&2 Tencent Cloud Data Lake Compute

Data Lake Compute

Development Guide

%

Tencent Cloud

©2013-2023 Tencent Cloud. All rights reserved. Page 1 0of 48

&2 Tencent Cloud Data Lake Compute

Copyright Notice
©2013-2024 Tencent Cloud. All rights reserved.

The complete copyright of this document, including all text, data, images, and other content, is solely and
exclusively owned by Tencent Cloud Computing (Beijing) Co., Ltd. ("Tencent Cloud"); Without prior explicit
written permission from Tencent Cloud, no entity shall reproduce, modify, use, plagiarize, or disseminate the
entire or partial content of this document in any form. Such actions constitute an infringement of Tencent
Cloud's copyright, and Tencent Cloud will take legal measures to pursue liability under the applicable laws.

Trademark Notice

> Tencent Cloud

This trademark and its related service trademarks are owned by Tencent Cloud Computing (Beijing) Co., Ltd.
and its affiliated companies("Tencent Cloud"). The trademarks of third parties mentioned in this document are
the property of their respective owners under the applicable laws. Without the written permission of Tencent
Cloud and the relevant trademark rights owners, no entity shall use, reproduce, modify, disseminate, or copy
the trademarks as mentioned above in any way. Any such actions will constitute an infringement of Tencent
Cloud's and the relevant owners' trademark rights, and Tencent Cloud will take legal measures to pursue liability
under the applicable laws.

Service Notice

This document provides an overview of the as—is details of Tencent Cloud's products and services in their
entirety or part. The descriptions of certain products and services may be subject to adjustments from time to
time.

The commercial contract concluded by you and Tencent Cloud will provide the specific types of Tencent Cloud
products and services you purchase and the service standards. Unless otherwise agreed upon by both parties,
Tencent Cloud does not make any explicit or implied commitments or warranties regarding the content of this
document.

Contact Us

We are committed to providing personalized pre—sales consultation and technical after-sale support. Don't
hesitate to contact us at 4009100100 or 95716 for any inquiries or concerns.

©2013-2023 Tencent Cloud. All rights reserved. Page 2 of 48

2 Tencent Cloud Data Lake Compute

Contents

Development Guide
SparkJar Job Development Guide
PySpark Job Development Guide
Guide to Query Performance Optimization
UDF Function Development Guide
Materialized View
Guide to Developing in Hudi Table Format
Overview
Create a Hudi Table
Data Writing in Hudi
Hudi Data Query
System Restraints
Metadata Information
Computing Task

©2013-2023 Tencent Cloud. All rights reserved. Page 3 of 48

&2 Tencent Cloud Data Lake Compute

Development Guide
SparkJar Job Development Guide

Scenarios

Data Lake Compute is fully compatible with open—-source Apache Spark, allowing users to write business
programs for data reading, writing, and analysis. This example demonstrates the detailed operations of reading
and writing data on COS, creating databases and tables on Data Lake Compute, and reading and writing tables
through Java code, assisting users in job development on Data Lake Compute.

Environment Preparation
Dependencies: JDK1.8, Maven, IntelliJ IDEA
Development Process

Development Flowchart

The development process for Data Lake Compute Spark JAR jobs is as follows:

Debug and

Upload data to Create Maven N compile code and Upload JAR file to
Create resources ~——» oS e o e Write code — e et — cos —> Createdatatask ——

into JAR file

Run task and
view results

Resource Creation

For the first time running a job on Data Lake Compute, you need to create new Spark job compute resources,

for instance, creating a Spark job resource named "dic-demo".

1. Log in to the Data Lake Compute DLC Console, select the service region, and click on Data Engine in the
navigation menu.

2. Click Create Resource in the upper left corner to enter the resource configuration purchase page.

3. Select Spark as the job engine under the Cluster Configuration > Calculation Engine Type option.

©2013-2023 Tencent Cloud. All rights reserved. Page 4 of 48

https://console.cloud.tencent.com/dlc

&2 Tencent Cloud Data Lake Compute

Data Lake Compute = Bocumentatont2 Biligt2 Console 2

Engine edition SupersQl engine: Standard engine
Billing mocle Pay-as-you-go Monthly subscription ~ Detailed comparizon 2

North China South China East China Southwest China est US Southeast Asia EastUS
Region h - - - : e h o : : -
Beijing Nanjing Shanghai Shanghai Finance Chengdu Chongging Silicon Valley singapore virginia
Europe North China region Hong Kong/Macao/TaiWan (China Region:
Frankfurt Beijing Finance Hong Kong
Cloud products in different regions are not interconnected over private networks and the region cannot be changed after you purchase the service. Please proceed with caution e recommend yo

| Cluster configuration

Basic configuration

Compute engine type SparksQL Spark job Presto

Fees are charged based on resource usage in data jobs_ Bills are generated hourly, and the unit price is 0.35 CNY/CU/hour for a standard cluster and 0.45 CNY/CU/hour for a memory cluster.

Kernel version Spark 32

ails. see Spark Environments (2

Enter "dlc-demo" in the Information Configuration > Resource Name field. For more information on creating a
new resource, see Purchasing a Dedicated Data Engine.

Advanced cenfiguration

Parameter configuration + Add

IP range of cluster 255.0 6 Modify

This option affects the network interconnection between services. In case of non-federated queries, default configuration is recommended; in federated queries, the IP range of the engine must be different from that of the data source.

Auto-granting of engine perwsswm‘s()

| Info configuration

Resource name dic-dema
Description
Tag Notag #
Tags are used to categorize resources. To learn more, see Tag Documentation 2
Terms of agreement | have read and agree to the Service Level Agreement for Data Lake Compute [2andRefund Policy 2

4. Click Activate Now to confirm the resource configuration information.

5. After ensuring the information is accurate, click Submit to complete the resource configuration.

Uploading Data to COS

Create a bucket named "dlc-demo", upload the people.json file to serve as an example for reading and writing
data from COS. The content of the people.json file is as follows:

{"name":"Michael"}

©2013-2023 Tencent Cloud. All rights reserved. Page 5 of 48

https://cloud.tencent.com/document/product/1342/74056

&2 Tencent Cloud Data Lake Compute

"Andy",
"Justin”,
:"WangHua",
:"ZhangSan",
"LiSi",
:"ZhaoWu",
:"MengXiao",
:"KaiDa",

{
{
{
{
{
{
{
{

1. Log in to the Cloud Object Storage (COS) console and click on Bucket List in the left navigation menu.

2. Create a bucket: Click Create Bucket in the upper left corner, fill in the name field with "dlc-dmo", then click
Next to complete the configuration.

3. Upload File: Click on File List > Upload File, select the local "people.json" file to upload to the "dic-demo-
1305424723" bucket (—1305424723 is a random string generated by the platform when creating the bucket),
click Upload to complete the file upload. For details on creating a new bucket, refer to Create Bucket.

Upload Files

Creating a Maven Project

1. Create a new Maven project named "demo" using IntelliJ IDEA.

2. Add Dependencies: Incorporate the following dependencies into the pom.xml file:

org.apache.spark
spark-core_2.12
3.2.1
provided

org.apache.spark
spark-sql_2.12
3.2.1

©2013-2023 Tencent Cloud. All rights reserved. Page 6 of 48

https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/436/13309

&2 Tencent Cloud Data Lake Compute

provided

Writing Code

The code functionality involves reading and writing data from COS, creating databases and tables on Data Lake
Compute, and querying and writing data.
1. Example code for reading and writing data from COS:

package com.tencent.dlc;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;

import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession;

public class CosService {

public static void (String[] args)
{

SparkSession spark = SparkSession
0]

("Operate data on cos")

("spark.some.config.option", "some-value")

0;

String readPath = "cosn://dlc-demo-1305424723/people.json";
Dataset<Row> readData = spark. (). (readPath);

readData. ("people");
Dataset<Row> result = spark.sql("SELECT * FROM people where age > 3");
String writePath = "cosn://dlc-demo-1305424723/people_output";

result. (). (SaveMode.Append). (writePath):
spark. (). (writePath). 0);

spark. ();

2. Creating databases, tables, querying data, and writing data on Data Lake Compute:

package com.tencent.dlc;

import org.apache.spark.sql.SparkSession;

©2013-2023 Tencent Cloud. All rights reserved. Page 7 of 48

&2 Tencent Cloud Data Lake Compute

public class DbService {
public static void (String[] args) {

SparkSession spark = SparkSession

0
("Operate DB Example")

OF

String dbName = " DatalakeCatalog.dlc_db_test ";
String dbSql = "CREATE DATABASE IF NOT EXISTS" + dbName + " COMMENT 'demo test'";
spark.sqgl(dbSql);

String tableName = "test";

String tableSqgl = "CREATE TABLE IF NOT EXISTS " + dbName + "." + tableName
+ "(id int,name string, age int)";

spark.sqgl(tableSql);

spark.sql("INSERT INTO " + dbName + "." + tableName + "VALUES (1,'Andy',12),(2,'Justin',3) ");
spark.sgl(" SELECT * FROM " + dbName + "." + tableName). ();
String extTableName = "ext _test";
spark.sql(
"CREATE EXTERNAL TABLE IF NOT EXISTS " + dbName + "." + extTableName + ""

+ " (id int, name string, age int) "

+ "ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe' "

+ "STORED AS TEXTFILE LOCATION 'cosn://dlc-demo-1305424723/ext_test '");
spark.sgl("INSERT INTO " + dbName + "." + extTableName + "VALUES (1,'LiLy',12),(2,'Lucy',3) ");

spark.sgl(" SELECT * FROM " + dbName + "." + extTableName). 0);

spark. ();

When creating an external table, follow the steps to upload data to COS and first create a corresponding
table name folder in the bucket to save the table files.

