://f4xxxxxxxx-xxxx.chdfs.ap-
beijing.myqcloud.com/
其中 f4xxxxxxx-xxxx.chdfs.ap-beijing.myqcloud.com 为挂载点域名,需要根据实际申请的挂载点信息进行
```

```
替换。
```

2. Hadoop 命令执行完毕后,会在日志中打印出本次迁移的具体详情。如下示例所示:

```
2019-12-31 10:59:31 [INFO ] [main:13300] [org.apache.hadoop.mapreduce.Job:]
[Job.java:1385]
Counters: 38
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=387932
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1380
HDFS: Number of bytes written=74
```


HDFS: Number of read operations=21 HDFS: Number of large read operations=0 HDFS: Number of write operations=6 OFS: Number of bytes read=0 OFS: Number of read operations=0 OFS: Number of large read operations=0 Total time spent by all maps in occupied slots (ms)=419904 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=6561 Total megabyte-milliseconds taken by all map tasks=6718464 Map input records=3 Map output records=2 Input split bytes=408 Failed Shuffles=0 Merged Map outputs=0 Physical memory (bytes) snapshot=1051619328 Virtual memory (bytes) snapshot=12525191168 File Input Format Counters Bytes Read=972 Bytes Written=74 org.apache.hadoop.tools.mapred.CopyMapper\$Counter BYTESSKIPPED=5 COPY=1

使用 DataX 导入或导出 CHDFS

最近更新时间: 2024-10-12 20:45:01

环境依赖

- CHDFS_JAR
- DataX 版本: DataX-3.0

下载与安装

获取 CHDFS JAR

在官方 Github 上下载 CHDFS_JAR。

获取 DataX 软件包

在官方 Github 上下载 DataX。

安装 CHDFS JAR

下载 CHDFS JAR 后,将 chdfs_hadoop_plugin_network-1.7.jar 拷贝到 Datax 解压路径 plugin/reader/hdfsreader/libs/ 以及 plugin/writer/hdfswriter/libs/下。

使用方法

DataX 配置

修改 datax.py 脚本

打开 DataX 解压目录下的 bin/datax.py 脚本,修改脚本中的 CLASS_PATH 变量为如下:

CLASS_PATH =
 ("%s/lib/*:%s/plugin/reader/hdfsreader/libs/*:%s/plugin/writer/hdfswriter/libs/
*:.") % (DATAX_HOME, DATAX_HOME, DATAX_HOME)

在配置 JSON 文件里配置 hdfsreader 和 hdfswriter

示例 JSON 如下:

{
 "job": {
 "setting": {
 "speed": {
 "byte": 10485760
 },
 "errorLimit": {
 "record": 0,
 "percentage": 0.02

	"fs.AbstractFileSystem.ofs.impl":
"com.qcloud.chdfs.fs.CH	IDFSDelegateFSAdapter",
"com.qcloud.chdfs.fs.CF	IDFSHadoopFileSystemAdapter",
	"fs.ofs.tmp.cache.dir": "/data/chdfs_tmp_cache",
	iteMode": "append"

其中,hadoopConfig 配置为 CHDFS 所需要的配置,defaultFS 填写为 CHDFS 的路径。例如

ofs://f4xxxxxxxx-hxT9.chdfs.ap-beijing.myqcloud.com/ ,其他配置同 hdfs 配置项即可。

执行数据迁移

将配置文件保存为 hdfs_job.json,存放到 job 目录下,执行以下命令行:

bin/datax.py job/hdfs_job.json

观察屏幕正常输出如下:

2020-03-09 16:49:59.543 [job-0] INFC	0 JobContainer -
averageCpu	maxDeltaCpu
minDeltaCpu	
-1.00%	-1.00%
-1.00%	
[total gc info] =>	
NAME	totalGCCount maxDeltaGCCount
minDeltaGCCount totalGCTime	maxDeltaGCTime minDeltaGCTime
PS MarkSweep	
1 0.024s	0.024s 0.024s
PS Scavenge	
1 0.014s	0.014s 0.014s
2020-03-09 16:49:59.543 [job-0] INFC	0 JobContainer – PerfTrace not enable!
2020-03-09 16:49:59.543 [job-0] INFC	0 StandAloneJobContainerCommunicator -
Total 2 records, 33 bytes Speed 3	B/s, 0 records/s Error 0 records, 0 byt <u>es</u>

All Task WaitWriterTime 0.000	0s All Task WaitReaderTime 0.033s
Percentage 100.00%	
2020-03-09 16:49:59.544 [job-0]	INFO JobContainer -
任务启动时刻	2020-03-09 16:49:48
任务结束时刻	2020-03-09 16:49:59
任务总计耗时	11s
任务平均流量 :	3B/s
记录写入速度 :	Orec/s
读出记录总数 :	2
读写失败总数 :	0

使用 Python 访问腾讯云 CHDFS

最近更新时间: 2024-10-12 20:45:01

背景

本文指导如何使用 Python 的工具包 pyarrow 操作 CHDFS。

部署环境

- 1. Python 3.7版本及以上。PyArrow 目前与 Python 3.7、3.8、3.9 和 3.10 兼容。
- 2. 使用如下命令,安装 pyarrow 库:

pip3 install pyarrow -image
pip3 install pyarrow -image -i http://mirrors.tencent.com/pypi/simple -trusted-host mirrors.tencent.com

部署组件

部署 CHDFS 插件的方法,请参见 挂载 CHDFS 。

编写 Python 程序

1. 使用 pyarrow 访问 CHDFS,示例代码如下:

```
import pyarrow as pa
host = "ofs://xxx-xxx.chdfs.ap-guangzhou.myqcloud.com"
fs = pa.hdfs.connect(host, 0)
# open(path, mode) 模式 w,文件不存在创建一个文件
out_file = fs.open("ofs://xxx-xxx.chdfs.ap-
guangzhou.myqcloud.com/ppyarrow.txt", "wb")
out_file.write(str.encode("hello world, pyarrow")) #写
out_file.close()
in_file = fs.open("ofs://xxx-xxx.chdfs.ap-
guangzhou.myqcloud.com/ppyarrow.txt", "rb")
# 将光标重置到起始位置
in_file.seek(0)
data = in_file.read() # 读
print("写入的数据为%s."%(data))
in_file.close()
# 列出文件
ls_file = fs.ls("ofs://xxx-xxx.chdfs.ap-guangzhou.myqcloud.com/")
print("目录文件为%s." %(ls_file))
```


	· · · · · · · · · · · · · · · · · · ·
	<pre>fs.mkdir("ofs://xxx-xxx.chdfs.ap-guangzhou.myqcloud.com/pyarrowtest")</pre>