Upioad Files

Pr v C refres Total 1 objects 100 objects per page

Debug, compile the code and package it into a JAR file

©2013-2023 Tencent Cloud. All rights reserved. Page 8 of 48

@ Tencent Cloud Data Lake Compute

Compile and package the demo project using IntelliJ IDEA, generating the JAR package demo-1.0-
SNAPSHOT .jar in the project's target folder.

Upload the JAR Package to COS

Log in to the COS console and follow the steps in Uploading Data to COS to upload demo-1.0-SNAPSHOT .jar
to COS.

Create a New Spark Jar Data Job

Before creating a data job, you need to complete the data access policy configuration to ensure that the data

job can securely access the data. For details on configuring the data access policy, please refer to Configuring

Data Access Policy. If the data policy has been configured, the name is:

qcs::cam::uin/100018379117:roleName/dic-demo.

1. Log in to the Data Lake Compute DLC Console, select the service region, and click on Data Jobs in the
navigation menu.

2. Click Create Job in the upper left corner to navigate to the creation page.

3. On the job configuration page, set the job running parameters as detailed below:

Parameter Note

Configuration

Job name Customize the Spark JAR job name, for instance: cosn-demo

Job type Select Batch Processing Type

Data engine Select the dic-demo compute engine created in the Create Resource step.

Select COS and upload the JAR package demo-1.0-SNAPSHOT .jar in the

Application Pack
pplication Package Upload JAR package to COS step.

Fill in according to the program code, as follows:
Reading and Writing Data from COS: com.tencent.dlc.CosService

Main CI
amn ass For creating databases, tables, etc. on Data Lake Compute, use:
com.tencent.dlc.DbService
CAM role arn Select the policy created in the previous step:

qcs::cam::uin/100018379117:roleName/dic-demo

Retain the default values of other parameters.

©2013-2023 Tencent Cloud. All rights reserved. Page 9 of 48

https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/1342/74583
https://console.cloud.tencent.com/dlc

&2 Tencent Cloud Data Lake Compute

Create job X

Basic info =

cosdemo

Stream processing 5QL job

g mode of the selected data engine p see Data engine B8. For network configuration of
=nging, se2 Network configuration [3
ogram package OCC-S Upload
cosn:if. O jar Select a COS path
com.tencent.dlc.CosService
-0

ztions, see Configure CAM role arm 2

Network configuration «

4. Click Save to view the created job on the Spark Job page.

Execute and View Job Results

1. Run the job: On the Spark Job page, locate the newly created job and click Run to execute the job.

2. Viewing Job Execution Results: You can view the job execution logs and results.
Viewing Job Execution Logs

1. Click Job Name > Historical Tasks to view the status of the task execution.

©2013-2023 Tencent Cloud. All rights reserved. Page 10 of 48

&2 Tencent Cloud Data Lake Compute

Spark job details X
Job info Monitoring and alerting
v Last 7 days Last 30 days 2023-12-14 ~ 2023-12-20 H Refresh
Task ID Executi... Task submissi... $ Comput... Operation
| . Successful 2023-12-12 20:53:42 47.8s Learn more Spark Ul
Total items: 1 10 v /page 1 /1 page

2. Click Task ID > Run Log to view the job execution log.
Viewing Job Execution Results

1. To run the example of reading and writing data from COS, go to the COS Console to view the results of the
data write operation.

& Back to Bucket ! 0024723 Documentation Guide
List
a B -
Upload Files Create Folder incomplete Multipart Upload Clear Buckets v Online editor [
Ovens
Preficsearch v © Q mefresn | Total3 objects 100 objects per page: 1 = [=]
Fie List

Object Name 3 size & Storage Class T Modification Time & Operation

Details Preview Dovnioad
_success STANDARD 20221222 12:14:48 o
Dowriozd
e &ty STANDARD 2022.09-19 170307
Domains and
Transter
eta Download
par-00000-7 2M7-2215-202341bacB15-c000.csv , STANDARD 20221222 12:14:48 o

2. To create tables and databases on Data Lake Compute, go to the Data Exploration page on Data Lake
Compute.

©2013-2023 Tencent Cloud. All rights reserved. Page 11 of 48

https://console.cloud.tencent.com/cos

&2 Tencent Cloud

Data Explore € Guangzhou
Database Quen @+ Query-2023-12-19.. @ | + ~
1 SELECT * FROM DatalskeCatalog’. dl _
Q
)

4entries in total (Up to 1,000 entries shown in the cansolelCopyiR

©2013-2023 Tencent Cloud. All rights reserved.

Data Lake Compute

£ Storage configuration

" puslc-engnelsupersQLp 10-usie)

Page 12 of 48

&2 Tencent Cloud Data Lake Compute

PySpark Job Development Guide

Last updated: 2024-01-10 16:42:16

Scenarios

Data Lake Compute supports the execution of programs written in Python. This example demonstrates the
detailed operations of reading and writing data on Cloud Object Storage (COS), creating libraries and tables on
Data Lake Compute, and reading and writing tables, assisting users in job development on Data Lake Compute.

Environment Preparation

Dependencies: PyCharm or other Python programming development tools.
Development Process

Development Flowchart

The development process for Data Lake Compute Spark JAR jobs is as follows:

Upload data to Create Python Upload PY file to Run task and
Create resources —— e —_— i — Write code — Debug — B —> Createdatatask —» 0 S90S

Resource Creation

For the first time running a job on Data Lake Compute, you need to create new Spark job compute resources,

for instance, creating a Spark job resource named "dic-demo".

1. Log in to the Data Lake Compute DLC Console, select the service region, and click on Data Engine in the
navigation menu.

2. Click Create Resource in the upper left corner to enter the resource configuration purchase page.

3. In the Cluster Configuration > Calculation Engine Type option, select Spark as the job engine.

Data Lake Compute s Documentaiontz Biingta console 2

Engine dition SuperSQL engine Standard engine
Billing mode Pay-as-you-go Monthly subscription Detailed comparison 4

Beijing Nanjing Shanghai shanghai Finance Chengdu Chongaing Silicon Valley singapore virginia

Frankfurt Bejjing Finance Hong Kong

Region

| Cluster configuration

Basic configuration

Compute engine type SparksQL Spark job Presto

Kernel version Spark 3.2

cy details, see Spark Environments [2

©2013-2023 Tencent Cloud. All rights reserved. Page 13 of 48

https://console.cloud.tencent.com/dlc

&2 Tencent Cloud Data Lake Compute

Fill in "dlc-demo" for Information Configuration > Resource Name. For a detailed introduction to creating new
resources, please refer to Purchasing a Dedicated Data Engine.

Advanced configuration

Parameter configuration + Add

IP range of cluster 0.255.0.0/16 Modify

This option affects the network interconnection between services. In case of non-federated queries, default configuration is recommended; in federated queries, the IP range of the engine must be different from that of the data source.

Auto-granting of engine perwssiorso

| Info configuration

Resource name dic-demo
Description
Tag Notag
more, see Tag Documentation [2
Terms of agreement | have read and agree to the Service Level Agreement for Data Lake Compute B2 andRefund Policy [2

4. Click Activate Now to confirm the resource configuration information.

5. Upon verifying that the information is accurate, click Submit to complete the resource configuration.

Uploading Data to COS

Create a bucket named "dlc-demo" and upload the file people.json for the example of reading and writing data
from COS. The content of the people.json file is as follows:

:"Michael"}

"Andy", :30}
Justin®, :3}
:"WangHua", :19}
:"ZhangSan", :10}
"LiSi", :33}
:"ZhaoWu", :37}
:"MengXiao", 168}
:"KaiDa", :89}

{
{
{
{
{
{
{
{
{

1. Log in to the Cloud Object Storage (COS) console and click on Bucket List in the left navigation menu.
2. Creating a Bucket:

Click Create Bucket in the upper left corner, fill in the name field with "dlc-dmo", and click Next to complete
the configuration.

3. Upload File:
Click on File List > Upload File, select the local "people.json" file to upload to the "dic-demo-1305424723"
bucket (—1305424723 is a random string generated by the platform when creating the bucket), click Upload to
complete the file upload. For details on creating a new bucket, please refer to Create Bucket.

©2013-2023 Tencent Cloud. All rights reserved. Page 14 of 48

https://cloud.tencent.com/document/product/1342/74056
https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/436/13309

&2 Tencent Cloud Data Lake Compute

Upload Files

[Y

54247231

isin the upload path, the upload

Creating a Python Project

Create a new project named "demo" using PyCharm.

Writing Code

1. Create a new cos.py file, write code with the functionality to read and write data from COS, create libraries
and tables on DLC, query data, and write data.

sys
pyspark.sql SparkSession
pyspark.sql Row

__hame__=="_main_":

spark = SparkSession \
.builder\
.appName("Operate data on cos")\
.getOrCreate()

read_path = "cosn://dlc-demo-1305424723/people.json"
peopleDF = spark.read.json(read_path)

peopleDF.createOrReplaceTempView("people")
data_src = spark.sql("SELECT * FROM people WHERE age BETWEEN 13 AND 19")

data_src.show()

write_path = "cosn://dlc-demo-1305424723/people_output"

data_src.write.csv(path=write_path, header= , sep=",", mode='overwrite')

spark.stop()

2. Create a new db.py file, write code, the functions of which include creating libraries, tables, querying data,

©2013-2023 Tencent Cloud. All rights reserved. Page 15 of 48

&2 Tencent Cloud Data Lake Compute

and writing data on Data Lake Compute.

from os.path import abspath

from pyspark.sql import SparkSession

if _name__ =="_main_":

spark = SparkSession \
.builder \
.appName("Operate DB Example") \
.getOrCreate()

spark.sql("CREATE DATABASE IF NOT EXISTS DatalLakeCatalog.dlc_db test py COMMENT 'demo
test' ")

spark.sql("CREATE TABLE IF NOT EXISTS DatalLakeCatalog.dlc_db_test py.test(id int,name
string,age int) ")

spark.sql("INSERT INTO DatalLakeCatalog.dlc_db_test py.test VALUES (1,'Andy',12),(2,"Justin',3) ")

spark.sql("SELECT * FROM DatalLakeCatalog.dlc_db test py.test ").show()

spark.sql("CREATE EXTERNAL TABLE IF NOT EXISTS DatalLakeCatalog.dlc_db_test py.ext test(id
int, name string, age int) ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe' STORED AS

TEXTFILE LOCATION ‘cosn://cry-1305424723/ext_test'")

spark.sql("INSERT INTO DatalLakeCatalog.dlc_db_test py.ext test VALUES (1,'Andy',12),
(2,"Justin',3) ")

spark.sql("SELECT * FROM DatalLakeCatalog.dlc_db test py.ext test ").show()
spark.stop()

When creating an external table, you can follow the steps to upload data to COS and first create a
corresponding table name folder in the bucket to save the table files.

Upioad Files

Total 1 objects 100 objects per page

Storage Class T Modification Time &

©2013-2023 Tencent Cloud. All rights reserved. Page 16 of 48

&2 Tencent Cloud Data Lake Compute

Debugging
Ensure PyCharm debugging is free of syntax errors.

Upload PY Files to COS

Log in to the COS console and follow the steps in the previous section Upload data to COS to upload cos.py and
db.py to COS.

Create a New Spark Jar Data Job

Before creating a data job, you need to complete the data access policy configuration to ensure that the data

job can safely access the data. For details on configuring the data access policy, please refer to Configuring

Data Access Policy. If the data policy name has been configured as: gcs::cam::uin/100018379117:roleName/dlc—

demo

1. Log in to the Data Lake Compute DLC Console, select the service region, and click on Data Jobs in the
navigation menu.

2. Click the Create Job button in the upper left corner to enter the creation page.

3. On the job configuration page, set the job running parameters as detailed below:

Parameter Note

Configuration

Job name Specify a custom Spark job name, for instance: cosn_py

Job type Select Batch Processing Type

Data engine Select the dic-demo compute engine created in the Create Resource step.

Select COS, and in the step of uploading a py file to COS, upload the py file:
Application To read and write data from COS, select: cosn://dic-demo-1305424723/cos.py

Package To create a library, table, etc. on Data Lake Compute, select: cosn://dlc-demo-
1305424723/db.py

Select the policy created in the previous step:

CAMrolearn . .cam::uin/100018379117:roleName/dic-demo

Retain the default values of other parameters.

©2013-2023 Tencent Cloud. All rights reserved. Page 17 of 48

https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/1342/74583
https://console.cloud.tencent.com/dlc

&2 Tencent Cloud Data Lake Compute

Create job X

Basic info «

cosn_py

Stream processing SQL job
see Diata engine B4. For network configuration of

engine, s== Metwork configuration [2

am package«) COS Upload

cosn:f i ! Py Select a COS path

v
zUons, se2 Configure CAM nole arm 2

Network configuration «

Depéndencies b
4. Click Save to view the created job on the Spark Job page.
Execute and View Job Results

1. Run the job: On the Spark Job page, locate the newly created job and click Run to execute the job.

2. Viewing Job Execution Results: You can view the job execution logs and results.
Viewing Job Execution Logs

1. Click Job Name > Historical Tasks to view the task execution status:

©2013-2023 Tencent Cloud. All rights reserved. Page 18 of 48

&2 Tencent Cloud Data Lake Compute

Spark job details X
Job info Monitoring and alerting
v Last 7 days Last 30 days 2023-12-14 ~ 2023-12-20 m Refresh
Task ID Executi... Task submissi... % Comput... Operation
| u . Successful 2023-12-12 20:53:42 47.8s Learn more Spark Ul
Total items: 1 10 v /page 1 /1 page

2. Click Task ID > Run Log to view the job execution log.
View Job Execution Results

1. To run the example of reading and writing data from COS, go to the COS console to view the data write

& Back to Bucket . 2024723 f Documentation Guide (2
List
Qa . -
Create Folder ncomplete Muttpart Upioad Ciear Buckets - Onling editor)
Overview
Prefix search v [Refresh Total 3 objects 100 obiects per page 1 [=]
Fie List
Obiect Name & size 3 Storage Ciass T Modification Time & Operation
Basic Configurations
Defails Preview Dounload
Securty _success STANDARD 2022-12.22 121440
HManagement More ¥
Pormission S ounens
etails Preview Dounis
M ¢
anagement o tacsr STANDARD 20220818 17:03:07 o -
Domains and
Transier
Defails Preview Dounlead
part09000-7 2M7-215-262341bacB15-c000.cov 2 STANDARD 20221222 121448

Faull Tolerance and
Disaster Recovery

More ¥

Lagging

2. To create tables and libraries on Data Lake Compute, navigate to the Data Exploration page on Data Lake
Compute to view the creation of libraries and tables.

©2013-2023 Tencent Cloud. All rights reserved. Page 19 of 48

&2 Tencent Cloud Data Lake Compute

Data Explore © Guangzhou ~ SQLsyntax reference [Data explore quide 14

Database Quer D+ Query-2023-12-19... @ =+ ~ 1) Storage configuration

Catelog | DatalakeCatalog - m Complet ~ B save O & Format | & 5] ™ B public-engine(Supersal-? 1.0-ublic) ¥
. 1 SELECT * FROM DatalakeCatalog . dl _ K

Query result Run history Download history | ~ v

163 28 ome @

4entries n total (up to 1,000 entries shown i the console)Copyfa

©2013-2023 Tencent Cloud. All rights reserved. Page 20 of 48

@ Tencent Cloud Data Lake Compute

Guide to Query Performance Optimization

Last updated: 2024-01-10 16:42:22

Preamble

To enhance task execution efficiency, the DLC engine incorporates numerous optimization measures during
computation, such as data governance, Iceberg indexing, caching, and more. Proper utilization not only reduces
unnecessary scanning costs but can also boost efficiency by several folds. Herein, we provide optimization
strategies across various dimensions.

Optimizing SQL Statements

Scenario: The SQL statement itself is irrational, leading to suboptimal execution efficiency.
Optimizing JOIN Statements

When a query involves JOIN operations across multiple tables, the Presto engine prioritizes the completion of
JOIN operations on the tables on the right side of the query. Generally, executing JOIN operations on smaller
tables first, followed by the result set and larger tables, enhances execution efficiency. Therefore, the order of
JOIN operations directly impacts query performance. The DLC Presto automatically collects statistical data
from the inner tables and uses CBO to reorder the tables in the query.

For external tables, users can typically gather statistical data through the analyze statement or manually
specify the order of JOIN. If manual specification is required, please arrange the tables in order of size, placing
smaller tables on the right and larger tables on the left. For instance, if table A > B > C, the statement would be:
select * from A Join B Join C. It's important to note that this doesn't guarantee efficiency improvement in all
scenarios. In fact, it depends on the size of the data after the JOIN.

Optimizing GROUP BY Statements

A rational arrangement of field order in the GROUP BY statement can enhance performance. Please sort the
aggregation fields in descending order based on their cardinality. For instance:

SELECT id,gender, (*) FROM table_name GROUP BY id, gender;

SELECT id,gender, (*) FROM table_name GROUP BY gender, id;

Another optimization method is to use numbers as much as possible in place of specific grouping fields. These
numbers represent the position of the column names after the SELECT keyword. For example, the above SQL
can be replaced in the following way:

SELECT id,gender, (*) FROM table_name GROUP BY 1, 2;

Utilizing Approximate Aggregate Functions

For query scenarios that allow minor discrepancies, employing these approximate aggregation functions can
significantly enhance query performance.