	# 移动并重命名文件
	<pre>fs.mv("ofs://xxx-xxx.chdfs.ap-guangzhou.myqcloud.com/ppyarrow.txt",</pre>
	"ofs://xxx-xxx.chdfs.ap-guangzhou.myqcloud.com/pyarrowtest/tina.txt")
	# 列出文件
	<pre>mv_file = fs.ls("ofs://xxx-xxx.chdfs.ap-guangzhou.myqcloud.com/pyarrowtest")</pre>
	print("移动后的目录文件为 %s. " %(mv_file))
	# 删除测试文件,重新列出文件
	<pre>fs.delete("ofs://xxx-xxx.chdfs.ap-</pre>
	guangzhou.myqcloud.com/pyarrowtest/tina.txt")
	<pre>de_file = fs.ls("ofs://xxx-xxx.chdfs.ap-guangzhou.myqcloud.com/pyarrowtest/")</pre>
	print("删除文件后的pyarrowtest 目录下文件为 %s." %(de_file))
2.	设置环境变量,示例如下:

export JAVA_HOME=/usr/local/jdk #设置 JAVA_HOME,根据自己安装位置定 export HADOOP_HOME=/usr/local/service/hadoop #设置 HADOOP_HOME, hadoop 的安装 位置 export CLASSPATH=`\$HADOOP_HOME/bin/hadoop classpath --glob` #参考网址 https://arrow.apache.org/docs/python/filesystems.html#hadoop-filesystem-hdfs

3. 执行 Python 文件:

python3 libtest.py

4. 执行过程及结果如下:

相关参考

- Filesystem Interface
- Building Python and OpenSSL from source, but ssl module fails

CDH 配置 CHDFS 指引

最近更新时间: 2025-06-05 18:48:32

简介

CDH(Cloudera's Distribution, including Apache Hadoop)是业界流行的 Hadoop 发行版本。本文指导如何在 CDH 环境下使用腾讯云 CHDFS 服务,以实现大数据计算与存储分离,提供灵活及低成本的大数据解决方案。 CHDFS 大数据组件支持情况如下:

组件名称	CHDFS 大数据组件支持情况	服务组件是否需要重启
Yarn	支持	重启 NodeManager
Yarn	支持	重启 NodeManager
Hive	支持	重启 HiveServer 及 HiveMetastore
Spark	支持	重启 NodeManager
Sqoop	支持	重启 NodeManager
Presto	支持	重启 HiveServer 及 HiveMetastore 和 Presto
Flink	支持	否
Impala	支持	否
EMR	支持	否
自建组件	后续支持	无
HBase	不推荐	无

版本依赖

本文依赖的组件版本如下:

- CDH 5.16.1
- Hadoop 2.6.0

使用方法

存储环境配置

1. 登录 CDH 管理页面。

2. 在系统主页,选择**配置 > 服务范围 > 高级**,进入高级配置代码段页面,如下图所示:

类别	
▶ 服务范围	
High Availability	
代理	
复制	
安全性	
性能	
抑制	
监控	
端口和地址	
高级	
> Balancer Default Group	
> DataNode Default Group	
> Failover Controller Default	
Group	
> Gateway Default Group	
> HttpFS Default Group	
> JournalNode Default Group	
> NFS Gateway Default Group	
> NameNode Default Group	
> SecondaryNameNode	
Default Group	

腾讯云

3. 在 Cluster-wide Advanced Configuration Snippet(Safety Valve) for core-site.xml 的代码框中,填入 CHDFS 配置。

iname>fs.ofs.user.appid</name ivalue>1250000000</value> i/property>

</property>

以下为必选的 CHDFS 配置项(需添加到 core-site.xml 中), CHDFS 其他配置可参见 挂载 CHDFS。

CHDFS 配置项	值	含义
fs.ofs.user.appid	125000000	用户 appid
fs.ofs.tmp.cache.di r	/data/emr/hdfs/tmp/chdfs/	本地 cache 的临时目录
fs.ofs.impl	com.qcloud.chdfs.fs.CHDFS HadoopFileSystemAdapter	chdfs 对 FileSystem 的实现类,固定为 com.qcloud.chdfs.fs.CHDFSHadoop FileSystemAdapter
fs.AbstractFileSyst em.ofs.impl	com.qcloud.chdfs.fs.CHDFS DelegateFSAdapter	chdfs 对 AbstractFileSystem 的实现 类,固定为 com.qcloud.chdfs.fs.CHDFSDelegat eFSAdapter

4. 对 HDFS 服务进行操作,单击部署客户端配置,此时以上 core-site.xml 配置会更新到集群里的机器上。

5. 将 CHDFS 最新的 SDK 包,放置到 CDH HDFS 服务的 jar 包路径下,请根据实际值进行替换,示例如下:

cp chdfs_hadoop_plugin_network-2.0.jar /opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/lib/hadoop-hdfs/

▲ 注意:

在集群中的每台机器都需要在相同的位置放置 SDK 包。

数据迁移

使用 Hadoop Distcp 工具将 CDH HDFS 数据迁移到 CHDFS,详情请参见 原生 HDFS 数据迁移到腾讯云 CHDFS。

大数据套件使用 CHDFS

1. MapReduce

操作步骤

(1) 按照 数据迁移 章节,配置好 HDFS 的相关配置,并将 CHDFS 的 SDK jar 包,放置到 HDFS 相应的目录。

(2)在 CDH 系统主页,找到 YARN,重启 NodeManager 服务(TeraGen 命令可以不用重启,但是 TeraSort 由于 业务内部逻辑,需要重启 NodeManager ,建议都统一重启 NodeManager 服务)。

示例

下面以 Hadoop 标准测试中的 TeraGen 和 TeraSort 为例:

hadoop jar ./hadoop-mapreduce-examples-2.7.3.jar teragen -Dmapred.map.tasks=4
1099 ofs://examplebucket-125000000/teragen_5/

hadoop jar ./hadoop-mapreduce-examples-2.7.3.jar terasort -Dmapred.map.tasks=4
ofs://examplebucket-125000000/teragen_5/ ofs://examplebucket1250000000/result14

() 说明:

ofs://schema 后面请替换为用户 CHDFS 的挂载点路径。

2. Hive

2.1 MR 引擎

操作步骤

(1) 按照 数据迁移 章节, 配置好 HDFS 的相关配置, 并且将 CHDFS 的 SDK jar 包, 放置到 HDFS 相应的目录。
 (2) 在 CDH 主页面, 找到 HIVE 服务, 重启 Hiveserver2 及 HiverMetastore 角色。

示例

某用户的真实业务查询,例如执行 Hive 命令行,创建一个 Location,作为在 CHDFS 上的分区表:

STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
'ofs://examplebucket-
125000000/user/hive/warehouse/report.db/report_o2o_pid_credit_detail_grant_dai
TBLPROPERTIES (
'last_modified_by'='work',
'last_modified_time'='1589310646',
'transient_lastDdlTime'='1589310646')

执行 sql 查询:

select count(1) from report.report_o2o_pid_credit_detail_grant_daily;

观察结果如下:

2.2 Tez 引擎