For instance, in Presto, the APPROX_DISTINCT() function can be used as a substitute for COUNT(distinct x),
while in Spark, the corresponding function is APPROX_COUNT_DISTINCT. The downside of this approach is

©2013-2023 Tencent Cloud. All rights reserved. Page 21 of 48

https://cloud.tencent.com/document/product/1342/71414
https://cloud.tencent.com/document/product/1342/82411

&2 Tencent Cloud Data Lake Compute

that the approximate aggregation function has an error rate of about 2.3%.

Utilize REGEXP_LIKE instead of multiple LIKE statements

When multiple LIKE statements are present in SQL, they can typically be replaced with regular expressions to
significantly enhance execution efficiency. For instance:

SELECT (*) FROM table_name WHERE field_name LIKE '%guangzhou%"' OR LIKE '%beijing%' OR

LIKE '%chengdu%' OR LIKE '%shanghai%'

Can be optimized to:

SELECT (*) FROM table_name WHERE regexp_like(field_name,

'guangzhou|beijing|chengdu|shanghai')

Data Governance

Applicable Scenarios for Data Governance

Scenario: Real-time writing. Flink CDC real-time writing typically employs the upsert method, which generates
a substantial number of small files during the writing process. When these smalll files accumulate to a certain
extent, it can slow down data queries, or even cause them to time out and fail.

You can view the number of table files and snapshot information through the following methods.

SELECT (*) FROM [catalog_name.][db_name.]table_name$files;

SELECT (*) FROM [catalog_name.][db_name.]table_name$snapshots;

Example:

SELECT (*) FROM DatalLakeCatalog.dbl.tbl$files;

SELECT (*) FROM DatalakeCatalog.dbl.tbl$snapshots;

When the number of table files and snapshots is excessive, you can refer to the document Enable Data
Governance to activate the data governance feature.

Data Governance Outcomes

After enabling data governance, the query efficiency has significantly improved. For instance, the table below
compares the query time before and after merging files. This experiment used a 16CU Presto, with a data
volume of 14M, 2921 files, and an average file size of 0.6KB.

Should Files be . Record Query
Executed Statement Consolidated? Files Count Duration Effect
ﬁggilc;m“”t() Not required 2,921 7895 32s
Speed: 93%
Efficiency
SELECT count(*) 1
FROM tb Supported partition 290 2s

©2013-2023 Tencent Cloud. All rights reserved. Page 22 of 48

https://cloud.tencent.com/document/product/1342/90648

&2 Tencent Cloud Data Lake Compute

Partition

Partitioning can categorize related data based on column values with different characteristics such as time and
region, significantly reducing scan volume and enhancing query efficiency. For more detailed information about
DLC external table partitioning, please refer to Quick Start Guide to Partitioned Tables. The table below shows
the comparison of query duration and scan volume effects between partitioned and non—partitioned scenarios
in a single table with 66.6GB of data, 1.4 billion data records, and an orc data format. Here, dt is a partitioned
field with 1837 partitions.

Non-partitioned Partition
Scan E:ratl Comparing
Dur Scanne ed
Query statement U nn Dura n Compa Scan
ati d data . data . Volumes
tion rison
on volume volum
e
SELECT count(*) FROM tb WHERE 2.6 235.9M 480 16.5 81% Less than
dt="2001-01-08" s B ms KB Faster 99.9%
SELECT count(*) FROM tb WHERE 3.8 401.6M 2.8M 42% o
dt<'2022-01-08' AND dt>'2001-07-08' s B 22s g faster ~~ L|©SS99:3%

As can be observed from the above table, partitioning can effectively reduce query latency and scanning
volume. However, excessive partitioning may have the opposite effect, as illustrated in the table below.

Non-partitioned Partition
Duration Comparing Scan

Query statement Durat Scanne Durat Scanned Comparis Volumes

. d data . data on

ion ion

volume volume

SELECT count(*) 73% o
FROM tb 4s 24MB 15s 34.5MB slower 30% more

We recommend filtering partitions in your SQL statements using the WHERE keyword.

Cache

In the current trend of distributed computing and separation of storage and computation, accessing metadata
and massive data through the network will be constrained by network 10. DLC, by default, enables the following
caching technologies to significantly reduce response latency, without the need for your intervention.
Alluxio is a data orchestration technology. It provides caching, moving data from the storage layer to a
location closer to data—driven applications, making it more accessible. Alluxio's memory-first hierarchical
architecture allows data access speeds to be several orders of magnitude faster than existing solutions.
RaptorX: This is a connector for Presto. It operates above the storage, offering sub—second latency, just like
Presto. Its goal is to provide a unified, cost—effective, fast, and scalable solution for OLAP and interactive use
cases.
Result Caching: This technique caches repeated identical queries, significantly enhancing speed and
efficiency.
The DLC Presto engine inherently supports RaptorX and Alluxio tiered caching, effectively reducing latency in
similar task scenarios over a short period. Both Spark and Presto engines support result caching.

©2013-2023 Tencent Cloud. All rights reserved. Page 23 of 48

https://cloud.tencent.com/document/product/1342/72560

&2 Tencent Cloud Data Lake Compute

The table below presents TPCH test data in a 1TB Parquet file. This test uses 16CU Presto. As the test focuses
on caching functionality, we primarily selected SQL statements with significant |0 usage from TPCH. The main
tables involved include lineitem, orders, customer, etc., and the SQL statements involved are Q1, Q4, Q6, Q12,
Q14, Q15, Q17, Q19, and Q20. The horizontal axis represents the SQL statements, and the vertical axis
represents the running time (in seconds).

DLC Presto Local Cache
400

350
300

250

1!

1

. |I |I Il 1 1l I I 1 |
Q1 Q4 Q6 Qil2 Q14 Qis5 Q17 Q19 Q20

m No Cache m With Cache

o
]

7
=]

Q
=]

[
=]

It's important to note that the DLC Presto engine dynamically loads the cache based on data access frequency.
Therefore, the first task execution after engine startup cannot hit the cache, resulting in the first execution still
being limited by network 10. However, as the number of executions increases, this limitation is significantly
alleviated. The table below shows the performance comparison of three queries in a Presto 16CU cluster.

Query statement Query E:ratl Data Scanning Volume
Initial Query 3.2s 40.66MB

SELECT * FROM table_namewhere

udid="xxx"; Second Query 2.5s 40.66MB
Third Query 1.6s 40.66MB

You can view the cache hit situation of the executed SQL tasks in the Data Exploration feature of the DLC
console.

Quereut statistes

uuuuuuuuuuuuuu Cache for acceleration © Materi

Index

Compared to external tables, the creation of internal tables with indices significantly reduces both time and
scan volume. For more detailed information on table creation, please refer to Data Table Management.

After creating a table, establish an index based on the frequency of business usage before the insert, following
the fields indexed by WRITE ORDERED BY.

alter table DatalLakeCatalog.dbname.tablename WRITE ORDERED BY udid;

©2013-2023 Tencent Cloud. All rights reserved. Page 24 of 48

https://cloud.tencent.com/document/product/1342/61870

&2 Tencent Cloud Data Lake Compute

The table below shows a comparison of query performance on external and internal tables (with indexing) in a
Presto 16cu cluster.

Table Type Query Duration Data Scanning Volume
Initial Query 16.5s 2.42GB
Outer Table Second Query 15.3s 2.42GB
Third Query 14.3s 2.42GB
Initial Query 3.2s 40.66MB
Inner Table (Index) Second Query 2.5s 40.66MB
Third Query 1.6s 40.66MB

As can be observed from the table, the method of creating an internal table with an index, as compared to an
external table, significantly reduces both time and scan volume. Moreover, due to cache acceleration, the
execution time will also decrease with an increase in the number of executions.

Synchronous and Asynchronous Queries

DLC has specifically optimized for Bl scenarios. You can enable synchronous or asynchronous modes by
configuring the engine parameter dlc.query.execution.mode (only supported by the Presto engine). The value
descriptions are as follows.
Async (default): In this mode, the task will perform a full query computation, save the results to COS, and
then return them to the user. This allows users to download the query results after the query is completed.

Sync: Under this mode, queries may not necessarily execute full computations. Once partial results are
available, they are directly returned to the user by the engine without being saved to COS. Consequently,
users can achieve lower query latency and duration, but the results are only retained in the system for 30
seconds. This mode is recommended for users who do not need to download the complete query results
from COS but expect lower query latency and duration, such as during the query exploration phase or Bl
result display.

Configuration Method: After selecting the data engine, you can configure its parameters. Once the data engine
is selected, click 'Add' in the advanced settings to start the configuration.

©2013-2023 Tencent Cloud. All rights reserved. Page 25 of 48

&2 Tencent Cloud

-

H Data engine

public-engine

LY Storage configuration

™ H public-engine{SupersSQL-P 1.0-public) ¥

D) Engine (kernel version) Different kernel versions support different SQL syntax

rules, For details, see Kernel Versions.