Tez 引擎需要将 CHDFS 的 jar 包导入到 Tez 的压缩包内,下面以 apache-tez.0.8.5 为例进行说明: 操作步骤

(1) 找到 CDH 集群安装的 tez 包,然后解压,例如/usr/local/service/tez/tez-0.8.5.tar.gz。

(2)将 CHDFS 的 jar 包放置到解压后的目录下,然后重新压缩输出一个压缩包。

- (3)将新的压缩包上传到 tez.lib.uris 指定的路径下(如果之前存在路径则直接替换即可)。
- (4) 在 CDH 主页面, 找到 HIVE, 重启 hiveserver 和 hivemetastore。

3. Spark

操作步骤

(1) 按照 数据迁移 章节,配置好 HDFS 的相关配置,并且将 CHDFS 的 SDK jar 包,放置到 HDFS 相应的目录。

(2) 重启 NodeManager 服务。

示例

以 CHDFS 进行 Spark example word count 测试为例。

spark-submit --class org.apache.spark.examples.JavaWordCount --executor-memory
4g --executor-cores 4 ./spark-examples-1.6.0-cdh5.16.1-hadoop2.6.0cdh5.16.1.jar ofs://examplebucket-1250000000/wordcount

执行结果如下:

4. Sqoop

操作步骤

(1) 按照 数据迁移 章节, 配置好 HDFS 的相关配置, 并且将 CHDFS 的 SDK jar 包, 放置到 HDFS 相应的目录。
 (2) CHDFS 的 SDK jar 包还需要放到 sqoop 目录下(例如/opt/cloudera/parcels/CDH-5.16.1 1.cdh5.16.1.p0.3/lib/sqoop/)。

(3) 重启 NodeManager 服务。

示例

以导出 MYSQL 表到 CHDFS 为例,可参考 关系型数据库和 HDFS 的导入导出 文档进行测试。

sqoop import --connect "jdbc:mysql://IP:PORT/mysql" --table sqoop_test -username root --password 123 --target-dir ofs://examplebucket-1250000000/sgoop test

执行结果如下:

腾讯云

20/07/17 18:48:33 INFO mapreduce.Job: map 100% reduce 0% 20/07/17 18:48:33 INFO mapreduce.Job: Job job_1594976906551_0011 completed successfully 20/07/17 18:48:33 INFO mapreduce.Job: Counters: 35 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=526689 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=295 HDFS: Number of bytes written=0 HDFS: Number of read operations=3 HDFS: Number of large read operations=0 HDFS: Number of write operations=0 OFS: Number of bytes read=0 OFS: Number of bytes written=104 OFS: Number of read operations=0 OFS: Number of large read operations=0 OFS: Number of write operations=3 Job Counters Launched map tasks=3 Other local map tasks=3 Total time spent by all maps in occupied slots (ms)=36308 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=9077 Total vcore-milliseconds taken by all map tasks=9077 Total megabyte-milliseconds taken by all map tasks=37179392 Map-Reduce Framework Map input records=3 Map output records=3 Input split bytes=295 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=277 CPU time spent (ms)=6430 Physical memory (bytes) snapshot=1371717632 Virtual memory (bytes) snapshot=18832379904 Total committed heap usage (bytes)=6655311872 File Input Format Counters Bytes Read=0 File Output Format Counters Bytes Written=104 20/07/17 18:48:33 INFO mapreduce.ImportJobBase: Transferred 0 bytes in 13.0961 seconds (0 bytes/sec) 20/07/17 18:48:33 INFO mapreduce.ImportJobBase: Retrieved 3 records. 20/07/17 18:48:33 INF0 fs.CHDFSHadoopFileSystemAdapter: actual-file-system-close usedTime: 13 20/07/17 18:48:33 INFO fs.CHDFSHadoopFileSystemAdapter: end-close time: 1594982913402, total-used-time: 13650

5. Presto

操作步骤

(1) 按照 数据迁移 章节,配置好 HDFS 的相关配置,并且将 CHDFS 的 SDK jar 包,放置到 HDFS 相应的目录。

(2) CHDFS 的 SDK jar 包还需要放到 presto 目录下(例如/usr/local/services/cos_presto/plugin/hivehadoop2)。

(3)由于 presto 不会加载 hadoop common 下的 gson-2...jar,需将 gson-2...jar 也放到 presto 目录下(例如 /usr/local/services/cos_presto/plugin/hive-hadoop2,仅 CHDFS 依赖 gson)。

(4) 重启 HiveServer、HiveMetaStore 和 Presto 服务。

示例

以 HIVE 创建 Location 为 CHDFS 的表查询为例:

select * from chdfs_test_table where bucket is not null limit 1;

() 说明:

chdfs_test_table 为 location 是 ofs scheme 的表。

查询结果如下:

presto:inver appid	ntory_search>_select * bucket	from chdfs_test_table_0720 where bucket is not null limit 	1; size
125 (1 row)	ssuupv80105841qq206	++ 444600684/20190316/3/01a9ee49bd4045179c92e319ff03b810	3800424
Query 202007	720 112833 00061 thb89,	FINISHED, 7 nodes	

CHDFS Ranger 权限体系解决方案

最近更新时间: 2025-01-25 10:09:02

背景

大数据用户使用存算分离后,将数据托管在云 HDFS(Cloud HDFS,CHDFS)上。CHDFS 提供了类似 HDFS 的权限 体系管控。Hadoop Ranger 在 HDFS 权限基础上,提供了更精细的权限管控,包括用户组权限设置,针对某个前缀的权 限设置。同时 Hadoop Ranger 作为一站式的权限体系解决方案,不仅支持存储端权限管控,还支持 YARN,Hive 等组 件权限管控。因此,为了维持方便客户的使用习惯,我们提供了 CHDFS 的 Ranger 接入解决方案,方便客户使用 Ranger 来进行 CHDFS 的权限管控。

优势

- 细粒度的权限控制,兼容 Hadoop 权限习惯。
- 用户统一管理大数据组件与云端托管存储的权限。

解决方案架构

Hadoop 权限体系中,认证由 Kerberos 提供,授权鉴权由 Ranger 负责。在此基础上,我们提供以下组件,来支持 CHDFS 的 Ranger 权限方案。

- CHDFS-Ranger-Plugin: 提供 Ranger 服务端的服务定义插件。它们提供了 Ranger 侧的 CHDFS 服务描述,部 署了该插件后,用户即可在 Ranger 的控制页面上,填写相应的权限策略。
- COSRangerService: 该服务集成了 Ranger 的客户端,周期性从 Ranger 服务端同步权限策略,在收到客户的鉴权 请求后,在本地进行权限校验。同时它提供了 Hadoop 中 DelegationToken 相关的生成,续租等接口,所有的接口 都是通过 Hadoop IPC 定义。

• CosRangerClient: COSN/CHDFS 插件对其进行动态加载,把权限校验的请求转发给 CosRangerService。

部署环境

- Hadoop 环境。
- ZooKeeper、Ranger、Kerberos 服务(如果有认证需求,则部署)。

🕛 说明

以上服务由于是成熟的开源组件,因此客户可自行安装。

部署组件

部署组件请按照 CHDFS-Ranger-Plugin、Cos-Ranger-Service、Cos-Ranger-Client、CHDFS 次序进行。

部署 CHDFS-Ranger-Plugin

CHDFS-Ranger-Plugin 拓展了 Ranger Admin 控制台上的服务种类, 用户可在 Ranger 控制台上,设置和 CHDFS 相关的操作权限。

代码地址

可前往 Github 的 ranger-plugin 目录下获取。

版本

V1.0版本及以上。

部署步骤

- 1. 在 Ranger 的服务定义目录下新建 COS 目录(注意:目录权限需要保证至少有 x 与 r 权限)。
- 2. 腾讯云的 EMR 环境,路径是 ranger/ews/webapp/WEB-INF/classes/ranger-plugins。
- 3. 自建的 hadoop 环境,可以通过在 ranger 目录下 find hdfs 等方式找到已经接入到 ranger 服务的组件,查找 ranger-plugins 目录位置。

[hadoop@10	ra	anger-pl	lugins]S	\$ 11						
total 68										
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Dec	15	10:57			
drwxr-xr-x		hadoop	hadoop	4096	Dec	15	10:57	cos		
drwxr-xr-x		hadoop	hadoop	4096	Feb	25	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Aug		2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			
drwxr-xr-x		hadoop	hadoop	4096	Feb	19	2020			

- 4. 在 CHDFS 目录下,放入 cos-chdfs-ranger-plugin-xxx.jar(注意: jar 包至少有 r 权限)。若使用 CHDFS 服务,需要在机器上放入 chdfs-ranger.json;若使用 COSN 服务,需要放入 cos-ranger.json; 若同时使用 CHDFS 和 COSN 服务,需要同时放入 chdfs-ranger.json 和 cos-ranger.json 文件,可前往 Github 获取。
- 5. 重启 Ranger 服务。

腾讯云

6. 在 Ranger 上注册 CHDFS Service。可参考如下命令:

7. 创建服务成功后,可在 Ranger 控制台看到 CHDFS 服务(以 CHDFS 为例, COSN 类似)。如下所示:

rvice Manager					🗹 Import 🖾 Expo
	+ 2 2	🕞 HBASE	+ 22		+ 🛛 🗖
hdfs	• 7				
	+ 2 2		+ 22		+ 🖸 🖸
yarn	• 7				
	+ 2 2		+ 2 2		+ 2 2
B KYLIN	+ 22		+ 20	E SQOOP	+ 22
	+ 🖸 🖸		+ 🛛 🖉	🕞 cos	+ 2 2
				cos	• 7
				cos_test	
	+92				
chdfs_test	• 2 8				

8. 在 CHDFS 服务侧单击【+】, 定义新服务实例,服务实例名可自定义,例如 chdfs 或者 chdfs_test 。服务的 配置如下所示:

Service Details :			
Service Name *	chdfs_test		
Description			
Active Status	• Enabled 🔿 Disabled		
Select Tag Service	Select Tag Service 🔹		
Config Properties :			
Add New Configurations	Name	Value	
	policy.grantrevoke.auth.users	hadoop	×
	+		

其中 policy.grantrevoke.auth.users 需设置后续启动 COSRangerService 服务的用户名。通常建议设置成 hadoop, 后续 COSRangerService 可使用此用户名进行启动。

9. 单击新生成的 CHDFS 服务实例。

chdfs					ſ	۲	
l policy,如下 anger DAccess Ma Service Manager 〉 chdfs_te st of Policies : chdfs_tes	所示: nager 🗅 Audit 🍲 S st Policies	Settings					谢 root
Q Search for your policy					0	0	Add New Policy
Policy ID	Policy Name	Policy Labels	Status	Audit Logging	Groups	Users	Action
6 allow-ha	doop-all-op		Enabled	Enabled	hadoop	hadoop	۲

10.在跳转界面中,配置以下参数。具体说明如下:

it Policy					
Policy Details :					
Policy Type	Access				D Add Validity P
Policy ID	6				
Policy Name *	allow-hadoop-all-op	enabled normal			
Policy Label	Policy Label				
MountPoint *	× f4mbpfdiimj-qrJ9	include			
Path *	× /aaa	include 🔵 🛛 recursive 🔵			
Description					
Audit Logging	YES				
Allow Conditions :					
	Select Group	Select User	Permissions	Delegate Admin	
	* hadoop	× hadoop	Read Write List		

- MountPoint: 挂载点的名称,格式为 f4mxxxxxx-yyyy 等样式,可登录 CHDFS 控制台 查看。
- path: CHDFS 路径。注意 CHDFS 路径必须以 / 开始。
 - include: 表示设置的权限适用于 path 本身,还是除了 path 以外的其他路径。
 - recursive:表示权限不仅适用于 path,还适用于 path 路径下的子成员(即递归子成员)。通常用于 path 设置为目录的情况。
- user/group: 用户名和用户组。这里是或的关系,即用户名或者用户组满足其中一个,即可拥有对应的操作权限。
- Permissions:
 - Read: 读操作。对应于对象存储里面的 GET、HEAD 类操作,包括下载对象、查询对象元数据等。
 - Write: 写操作。对应于对象存储里面的 PUT 类等修改操作,例如上传对象。
 - Delete: 删除操作。对应于对象存储里删除 Object。对于 Hadoop 的 Rename 操作,需要有对原路径的 删除操作权限,对新路径的写入操作权限。
 - List: 遍历权限。对应于对象存储里面的 List Object。

部署 COS-Ranger-Service

COS-Ranger-Service 是整个权限体系的核心,负责集成 ranger 的客户端,接收 ranger client 的鉴权请求, token 生成续租请求和临时密钥生成请求。同时也是敏感信息(腾讯云密钥信息)所在的区域,通常部署在堡垒机器 上,只允许集群管理员操作,查看配置等。

COS-Ranger-Service 支持多节点的HA 部署, DelegationToken 状态持久化到 DB上。通过 ZK 互相感知彼此 节点的存在。通过客户端配置的任何一个的cos-ranger-server 的地址, 即可知道全量的列表。 因此可以通过平行 扩容 cos-ranger-server,来提升整体的鉴权能力。

代码地址

可前往 Github 的 cos-ranger-server 目录下获取。

版本

V6.0版本及以上。

部署步骤

- 将 COS Ranger Service 服务代码拷贝到集群的几台机器上,生产环境建议至少两台机器。因为涉及到敏感信息,建议是堡垒机或者权限严格管控的机器。
- 2. 如果是 kerberos 集群,则需要一个 db 来保存 Delegation Token (有关 kerberos 的 Delegation token 的 作用,搜索相关博文即可), db 规格推荐16c32g,100g磁盘以上。在负载不高的集群上,可混用 Hive meta store 的 db。初始化 database 和表的 sql 语句可前往 Github 的 cos-ranger-server/sql 目录下获取.