(¥ Create engine

Advanced settings ~

Configuration description [5

1 dlc.query.execution.mode ¥ 35yne

+ Add

Resource Bottlenecks

Data Lake Compute

Evaluate whether resources have reached their limit. The DLC engine provides monitoring for CPU, memory,
cloud disk, and network resources. You can adjust resource specifications based on the scale of your business.
For configuration changes, please refer to the Configuration Adjustment Cost Description. The steps to view
engine resource usage are as follows:
1. Open the Data Engine tab on the left.

2. Click the Monitor button on the right side of the corresponding engine.

3. Navigate to the Tencent Cloud Observability Platform to view all monitoring metrics, as shown below. For
detailed operations and monitoring metrics, please refer to the Data Engine Monitoring. You can also
configure alarms for each metric. For a detailed introduction, please refer to Monitoring Alarm Configuration.

& BacktoList | dataengine-hi1xdyez
Monitoring

2231201142428 ~20231220152428 () (O Timogranuarty: 1he

arivr_cpu_usage average(%) (LR

1624121

W Gataengne-hixdyez Max: 121 Min:0.00 Avg: 073

executor_cpu_usage average(’) LR

1624010

o Gataengne-hixdyez Max:0.10 Min:0.00 Avg: 007

task_cancel num(Coun) e

15240

9 ataangine-hxéyez Max:0.00 Min: 0,00 Avg: 000

o, e Moo Prvte Dol Ergins &

@ Omsablo v |+ [Show lagends

arivor_mom_usage.average(%) () F ReR
16202101

1 dataongine-hixdyez Max: 21.41 Min: 000 Avg: 1176

exacutor.mom_usage.average(%) .
16241038

W dataongine-htxdyez Max: 10.38 Min: 000 Avg: 553

task fallod num(Count) (0 e

15200
W dataangine-hixyez Masx: 0.00 Min: 0,00 Avg: 000

ariver_mom_usage_max(t)

16202247

1 dataongine-hixeyez Max:22.17 Min: 000 Avg: 1476

xacutor. mom_usage_max() ()

16201080

W dataongine-itxdyez Max: 10,59 Min: 000 Avg: 690

task It num(Coun) (D
1024100

W dataangioe-hyez Max: 1.00 Min: 0,00 Avg: 000

©2013-2023 Tencent Cloud. All rights reserved.

Page 26 of 48

https://cloud.tencent.com/document/product/1342/68141
https://cloud.tencent.com/document/product/1342/81535

&2 Tencent Cloud Data Lake Compute

Other Factors
Adaptive Shuffle

To enhance stability, DLC enables adaptive shuffle by default. This is a system that supports regular shuffle with

limited local disk space while ensuring stability in scenarios with large shuffle and data skew. The advantages of

adaptive shuffle include:

1. Reducing Storage Costs: The disk mount volume of cluster nodes is further reduced, with each node in a
general scale cluster requiring only 50G, and large—scale clusters not exceeding 200G.

2. Stability: The task execution stability will no longer fail due to local disk limitations in scenarios where the
shuffle data volume dramatically increases or data skew occurs.

Although adaptive shuffle reduces storage costs and enhances stability, in certain scenarios, such as when
resources are insufficient, it can introduce approximately 15% latency.

Cold Start of the Cluster

DLC supports automatic or manual suspension of clusters, which ceases any further charges. Therefore, upon
the first task execution after cluster startup, there might be a "Queuing" notification due to the cold start of the
cluster pulling up resources. If you frequently submit tasks, it is recommended to purchase a yearly or monthly
subscription cluster. This type of cluster does not have a cold start and can execute tasks quickly at any time.

©2013-2023 Tencent Cloud. All rights reserved. Page 27 of 48

https://cloud.tencent.com/document/product/1342/74056

&2 Tencent Cloud Data Lake Compute

UDF Function Development Guide

Last updated: 2024-01-10 16:42:28

UDF description

Users can write UDF functions, package them into JAR files, and define them as functions in data lake
computations for use in query analysis. Currently, the UDF of Data Lake Computing DLC is in HIVE format,
inheriting org.apache.hadoop.hive.ql.exec.UDF, and implementing the evaluate method.

Example: Simple array UDF function.

public class MyDiff extends UDF {
public ArrayList<Integer> evaluate(ArrayList<Integer> input) {
ArrayLlist<Integer> result = new ArrayList<Integer>();
result.add(0, 0);
for (inti = 1; i < input.size(); i++) {

result.add(i, input.get(i) - input.get(i - 1));
}

return result;

Reference for pom file:

<dependencies>
<dependency>
<groupld>org.slf4j</groupld>
<artifactld>slf4j-log4j12 </artifactld>
<version>1.7.16</version>
<scope>test</scope>
</dependency>

<dependency>
<groupld>org.apache.hive</groupld>
<artifactld>hive-exec</artifactld>
<version>1.2.1</version>
</dependency>
</dependencies>

Creating function version alias

A Note:
If you are creating udaf/udtf functions, you need to add the _udaf/_udtf suffix to the function name
accordingly.

If you are familiar with SQL syntax, you can create a function by executing the CREATE FUNCTION syntax
through Data Exploration, or you can create it through a visual interface, as follows:
1. Log in to the Data Lake Compute console and select the service region.

2. Navigate through the left sidebar menu to Data Management, select the database where you want to create
the function. If you need to create a new database, refer to Database Management.

©2013-2023 Tencent Cloud. All rights reserved. Page 28 of 48

https://cloud.tencent.com/document/product/1342/61808
https://console.cloud.tencent.com/dlc
https://cloud.tencent.com/document/product/1342/71246

&2 Tencent Cloud

Data Lake Compute

Data management & Guangzhou *

Use guide @ Data Management Guide [
Catalog Database Bucket list

® This module allows you to manage databases under different catalogs. You can dlick the name of a database to manage its tables, views, and other data objects, or to manually import data to tables, Learn more 2. D:

Task history
date For more permission guide, see here B, X
] 2023-10-26 17:51:31 - - Edit Delete
3. Click on Functions to navigate to the function management page.
4. Click on Create Function to proceed with the creation.
Create function X

O save on system Mount on a specified COS path

Upload Q) cos

cosn/al - JAPSHOT jar

com.tencentdle MyDiff

Select 2 COS path

The UDF package supports either local upload or selection of a COS path (requires relevant COS

permissions). The example here involves creating via a COS path. The function class name includes both the
"package information" and the "executable class name of the function".

Function utilization

1. Log in to the Data Lake Compute console and select the service region.

2. Navigate through the left sidebar menu to Data Exploration, select the computation engine, and you can then
utilize SQL to invoke functions.

O Refres B format | fa
1 select raw_diff(Array[1,2,3])

® demo ¥ [public-engine(SuperSQL-P 1.0-public) ™

Query result Statistics

Tesk 1D SQL details Export Suggestions

Run history Download history | A v

©2013-2023 Tencent Cloud. All rights reserved. Page 29 of 48

https://console.cloud.tencent.com/dlc

&2 Tencent Cloud Data Lake Compute

Materialized View

Last updated: 2024-01-10 16:42:34

A Note:
Currently, Data Lake Compute (DLC) materialized views only support SparkSQL and Presto engines.

A Materialized View is a unique object within a database, embodying a pre-calculated and stored query result
set. It offers rapid query performance when dealing with substantial data volumes and intricate queries.
While enhancing query performance, materialized views also introduce storage and computation costs. We
recommend utilizing materialized views in the following scenarios:

» When the source table undergoes infrequent changes.

» When compared to the source table, the number of fields and results in the materialized view table is
significantly reduced.

DLC supports both standard materialized views and mapped materialized views. The following provides an
introduction and comprehensive usage examples. For a list of supported syntax, please refer to Materialized
View Syntax.

Standard Materialized View

The fundamental usage process for a standard materialized view encompasses creation, refreshment, and
utilization.
The following illustrates a complete process using the Presto engine as an example.

Data Preparation

Execute SQL to create a table and insert data. The following statement creates a table named student .

CREATE DATABASE IF NOT EXISTS mv_test3;
create table student(id int, name string, score int);
insert into student values (1,'zhangsan’, 90);

insert into student values (2,'lisi', 100);
insert into student values (3,'wangwu', 80);
insert into student values (4,'zhaoliu’, 30);
select * from student order by id;

Creating a Standard Materialized View

Use the CREATE MATERIALIZED VIEW statement to create a materialized view. Specify the name of the

materialized view and the query statement, optionally designating the source table and conditions for the query.

In the following example, a simple SELECT statement is used to select all scores from the table student and

perform a sum operation on them. This sum result is then used as the content for the materialized view
mv_student_sum ,

CREATE MATERIALIZED VIEW mv_student_sum AS (

select (score) from student

);

©2013-2023 Tencent Cloud. All rights reserved. Page 30 of 48

&2 Tencent Cloud Data Lake Compute

View Materialized View Details

Use the DESCRIBE MATERIALIZED VIEW statement to view detailed information about the materialized view,
including its name, query statement, and refresh status.