- 3. 修改 cos-ranger.xml 文件中的相关配置,其中必须修改的配置项如下所示。配置项说明请参见文件中的注释说明 (配置文件可前往 Github 的 cos-ranger-server/conf 目录下获取)。
 - o qcloud.object.storage.rpc.address
 - o qcloud.object.storage.status.port
 - qcloud.object.storage.enable.chdfs.ranger
 - qcloud.object.storage.zk.address(zk 地址, cos ranger service 启动后注册到 zk 上)
 - qcloud.object.storage.kerberos.principal (kerberos 集群下的 principal, 非 kerberos 请忽略)
 - qcloud.object.storage.kerberos.keytab (kerberos 集群下的 keytab 文件, 非 kerberos 请忽略)
 - sql-dt-secret-manager.connection.url (kerberos 集群, 保存 delegation token 的 db, 非 kerberos 请忽略)
 - sql-dt-secret-manager.connection.username (kerberos 集群, 访问 delegation token 的 db 的 用户名, 非 kerberos 请忽略)
 - hadoop.security.credential.provider.path (kerberos 集群, 访问 delegation token 的 db 的用户 密码的 jceks 文件路径, 非 kerberos 请忽略)
- 4. 修改 ranger-chdfs-security.xml 文件中的相关配置。其中必须修改的配置项有如下所示。配置项说明请参见文件中的注释说明(配置文件可前往 Github 的 cos-ranger-server/conf 目录下获取)。
 - ranger.plugin.chdfs.policy.cache.dir
 - ranger.plugin.chdfs.policy.rest.url
 - ranger.plugin.chdfs.service.name
- 5. 修改 start_rpc_server.sh 中 hadoop_conf_path 和 java.library.path 的配置。这两个配置分别指向 hadoop 配置文件所在的目录(例如 core-site.xml、hdfs-site.xml)以及 hadoop native lib 路径。
- 6. 执行如下命令启动服务。

```
chmod +x start_rpc_server.sh
nohup ./start_rpc_server.sh &> nohup.txt &
```

7. 如果启动失败,查看 log 下 error 日志是否有错误信息。

8. cos-ranger-service 支持展示 HTTP 端口状态(端口名为 qcloud.object.storage.status.port,默认值为 9998)。用户可通过以下命令获取状态信息(例如目前全量的 cos-ranger-server 列表、鉴权数量统计等)。

请将下面的10.xx.xx.xxx 替换为部署 ranger service 的机器 IP
port 9998 设置为 qcloud.object.storage.status.port 配置值
curl -v http://10.xx.xx.xxx:9998/status

部署 COS-Ranger-Client 和 COSN-Ranger-Interface

COS-Ranger-Client 由 hadoop chdfs 插件动态加载,并代理访问 COS-Ranger-Service 的相关请求。例如 获取 token、鉴权操作等。

代码地址

腾讯云

可前往 Github 的 cos-ranger-client 和 cosn-ranger-interface 目录下获取。

版本

cos-ranger-client 要求 V6.0版本及以上。cosn-ranger-interface 要求 v1.0.5版本及以上。

腾讯云 EMR 环境中默认安装目录在 common/lib 下,例如

/usr/local/service/hadoop/share/hadoop/common/lib 下。请根据自己的环境,放在对应的common/lib 路 径下。对于 ranger-client 的包名,例如 hadoop-ranger-client-for-hadoop-2.8.5-6.0.jar, 2.8.5 是 hadoop 版本号, 6.0是该包的版本号。for-hadoop 是通常组件使用的版本,其他一些组件,例如 presto, impala 以及高版本的 spark(spark-3.2.0版本及以后) 等,由于对依赖的 hadoop-common做了 shade,因此 ranger-client 也必须做 shade,否则会报类找不到。这些包请下载对应的 for-presto, for-impala, for-spark 版本等。

部署方式

- 将 cos-ranger-client jar 包和 cosn-ranger-interface jar 包拷贝到与 CHDFS 插件同一目录下(通常在 /usr/local/service/hadoop/share/hadoop/common/lib/ 目录下;请选择拷贝与自身 hadoop 大版本一致 的 jar 包,最后确保 jar 包有可读权限)。
- 2. 在 core-site.xml 添加如下配置项:

部署 CHDFS

版本

V3.3版本及以上。

部署方式

部署 CHDFS 插件的方法请参考 挂载 CHDFS 文档,开启 ranger 通过添加以下方式进行:

```
<property>
        <name>fs.ofs.ranger.enable.flag</name>
        <value>true</value>
        </property>
```

验证

1. 使用 hadoop cmd 执行访问 chdfs 的相关操作。如下所示:

```
# 将挂载点,路径等替换为自己的实际信息。
hadoop fs -ls ofs://f4mxxxxyyyy-zzzz.chdfs.ap-guangzhou.myqcloud.com/doc
hadoop fs -put ./xxx.txt ofs://f4mxxxxyyyy-zzzz.chdfs.ap-
guangzhou.myqcloud.com/doc/
hadoop fs -get ofs://f4mxxxxyyyy-zzzz.chdfs.ap-
guangzhou.myqcloud.com/exampleobject.txt
hadoop fs -rm ofs://f4mxxxxyyyy-zzzz.chdfs.ap-
guangzhou.myqcloud.com/exampleobject.txt
```


2. 使用 MR Job 进行验证,验证前需重启相关的服务,例如 Yarn、Hive 等。

获取统计信息

可以通过以下 curl 命令手动获取 COS Ranger 的统计信息:

```
"allMemberAddress": "10.0.0.7:9999",//集群中所有成员的地址
 "currentNodeIsLeader": true, // 当前节点是否是leader节点
 "leaderAddress": "10.0.0.7:9999", // leader地址(对于客户端v5.x版本有意义,v6.x后是
全对等模式,leader信息没有意义
 "authStat": {// 自定义鉴权认证的次数统计信息 (对于为实现自定义认证的服务,始终是认证成功)
   "authSuccessStat": { // 认证成功统计信息
    "qps_5m": 0,// 最近 5 分钟的每秒查询数(QPS)
    "total_1m": 0,//最近 1 分钟的总成功认证次数
     "qps_1m": 0, // 最近 1 分钟的每秒查询数
    "total_5m": 0,//最近 5 分钟的总成功认证次数
    "gps": 0//当前的每秒查询数
   "authFailedStat": {// 鉴权认证失败统计信息,字段含义与    authSuccessStat 相同
 "rpcMethodStat": {//包含不同 RPC 方法的调用次数的统计信息
   "checkPermission": {//检查权限的方法统计信息
   "getAvailableService": {//获取可用服务的方法统计信息
```

```
"checkPermissionAllowCnt": 4000,//允许的权限检查总次数
"becomeLeaderTime": "2024-12-10T12:56:52.888Z",//当前节点成为leader的时间
"checkAuthDenyCnt": 0,//被拒绝的认证检查次数
"serviceStartTime": "2024-12-10T12:56:52.884Z",//服务启动的时间
"checkPermissionDenyCnt": 0,//被拒绝的权限检查次数
"accessStat": {//包含不同访问类型的统计信息
 "READ": {//读取操作的统计信息
"checkCostStat": {//checkPermission(检查权限)耗时的统计信息
 "checkFailStat": {//失败
 "checkSuccessStat": {//成功
   "avg_5m": 5,//最近 5 分钟的平均耗时
   "min_1m": 0, / /最近1分钟最小耗时
   "avg": 4,//平均耗时
   "min": 0,//最小耗时
   "max": 1263,//最大耗时
   "max_1m": 1263,//最近一分钟最大耗时
   "avg_1m": 5,//最近一分钟平均耗时
   "max_5m": 1263,//最近五分钟最大耗时
   "min_5m": 0//最近五分钟最小耗时
"authCostStat": {// 权限认证耗时统计
```

"checkPermissionAllowAfterRetryCnt": 0,// 经过重试后允许的权限检查次数

腾讯云


```
"rpcMethodCostStat": {//RPC接口耗时统计
"statsTimestamp": "2024-12-12T05:28:38.688Z",//统计时间
"checkStat": {// check policy统计信息
```


"qps": 0			
"checkSuccessStat": {			
"qps_5m": 10,			
"qps_1m": 50,			
"qps": 1000			

接口的出参定义如下:

一级字段	二级字段	三级字段	字段含义
serviceStartTime	-	-	服务启动时间
currentNodelsLeade r	-	-	当前节点是否是 leader
becomeLeaderTime	-	-	成为 leader 时间
statsTimestamp	-	-	统计时间
leaderAddress	-	-	leader 地址
allMemberAddress	-	-	集群内所有成员地址
checkPermissionAllo wCnt	-	-	check permission 成 功数
checkAuthDenyCnt	-	-	认证鉴权失败数
checkPermissionDe nyCnt	_	_	check permission 失 败数
checkPermissionAllo wAfterRetryCnt	-	-	重试后check permission 成功数
accessStat	_	_	操作统计
accessStat	LIST	_	List 操作次数
accessStat	WRITE	-	Write 操作次数
accessStat	READ	_	Read 操作次数
accessStat	DELETE	_	Delete 操作次数
authStat	_	_	认证统计

authStat	authSuccessStat	qps、qps_1m、 qps_5m、 count_1m、 count_5m	认证成功统计
authStat	authFailedStat	qps、qps_1m、 qps_5m、 count_1m、 count_5m	认证失败统计
authCostStat	-	_	认证耗时统计
authCostStat	authSuccessStat	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	认证成功耗时统计
authCostStat	authFailedStat	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	认证失败耗时统计
checkStat	_	_	check permission 统 计
checkStat	checkSuccessStat	qps、qps_1m、 qps_5m、 count_1m、 count_5m	check permission 成 功统计
checkStat	checkFailStat	qps、qps_1m、 qps_5m、 count_1m、 count_5m	check permission 失 败统计
checkCostStat	-	_	check permission 耗 时统计
checkCostStat	checkSuccessStat	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	check permission 成 功耗时统计
checkCostStat	checkFailStat	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	check permission 失 败耗时统计
rpcMethodStat	_	_	rpc 方法统计

rpcMethodStat	getDelegationToken	qps、qps_1m、 qps_5m、 count_1m、 count_5m	getDelegationToken 方法统计
rpcMethodStat	renewDelegationTok en	qps、qps_1m、 qps_5m、 count_1m、 count_5m	renewDelegationTok en 方法统计
rpcMethodStat	cancelDelegationTo ken	qps、qps_1m、 qps_5m、 count_1m、 count_5m	cancelDelegationTo ken 方法统计
rpcMethodStat	verifyDelegationTok en	qps、qps_1m、 qps_5m、 count_1m、 count_5m	verifyDelegationTok en 方法统计
rpcMethodStat	checkPermission	qps、qps_1m、 qps_5m、 count_1m、 count_5m	checkPermission 方 法统计
rpcMethodStat	getSTS	qps、qps_1m、 qps_5m、 count_1m、 count_5m	getSTS 方法统计
rpcMethodStat	getRangerAuthPolic y	qps、qps_1m、 qps_5m、 count_1m、 count_5m	getRangerAuthPolic y 方法统计
rpcMethodStat	getAvailableService	qps、qps_1m、 qps_5m、 count_1m、 count_5m	getAvailableService 方法统计
rpcMethodCostStat			RPC 方法耗时统计
rpcMethodCostStat	getDelegationToken	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	getDelegationToken 方法统计
rpcMethodCostStat	renewDelegationTok en	max、min、avg、 max_1m、min_1m、	renewDelegationTok en 方法统计

		avg_1m、max_5m、 min_5m、avg_5m	
rpcMethodCostStat	cancelDelegationTo ken	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	cancelDelegationTo ken 方法统计
rpcMethodCostStat	verifyDelegationTok en	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	verifyDelegationTok en 方法统计
rpcMethodCostStat	checkPermission	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	checkPermission 方 法统计
rpcMethodCostStat	getSTS	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	getSTS 方法统计
rpcMethodCostStat	getRangerAuthPolic y	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	getRangerAuthPolic y 方法统计
rpcMethodCostStat	getAvailableService	max、min、avg、 max_1m、min_1m、 avg_1m、max_5m、 min_5m、avg_5m	getAvailableService 方法统计

常见问题

如果开启了 Ranger,但未配置任何 Policy,或者未匹配到任何 Policy,会如何操作?

如果未匹配上任何 policy,会默认拒绝该操作。

开启了 ranger 后,CHDFS 端是否还会进行 POSIX 鉴权?

Ranger 鉴权是在客户端环境进行的,经过 ranger 鉴权的请求,会发给 CHDFS 服务端,服务端默认会进行 POSIX 鉴权。因此如果权限都在 Ranger 端进行控制,请在 CHDFS 控制台关闭 POSIX 权限。

在 ranger 页面更改了 Policy 未生效怎么办?

请修改 cos-ranger-server 服务目录 conf 下的 ranger-chdfs-security.xml 文件的配置项: ranger.plugin.chdfs.policy.pollIntervalMs,调小该配置项(单位为毫秒),然后重启 cos-ranger-service 服 务。Policy 相关测试结束后,建议修改回原来值(时间间隔太小导致轮训频率高,从而导致 CPU 利用率高企)。

其他认证和鉴权的问题可 点击此处 查看。

Tensorflow 读写 CHDFS 数据

最近更新时间: 2024-10-12 20:45:01

CHDFS 准备工作

- 1. 在腾讯云官网创建 CHDFS 文件系统和 CHDFS 挂载点,配置好权限信息。
- 2. 通过腾讯云 VPC 环境的 CVM 机器访问创建好的 CHDFS,详情请参见 创建 CHDFS。
- 3. 当挂载成功后,打开 hadoop 命令行工具,并执行以下命令,验证 CHDFS 功能是否正常。

hadoop fs -ls ofs://f4xxxxxxxxxxxx.chdfs.ap-beijing.myqcloud.com/

如果能看到以下类似的输出,则表示云 HDFS 功能一切正常。

[hadoop@10 ~]\$	hadoop	fs -ls ofs://		.chdfs.ap-beijing.myqcloud.	com/					
SLF4J: Class pa	SLF4J: Class path contains multiple SLF4J bindings.									