DESCRIBE MATERIALIZED VIEW mv_student sum;

Query result Statistics Run history Download history |

Task D SOL details S

time 21600ms Scanne: ne 340MB @

otal (up to 1,000 e

Manually refreshing the materialized view.

Use the REFRESH MATERIALIZED VIEW statement to manually refresh the data in the materialized view.
This is merely a demonstration. In most cases, you do not need to manually refresh the materialized view. As
long as the SQL hits a materialized view with changes in the source table, it will refresh automatically.

REFRESH MATERIALIZED VIEW mv_student sum:

Viewing the execution task list of materialized views.

Use the SHOW MATERIALIZED VIEW JOBS command to view the execution task list of the materialized view,
providing insight into the refresh history and status of the materialized view.

SHOW MATERIALIZED VIEW JOBS IN mv_student_sum;

Queryresult Statistics Run history Downioad history | - ~

TaskID SQL details Suggestions [

144.00ms Scanne

e 340MB ()

ofal (up to 1,000 et

buildType execEngine createTime updateTime

“1290efaids53e809233 B 21972540090c421 FINISHED CREATE SPARK 2023-10-25 21:01:45 2023-10-25 21:01:49

Execution of SQL rewriting.

When querying data using SELECT statements, with the expectation of automatic rewriting and hitting the
materialized view. You can check whether it has been automatically rewritten to the materialized view through
the statistical data in the query results.

select (score) from student;

Deleting a Materialized View

©2013-2023 Tencent Cloud. All rights reserved. Page 310f 48

&2 Tencent Cloud Data Lake Compute

DROP MATERIALIZED VIEW mv_student_sum;

Mapping Materialized View

A mapped materialized view is a distinct type of materialized view that associates with an existing table. By
utilizing mapped materialized views, one can associate the query results of the materialized view with the data
of an existing table, thereby optimizing the query performance of the existing table.

Restrictions

Relative to standard materialized views, materialized views have the following limitations:

» Mapped materialized views do not support refresh operations, meaning that the data of the materialized view
cannot be refreshed using the REFRESH MATERIALIZED VIEW statement. Consequently, the data of the
materialized view can only remain consistent with the data of the mapped table and cannot be updated
automatically.

» The materialized view does not automatically rewrite SQL, meaning the query statement will not
automatically convert to use the materialized view. It necessitates manually specifying the query statement
that utilizes the materialized view.

» When deleting a mapped materialized view, only the association with the mapped table will be removed, not
the mapped table itself. The mapped table will continue to exist and can still be utilized.

Recommended scenarios

We suggest employing mapped materialized views in the following scenarios:
» When there is an existing table with a large volume of data and its query performance is subpar, query
performance can be optimized by mapping a materialized view.
» When it is necessary to maintain data consistency between the materialized view and the existing table, and
there is no need for automatic refresh of the materialized view, a mapped materialized view can be utilized.

When the source table is of the Iceberg type.
When the Iceberg table is the source table, a complete configuration sample is as follows:
Creating mapped materialized views based on CTAS (Create Table As Select).

The name of the materialized view to be mapped must be consistent with the table to be mapped. The following
example first creates a table based on CTAS for the creation of the mapped MV. Data preparation can refer to
the data preparation section in the complete example of a regular materialized view.

CREATE TABLE link_mv_student AS (
select (score) from student

);

CREATE MATERIALIZED VIEW link_mv_student WITH META LINK AS (
select (score) from student

);

View Mapped Materialized View

©2013-2023 Tencent Cloud. All rights reserved. Page 32 of 48

&2 Tencent Cloud Data Lake Compute

The DESCRIBE MATERIALIZED VIEW statement can be used to view detailed information about the mapped
materialized view, including its name, query statement, and refresh status.

DESCRIBE MATERIALIZED VIEW link_mv_student;

SHOW MATERIALIZED VIEW JOBS IN link_mv_student;

Mapped materialized views do not support refresh operations.

Mapped materialized views do not support REFRESH operations, meaning the data in the materialized view
cannot be refreshed using the REFRESH MATERIALIZED VIEW statement. Consequently, the data in the
materialized view can only remain consistent with the data in the mapped table and cannot be updated
automatically.

SQL Rewriting

The mapped materialized view will not automatically rewrite the SQL query statement.

For instance, executing select sum(score) from student; will not hit the mapped materialized view.

You can specify the allowance for SQL rewriting based on mapped materialized views by utilizing Hint or
TaskConf parameters.

select

(score) from student;

Deleting Mapped Materialized Views

Utilize the DROP MATERIALIZED VIEW statement to delete the mapped materialized view. After deleting the
mapped materialized view, only the association with the mapped table will be removed, while the mapped table
itself will continue to exist.

DROP MATERIALIZED VIEW link_mv_student;
DESCRIBE link_mv_student;

When dealing with Hive type source tables.

When using a Hive table as the source table, a complete example is as follows:

Preparing to initialize data.

Initially, it is necessary to prepare the initial data and create a Hive base table. Utilize the CREATE EXTERNAL

TABLE statement to establish a Hive base table, and manually insert data using the INSERT statement.

CREATE EXTERNAL TABLE student_2(id int, name string, score int)
LOCATION ‘cosn://guangzhou-test-1305424723/mv_test4/student_2;
insert into student_2 values (1,'zhangsan’, 90);

insert into student_2 values (2,'lisi', 100);

insert into student_2 values (3,'wangwu', 80);
insert into student 2 values (4,'zhaoliu’, 30);
select * from student_2;

Establish a mapped Hive external table.

©2013-2023 Tencent Cloud. All rights reserved. Page 33 of 48

&2 Tencent Cloud Data Lake Compute

Utilize the CREATE EXTERNAL TABLE statement to establish a mapped Hive external table.

CREATE EXTERNAL TABLE link_mv_student_hive (
sum_score BIGINT

) LOCATION ‘cosn://guangzhou-test-1305424723/mv_test4/link_mv_student_hive';

Insert data into the mapping table, using the INSERT OVERWRITE statement to insert the query results into the
mapping table, ensuring the data in the mapping table is consistent with the data in the Hive base table.

INSERT OVERWRITE link_mv_student_hive
select (score) from student;

Creating mapped materialized views based on Hive external tables.

Use the CREATE MATERIALIZED VIEW statement to create a mapped materialized view. When creating a
materialized view, use the WITH META LINK clause and specify the name of the aforementioned Hive external
table as the association.

CREATE MATERIALIZED VIEW link_mv_student_hive WITH META LINK AS (

select (score) from student_2

)

©2013-2023 Tencent Cloud. All rights reserved. Page 34 of 48

&2 Tencent Cloud Data Lake Compute

Guide to Developing in Hudi Table Format
Overview

Last updated: 2024-01-10 16:42:52

Apache Hudi is a next—generation streaming data lake platform. Its most prominent feature is the support for
record-level upserts and deletions, along with incremental queries.

You can utilize the Hudi table format when creating, writing to, and querying tables. If you encounter any issues
with the Hudi table format on DLC, feel free to submit a ticket to contact us.

Scenarios

Near Real-Time Data Ingestion

Hudi supports the ability to insert, update, and delete data. Compared to other traditional file formats, Hudi
optimizes the issue of small files generated during the data writing process.

You can use DLC Spark or Flink to ingest log data from message queues (such as Kafka) into Hudi in real-
time. It also supports real-time synchronization of change data generated by database Binlog.

Incremental Data Processing

In the past, incremental processing often partitioned data into hourly granules. Once the data within this
partition was written, the partition could provide corresponding queries, making the "freshness" of the data
reach an hourly level. However, if data latency occurs, the only remedy is to ensure accuracy through
recalculating the entire partition, which increases the performance overhead of the entire system in terms of
computation and storage.

Hudi supports the Incremental Query type. You can use DLC Spark Streaming to query data changes that
occurred after a given COMMIT. This reduces the consumption of computational resources and can elevate
the freshness of data from an hourly level to a minute level, allowing data to flow quickly between different
layers within the lake.

Near Real-Time Data Analysis

By reducing the data update time to a few minutes, Hudi provides a more effective solution for real-time
analysis. Moreover, with the seamless integration and excellent performance of DLC Presto and SparkSQL
with Hudi, you can perform faster analysis on more real-time data without any additional configuration.

Guide to Developing in Hudi Table Format

Create a Hudi Table
Hudi Data Writing
Hudi Data Query

©2013-2023 Tencent Cloud. All rights reserved. Page 35 of 48

https://console.cloud.tencent.com/workorder/category
https://cloud.tencent.com/document/product/1342/82249
https://cloud.tencent.com/document/product/1342/82250
https://cloud.tencent.com/document/product/1342/82252

&2 Tencent Cloud

Create a Hudi Table

Last updated: 2024-01-10 16:42:58

Explanation of Hudi Table Types

Hudi supports the following two types of tables:
o Copy On Write

Data Lake Compute

Abbreviated as COW, it stores data in Parquet format. The update operations for Copy On Write tables are

implemented through rewriting.

o Merge On Read

Abbreviated as MOR, it employs a hybrid approach to data storage, using both columnar (Parquet) and row-
based (Avro) file formats. Merge On Read stores base data in a columnar format, while incremental data is
stored in a row-based format. The most recently written incremental data is stored in row—based files, and a
COMPACTION operation is performed according to a configurable strategy to merge incremental data into

columnar files.