SLF4J: Found binding in [jar:file:/usr/local/service/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]										
SLF4J: Found binding in [jar:file:/usr/local/service/tez/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]										
SLF4J: See http://www.slf4j.org/codes.html#multiple bindings for an explanation.										
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]										
Found 31 items										
drwxr-xr-x -	root	root	0 2019-12-30	17:03 ofs://	<pre>chdfs.ap-beijing.myqcloud.com/0x</pre>					
drwxr-xr-x -	hadoop	hadoop	0 2019-12-30	18:20 ofs://	.chdfs.ap-beijing.myqcloud.com/data					
-rw-rr 1	root	root 10485760	00 2019-12-13	23:20 ofs:/	chdfs.ap-beijing.myqcloud.com/dd 1G					
drwxrwxrwx -	hadoop	hadoop	0 2019-12-18	12:08 ofs://	chdfs.ap-beijing.myqcloud.com/emr					
drwxrwxr-x -	root	root	0 2019-12-05	17:13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-dir-0					
drwxrwxr-x -	root	root	0 2019-12-05	17:13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-dir-1					
drwxrwxr-x -	root	root	0 2019-12-05	17:13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-dir-2					
drwxrwxr-x -	root	root	0 2019-12-05	17:24 ofs:/	.chdfs.ap-beijing.myqcloud.com/fuse-dir-3					
drwxr-xr-x -	root	root	0 2019-12-05	17:25 ofs	.chdfs.ap-beijing.myqcloud.com/fuse-dir-4					
-rwxrwxr-x 1	root	root	0 2019-12-05	17:13 ofs://	.chdfs.ap-beijing.myqcloud.com/fuse-file-0					
nu nu n 1	noot	noot	0 3010 13 OF	17,17 ofc,//	chdfe op heijing mygeloud com/fuse file 1					

Tensorflow 准备工作

- 1. 通过 官方 Github 下载 Tensorflow。
- 2. 参考 腾讯云支持 CHDFS patch,修改 tensorflow 源码,本文示例采用 tensorflow 2.5版本编译。
- 3. 参考 tensorflow 编译教程,编译修改源码后的 tensorflow。
- 4. 待编译完成后,安装 tensorflow 模块,并且验证。

() 说明:

tensorflow 代码版本差异较大,如果您使用的 tensorflow 非2.5版本,遇到代码问题,可以寻求 CHDFS 团 队协助。

Tesorflow 读写 CHDFS 验证

1. 在 CHDFS 上创建测试文件:

```
hadoop fs -copyFromLocal ./testfile ofs://f4xxxxxxxxxxxx.chdfs.ap-
beijing.myqcloud.com/testfile
hadoop fs -cat ofs://f4xxxxxxxxx.chdfs.ap-beijing.myqcloud.com/testfile
hello, world
```


2. 使用 TensorFlow 的 API 查看 CHDFS 上的数据。

```
→ ~ python3
Python 3.9.6 (default, Jun 29 2021, 05:25:02)
[Clang 12.0.5 (clang-1205.0.22.9)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> with tf.gfile.Open('ofs://f4xxxxxxxxxx.chdfs.ap-
beijing.myqcloud.com/testfile') as rf:
... rf.read()
'hello, world\n'
>>>
```

() 说明:

ofs://f4xxxxxxxxxxxxxxx.chdfs.ap-beijing.myqcloud.com 为测试的挂载点信息,需要您替换成 真实的挂载点信息。

跨账户访问 CHDFS

最近更新时间: 2024-12-17 20:15:52

简介

本文介绍如何实现跨账户访问云 HDFS(Cloud HDFS,CHDFS)。

在 CHDFS 的使用情景中,可能需要使用不同的主账户访问同一个 CHDFS,例如账户 B 的 EMR 集群访问账户 A 的 CHDFS。但在常用的 云 HDFS 控制台 中不同主账户之间的权限组不能绑定对方的挂载点,无法实现跨账户访问。这时可 以使用 云 HDFS API:

- CHDFS 提供功能全面的云 HDFS API,只需少量代码您就可以操作 CHDFS,并且云 API 允许将账户 B 的权限组绑 定账户 A 的挂载点以此实现 CHDFS 的跨账户访问。
- 在绑定的过程中,挂载点是主要资源,会鉴权调用方是否拥有操作挂载点 ID 的权限,而权限组 ID 不做鉴权。

前提条件

- •账户A已创建好文件系统,详情请参见创建CHDFS。
- 账户 A 已创建好 挂载点。

云 HDFS	←				
言 概览	基础配置 挂载点	生命周期			
文件系统	添加挂载点				输入挂载点名称搜索 Q
⑥ 权限组	名称 +	挂载地址	VPC 权限组	状态 操作	
	ctest	f4masumS3.chdi guangzhou.myqcloud.co	lfs.ap- m -	可用 编辑	删除 绑定权限组 解绑权限组

• 账户 B 已创建好 权限组 和 权限规则。

云 HDFS	权限组	◎ 广州 ▼							ł
吉 概览		新建						输入权限组名称搜索	Q
		名称 \$	ID	创建时间 🕈	描述	规则数目	绑定的挂载点数量	操作	
(4) 秋限组		ng-test1	ag-afxfcfzm	2022-08-02 20:35:04		1	1	添加規则 删除	

• 账户 B 的 EMR 集群配置好 CHDFS 环境。

操作步骤

CHDFS 提供功能全面的 云HDFS API,通过云 HDFS API 可以实现 绑定权限组列表。本文以 Golang 代码为例,实现 将账户 B 的权限组绑定账户 A 的挂载点。实行绑定动作的主体为账户 A 或拥有权限的 A 的子账户。 1. 在以下代码配置账户 A 的密钥、账户 A 的挂载点 ID、账户 B 的权限组 ID。


```
🔗 腾讯云
```

```
// 实例化一个认证对象,入参需要传入腾讯云账户 secretId, secretKey, 此处还需注意密钥
对的保密
    // 密钥可前往 https://console.cloud.tencent.com/cam/capi网站进行获取
    // 实例化一个 client 选项,可选的,没有特殊需求可以跳过
    cpf.HttpProfile.Endpoint = "chdfs.tencentcloudapi.com"
    // 实例化要请求产品的 client 对象, clientProfile 是可选的
    // 实例化一个请求对象,每个接口都会对应一个 request 对象
         //账户 A 的挂载点 ID
         //账户B的权限组 ID
    // 返回的 resp 是一个 AssociateAccessGroupsResponse 的实例,与请求对象对应
    response, err := client.AssociateAccessGroups(request)
    // 输出 json 格式的字符串回包
```

- 🔗 腾讯云
 - 2. 运行代码后,再次查看账户 A 的挂载点,即可看到账户 B 的权限组成功绑定在本挂载点上。

云 HDFS	←	est						
晋 概览	基础配置 挂载点	生命周期						
文件系统		添加挂载点					输入挂载点名称	搜索 C
⑥ 权限组		名称 \$	挂载地址	VPC丨权限组	状态	操作		
		anwang_test	f4masu S3.chdfs.ap- guangzhou.myqcloud.com	Vpold: 无权限 权限组ld: ag-afxtcfzm Vpcld: vpc-ebvdv1gr 权限组ld: ag-cgqkvrsw	可用	编辑 册	制除 绑定权限组	解绑权限组

3. 在账户 B 的 EMR 集群机器中通过 hadoop fs -ls 命令查看到文件列表,即表示挂载成功。账户 B 可以访问账户 A 的 CHDFS,成功实现跨账户访问 CHDFS。

h	nadoop fs -ls ofs://f4masu	S3.chdfs.ap-guangzhou.myqcloud.com/
Found 1 items		
drwxr-xr-x	- hadoop supergroup	0 2021-0/ .48 ofs://f4masum S3.chdfs.ap-guangzhou.myqcloud.com

若未通过云 API 执行上述绑定操作,在账户 B 的 EMR 集群中通过 hadoop fs -ls 命令则查看到访问文件列表失败,显示 *Permission denied: No access rules matched* 错误,账户 B 无法访问账户 A 的 CHDFS。

4.
 Image: A state of the state

跨 VPC 访问 CHDFS

最近更新时间: 2024-12-17 20:30:53

简介

本文介绍如何在不同 VPC 下访问云 HDFS(Cloud HDFS,CHDFS)的过程。

- 权限组是 CHDFS 提供的访问控制白名单,用户可以自行创建权限组,以此实现对 CHDFS 的权限管理,权限组需要绑定且只能绑定一个 VPC 网络。
- 创建**挂载点**时候,需要将权限组绑定挂载点。

一个挂载点可以同时被多个权限组绑定,因此我们可以利用不同 VPC 的权限组绑定同一个挂载点来实现跨 VPC 访问 CHDFS。

本文以不同 VPC 下的 EMR 集群访问 CHDFS 为例。

前提条件

需要账户中已有 CHDFS 文件系统和EMR集群,并且 EMR 集群已配置好 CHDFS 环境,可参考以下创建:

- 已创建文件系统,详情请参见 创建 CHDFS 。
- 已创建 挂载点。
- EMR 集群已配置 CHDFS 环境。

操作步骤

步骤1: 创建权限组和权限规则

- 1. 登录 CHDFS 控制台。
- 2. 在左侧导航栏中,单击权限组,选择地域(例如广州),单击新建。

云 HDFS	权限组	◎广州 ▼							指
吉 概览	ſ	新建						输入权限组名称搜索	Q
□ 文件系统	L	名称 \$	ID	创建时间 🕈	描述	规则数目	绑定的挂载点数量	操作	
⑧ 权限组		j-test1	ag-afxfcfzm	2022-08-02 20:35:04	-	1	1	添加规则 删除	

3. 在弹出的窗口中,输入名称,依据 EMR 集群所属 VPC,设置 VPC 网络类型和 VPC 网络名称。

名称*	
VPC网络类型 *	CVM
VPC网络名称/ID *	请选择VPC网络
描述	请输入备注信息,长度不超过 32 个字符

4. 选择创建好的权限组,单击添加规则,在授权地址中填入 EMR 集群所在的网段,配置访问模式和优先级。

规	则列表				
ž	受权地址	访问模式	优先级 ③	操作	
1	10.0.0.126	可读可写	10	编辑	删除

5. 重复执行步骤2 - 步骤4,配置另一个 VPC 的权限组。

test1	ag-afxfcfzm	2022-08-02 20:35:04		1	0	添加规则 删除
-test2	ag-mwpsaxs5	2022-08-02 21:31:48	-	1	0	添加规则 删除

步骤2: 挂载点绑定权限组

1. 选择创建好的挂载点,单击绑定权限组。

←	l.					
基础配置 挂载点	生命周期					
	添加挂载点					输入挂载点名称搜索 Q
	名称 \$	挂载地址	VPC丨权限组	状态	操作	
	wang_test1	f4mxeumutr-AsTC.chdfs.ap- guangzhou.myqcloud.com		可用	编辑	期除 绑定权限组 解绑权限组

2. 在弹出的窗口中,绑定 步骤1 创建的两个不同 VPC 的权限组。

绑定权限组		
名称 *		
绑定VPC/权限组★	VPC网络名词/ID VPC关联权限组 ①	操作
	vpc-5	删除
	2.16.0.0/16) ▼ st2(ag-m-psaxs5) ▼	删除
	+ 添加 VPC	
	如需创建权限组并关联VPC,请前往【权限组】页面,进行操作	
	保存取消	

步骤3:访问 CHDFS

1. 在配置好权限组和 CHDFS 环境 的 EMR 集群机器中,执行 hadoop fs -ls 命令,查看到文件列表,即表示挂载成功。

	<pre></pre>	pin/hadoop fs —ls ofs://f4mxeuc======TC.chdfs.ap-guangzhou.myqcloud.com/
Found 64 ite	ems	
-rw-rr	1 hadoop supergroup	16283 2022-0C of i.e. of s://f4mxe i.e. chdfs.ap-guangzhou.myqcloul.com/file
drwxr-xr-x	 hadoop supergroup 	0 2022-0o-) 10.96 ofs://f4mxc cat
drwxr-xr-x	 hadoop supergroup 	0 2021-10 32 ofs://f4mx chdfs.ap-guangzhou.myqcloud.com
drwxr-xr-x	 hadoop supergroup 	0 2021-09
drwxr-xr-x	 hadoop supergroup 	0 2022-06-1 :24 ofs://f4mxc it 1.70.chdfs.ap-guangzhou.myqcloud.com

2. 在另一台不同权限组的 EMR 集群机器中,重复执行上一步命令,查看到文件列表,即表示挂载成功。

doop fs -ls ofs://f4mxeu____TC.chdfs.ap-guangzhou.myqcloud.com/ Found 64 items

伊

用一台权限组未添加权限规则的机器进行相同操作,挂载失败 ,显示 *Permission denied: No access rules matched* 错误。

/service/hadoop]# bin/hadoop fs -ls ofs://f4mxeu_____C.chdfs.ap-guangzhou.myqcloud.com/ 22/08/03 17:24:01 ERROR fs.CHDFSHadoopFileSystem: Permission denied: No access rules matched 22/08/03 17:24:01 ERROR fs.CHDFSHadoopFileSystemAdapter: initialize failed! a ioException occur! java.io.IOException: Permission denied: No access rules matched