The differences between the two types of tables are illustrated in the following table.

Trade-offs Copy On Write

Data latency Height

Query Latency Low

Update Costs High (rewrite the entire Parquet file)

Write Amplification Height

Scenarios Write less, read more

Creating a Hudi Table with Spark SQL

Syntax Format and Parameter Descriptions

Merge On Read

Low

Height

Low (Appended to Incremental Log)
Low

High write, low read, real-time upsert

DLC Spark engine supports the direct creation of Hudi tables using SQL. For more details, please refer to the

syntax format and examples.
o Syntax Format

CREATE TABLE [IF NOT EXISTS] table_identifier
(col_name[:] col_type [COMMENT col_comment], ...)
USING data_source
[COMMENT table_comment]
[PARTITIONED BY (col_namel, transform(col_name2), ...)]
[LOCATION path]
[TBLPROPERTIES (property_name=property_value, ...)]

CREATE TABLE [IF NOT EXISTS] [db_name.]table_name
[(col_namel col_typel [COMMENT col_commentl], ...)]
USING hudi
[COMMENT table_comment]

[PARTITIONED BY (col namel, col name2, ...)]

©2013-2023 Tencent Cloud. All rights reserved.

Page 36 of 48

&2 Tencent Cloud Data Lake Compute

[LOCATION path]

[TBLPROPERTIES (property _name=property_value, ...)]

o TBLPROPERTIES Parameter Description

Def

ault
valu
e

Category Description

primaryKey uuid Spemfy_the primary key column. When there are multiple primary keys, separate
them with a comma.
Table Type: Two types are supported as follows: COW, representing Copy—-On-

t
ype cow Write type tables, and MOR, representing Merge—On—Read type tables.

This value is used to merge and deduplicate rows with the same key before
- writing. It corresponds to the
DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY field in Hudi.

preCombine
Field

Sample

o Creating a Non—-Partitioned Table

create table hudi_mor_tbl (
id int,
name string,
price double,
ts bigint
) using hudi
comment 'hudi demo'
location 'cosn://<cos_bucket>/spark_hudi/hudi_mor_tbl'
tblproperties (
'‘type' = 'mor",
'‘primaryKey' = 'id',
'preCombineField' = 'ts'
);

» Creating a Partitioned Table

create table hudi_cow_pt_tbl (
id bigint,
name string,
ts bigint,
dt string,
hh string

) using hudi
comment 'hudi partition demo'
partitioned by (dt, hh)
location 'cosn://<cos_bucket>/spark_hudi/hudi_cow_pt_tbl'
tblproperties (
'‘type' = 'cow’,
‘primaryKey' = 'id',

©2013-2023 Tencent Cloud. All rights reserved. Page 37 of 48

&2 Tencent Cloud Data Lake Compute

'preCombineField' = 'ts'
)

©2013-2023 Tencent Cloud. All rights reserved. Page 38 of 48

&2 Tencent Cloud Data Lake Compute

Data Writing in Hudi

Last updated: 2024-01-10 16:43:03

DLC Hudi currently supports the use of Spark Streaming and Flink to real-time import external data into the
lake.

Real-time Writing with Spark Streaming

DLC supports the deployment of Spark Streaming jobs and recommends using DLC Spark jobs to write into DLC
Hudi tables.
o Code Example

kafkaDF.writeStream
("checkpointLocation","cosn://<cos_bucket>/spark_hudi/spark_ck")
(Trigger.ProcessingTime(10, TimeUnit.SECONDS))
("write hudi")
((batchDF:DataFrame, :Long)=>{
batchDF.write
(SaveMode.Append)
("hudi")
("hoodie.datasource.write.table.type","MERGE_ON_READ")
("hoodie.datasource.write.precombine.field","ts")
("hoodie.datasource.write.recordkey.field","uuid")
("hoodie.datasource.write.partitionpath.field","partitionpath")
("hoodie.datasource.write.table.name","hudi_mor")
("cosn:/[<cos_bucket>/spark_hudi/hudi_mor™")

0

Real-time Writing with Flink

In addition to the recommended DLC SPARK jobs, you can also opt for Tencent Cloud Stream Compute Service
to write into DLC Hudi in real-time. For more details, refer to the Oceanus product documentation.

If you wish to write into DLC Hudi tables through a self-built Flink program, you can refer to the following sample
code:

EnvironmentSettings settings = EnvironmentSettings
0
0
0;

StreamTableEnvironment tableEnv = StreamTableEnvironment. (env, settings) ;

tableEnv. ("CREATE TABLE tbl_kafka (\n" +
"\tuuid STRING,\n" +
"\trider STRING \n" +
“\tdriver STRING,\n" +
“\tbegin_lat DOUBLE,\n" +
“\tbegin_lon DOUBLE \n" +
"\tend_lat DOUBLE,\n" +

©2013-2023 Tencent Cloud. All rights reserved. Page 39 of 48

https://cloud.tencent.com/document/product/849

&2 Tencent Cloud Data Lake Compute

"\tend_lon DOUBLE \n" +

"\tfare DOUBLE,\n" +

"\tpartitionpath STRING,\n" +

"\tts BIGINT\n" +

") WITH (\n" +
‘connector' = 'kafka',\n" +
'topic' = 'hudi_source'\n" +
‘properties.bootstrap.servers' = '<kafka_server>:9092'\n" +
'‘properties.group.id' = 'test-group-10001'\n" +
'scan.startup.mode' = 'latest-offset' \n" +
'‘format' = 'json'\n" +

")");

tableEnv. ("CREATE TABLE hudi_cow (\n" +

"uuid STRING PRIMARY KEY NOT ENFORCED,\n" +

“rider STRING,\n" +

"driver STRING,\n" +

"begin_lat DOUBLE \n" +

"begin_lon DOUBLE\n" +

"end_lat DOUBLE,\n" +

“end_lon DOUBLE\n" +

“fare DOUBLE,\n" +

"partitionpath STRING,\n" +

“ts BIGINT\n" +

"Ho 4

"partitioned by(partitionpath) " +

"WITH (\n" +
‘connector' = 'hudi',\n" +
'path' = 'cosn://<cos_bucket>/flink_hudi/hudi_cow'\n" +
'fs.cosn.impl' = 'org.apache.hadoop.fs.CosFileSystem'\n" +
'fs.AbstractFileSystem.cosn.impl' = 'org.apache.hadoop.fs.CosN',\n" +
'fs.cosn.bucket.region' = 'ap-chongqing',\n" +
‘fs.cosn.credentials.provider' = 'org.apache.hadoop.fs.auth.SimpleCredentialProvider',\n" +
‘fs.cosn.userinfo.secretld' = '<secretld>'\n" +
‘fs.cosn.userinfo.secretKey' = '<secretKey>'\n" +
‘table.type' = 'COPY_ON_WRITE'\n" +
'write.operation' = 'upsert' \n" +
'hoodie.datasource.write.recordkey.field' = 'uuid',\n" +
'write.precombine.field' = 'ts',\n" +
‘write.tasks' = '1'\n" +

")");

// Writing into Hudi tables using Flink SQL
tableEnv.executeSql("insert into hudi_cow select
uuid,rider,driver,begin_lat,begin_lon,end_lat,end_lon,fare,partitionpath,ts from tbl_kafka");

Relevant Configuration

» Common Write Configurations

©2013-2023 Tencent Cloud. All rights reserved. Page 40 of 48

&2 Tencent Cloud

Category Default value

hoodie.datasource.write.table.n
ame

hoodie.datasource.write.table.ty COPY_ON_W
pe RITE
hoodie.datasource.write.operati
upsert
on
hoodie.datasource.write.recordk .
uuid
ey.field
hoodie.datasource.write.partitio N
npath.field
hoodie.datasource.write.hive_st
. false
yle_partitioning
hoodie.datasource.write.precom ts

bine.field

o Compaction Configuration

Data Lake Compute

Description

Specify the name of the Hudi table to be written
into

Specify the Hudi table type. Once this table type is
specified, subsequent modifications to this
parameter are prohibited. The optional values are:
COPY_ON_WRITE, MERGE_ON_READ.

The operation type specified for writing to the
Hudi table is currently supported in the following
modes: UPSERT, DELETE, INSERT,
BULK_INSERT, INSERT_OVERWRITE, and
INSERT_OVERWRITE_TABLE.

This is used to specify the primary key for Hudi.
Hudi tables require a unique primary key.

This is used to specify the partition key. This
value, in conjunction with
hoodie.datasource.write.keygenerator.class, can
meet different partition scenarios.

This is used to specify whether the partitioning
method is consistent with Hive. It is recommended
to set this value to true.

This value is used to merge and deduplicate rows
with the same key before writing.

Compaction is used to merge the Base and Log files of the MOR table. For Merge—On—-Read tables, data is
stored in columnar Parquet files and row—based Avro files. Updates are recorded to incremental files, and
then synchronous/asynchronous compaction is performed to generate new versions of columnar files.
Merge—-On—-Read tables can reduce data ingestion latency. It is recommended to use a synchronous method

to generate compaction scheduling plans and an asynchronous method to execute these plans.

Category Default value
hoodie.compact.schedule.in

. false

line

hoodie.compact.inline false

hoodie.compact.inline.trigg

er.strategy M_COMMITS

©2013-2023 Tencent Cloud. All rights reserved.

CompactionTriggerStrategy.NU

Description

It is recommended to set it to true for
whether to generate a compact plan
after each task completion.

Whether to execute the compression
operation inline after a transaction is
completed. Enabling this does not
necessarily trigger the index
operation every time, as there is a
policy judgment following.

Compression strategy parameters,
which include NUM_COMMITS,

Page 41 0f 48

&2 Tencent Cloud Data Lake Compute

TIME_ELAPSED, NUM_AND_TIME,
NUM_OR_TIME.

NUM_COMMITS determines whether
to compress based on the number of
commits.

TIME_ELAPSED determines whether
to compress based on time, while
NUM_AND_TIME determines
whether to compress based on both
the number of submissions and time.
NUM_OR_TIME determines whether
to compress based on the number of
submissions or time.

Set the number of submissions after
which the compression policy is

5 triggered. Effective in
NUM_COMMITS, NUM_AND_TIME,
and NUM_OR_TIME policies.

hoodie.compact.inline.max.
delta.commits

Set the duration after which the
compression policy is triggered. This
60 * 60 (1 Hour) is effective in TIME_ELAPSED,
NUM_AND_TIME, and
NUM_OR_TIME policies.

hoodie.compact.inline.max.
delta.seconds

Files smaller than this value are
hoodie.parquet.small.file.lim considered small files, and newly
it 104857600(100MB) added data will be written into these
small files as a priority.

Table-level Concurrency Control for Writing

If there is only one client writing to the Hudi table at the time of writing, there will be no data conflict. However, in
practical applications, if multiple clients are writing at the same time, such as multiple stream programs needing
to write to the same Hudi table simultaneously, write conflicts causing task failure may occur. We refer to this
situation as concurrent writing. To solve the concurrent writing problem, DLC Metastore can be used to
implement optimistic lock—based concurrent writing.

» Enable Concurrent Write Mechanism:

hoodie.write.concurrency.mode=optimistic_concurrency_control

hoodie.cleaner.policy.failed.writes=LAZY

» Set the concurrency lock mode to DLC Metastore mode:

hoodie.write.lock.provider=org.apache.hudi.hive.HiveMetastoreBasedLockProvider

hoodie.write.lock.hivemetastore.database=<database_name>

hoodie.write.lock.hivemetastore.table=<table_name>

©2013-2023 Tencent Cloud. All rights reserved. Page 42 of 48

&2 Tencent Cloud Data Lake Compute

o Example of DLC Spark MultiWriter:

kafkaDF.writeStream
("checkpointLocation","cosn://<cos_bucket>/spark_hudi/spark_ck/writer2")
(Trigger.ProcessingTime(10, TimeUnit. SECONDS))
("write hudi")
((batchDF:DataFrame,_:Long)=>{
batchDF.write
(SaveMode.Append)
("hudi")
("hoodie.datasource.write.table.type","MERGE_ON_READ")
("hoodie.datasource.write.precombine.field","ts")
("hoodie.datasource.write.recordkey.field","uuid")
("hoodie.datasource.write.partitionpath.field","partitionpath")

("hoodie.datasource.write.table.name","multi_writer")

("hoodie.write.concurrency.mode","optimistic_concurrency_control")

("hoodie.cleaner.policy.failed.writes","LAZY")

("hoodie.write.lock.provider","org.apache.hudi.hive.transaction.lock.HiveMetastoreBasedLockPr
ovider")

non
’

("hoodie.write.lock.hivemetastore.database","spark_hudi")

("hoodie.write.lock.hivemetastore.table","multi_writer")

("cosn://<cos_bucket>/spark_hudi/multi_writer")

0;

©2013-2023 Tencent Cloud. All rights reserved. Page 43 of 48

&2 Tencent Cloud Data Lake Compute

Hudi Data Query

Last updated: 2024-01-10 16:43:09

The query operations on Hudi tables are performed over the three types of Hudi views. You can choose the
appropriate view for querying based on your specific requirements.

Real-time Snapshot View (Snapshot Queries)

This view allows querying of the latest COMMIT snapshot data. For Merge On Read tables, it requires online
merging of base data in column storage and real-time data in logs during the query. For Copy On Write tables, it
allows querying of the latest version of Parquet data. Both Copy On Write and Merge On Read tables support
this type of query.

o SparkSQL Sample:

SELECT count(*) FROM DatalLakeCatalog.hudi_spark.hudi_test

» Spark APl Sample:

spark.read.
("hudi")

(QUERY_TYPE_OPT_KEY,QUERY_TYPE_SNAPSHOT OPT VAL)

(BEGIN_INSTANTTIME_OPT_KEY,"20221009003522620")

("cosn://<cos_bucket>/spark_hudi/hudi_cow_sync")
("hudi_test")

.spark.sgl("select count(*) from hudi_test").

Incremental View (Incremental Queries)

This view only queries the files of the newly written data set. It requires specifying an instant time of a
Commit/Compaction (an Instant on the Timeline) as a condition to query the new data after this condition. Both
Copy On Write and Merge On Read tables support this type of query.
o SparkSQL Sample:
In the advanced settings of the sparksql engine, add the following two parameters:

hoodie.datasource.query.type=incremental

hoodie.datasource.read.begin.instanttime=20221009003522620

SELECT count(*) FROM DatalLakeCatalog. hudi_spark.hudi_test

» Spark APl Sample:

©2013-2023 Tencent Cloud. All rights reserved. Page 44 of 48

&2 Tencent Cloud Data Lake Compute

spark.read.

("hudi")

(QUERY_TYPE_OPT_KEY,QUERY_TYPE_INCREMENTAL_OPT VAL)

(BEGIN_INSTANTTIME_OPT_KEY,"20221009003522620")

("cosn://<cos_bucket>/spark_hudi/hudi_cow_sync")

()

Read Optimized View (Read Optimized Queries)

This view exposes only the base/column files (Parquet) in the latest file slice to the query, ensuring the same
columnar query performance as non—-Hudi columnar datasets. This view is an optimization of snapshot queries
for Merge On Read table types, reducing query latency caused by online merging of log data at the expense of
query data timeliness.
o SparkSQL Sample:
In the advanced settings of the sparksql engine, add the following two parameters:
hoodie.datasource.query.type=read_optimized
hoodie.datasource.read.begin.instanttime=20221009003522620

SELECT count(*) FROM DatalLakeCatalog. hudi_spark.hudi_test

o Spark APl Sample:

spark.read.
format("hudi")

.option(QUERY_TYPE_OPT KEY,QUERY_TYPE_READ_OPTIMIZED OPT VAL)

.load("cosn://<cos_bucket>/spark_hudi/hudi_cow_sync")

.show(false)

©2013-2023 Tencent Cloud. All rights reserved. Page 45 of 48

&2 Tencent Cloud Data Lake Compute

System Restraints
Metadata Information

Last updated: 2024-01-10 16:43:16

The following lists the limits on the numbers of databases, data tables, attribute columns, and partitions.

Item Maximum Quantity
Number of Databases per Account 1,000
Number of Data Tables per Account 10,000
Number of Tables per Database 4,096
Number of Columns per Data Table 4,096
Number of Partitions per Table 10,000
Number of Partitions per Master Account 1,000,000
Maximum Number of Fields per Table 4096
Number of Custom Functions per Account 100
Number of Catalogs that can be Created 20
Databases

Name: Should not exceed 127 characters, and within the same data link, identical database names are not
permitted.

Description: Should not exceed 2048 characters.
External Table Data Address (COS Address): 888 characters (limited by the length of the COS path).

Parameters: In the form of Map<string:string> , each parameter is limited to 127 characters, with a total
length limit of 3000 characters.

Data Table/View

Name: Should not exceed 127 characters, and within the same database, identical table names are not
permitted.

Description: Should not exceed 1000 characters.

External Table Data Address (COS Address): Should not exceed 888 characters (limited by the length of the
COS path).

Parameters: In the form of Map<string:string> , each parameter can contain up to 127 characters, with a
total character limit of 512,000.

Attribute Column

Name: Should not exceed 127 characters, and within the same table, identical attribute column names are
not permitted.

Description: Should not exceed 256 characters.

©2013-2023 Tencent Cloud. All rights reserved. Page 46 of 48

&2 Tencent Cloud Data Lake Compute

Type: Should not exceed 131,072 characters. Exceeding this limit will prevent creation.

Partition

Partition Field Name: Should not exceed 127 characters.

©2013-2023 Tencent Cloud. All rights reserved. Page 47 of 48

&2 Tencent Cloud Data Lake Compute

Computing Task

The size limit for a single SQL statement is 2 MB.

©2013-2023 Tencent Cloud. All rights reserved. Page 48 of 48

