
Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 1
of 48

Data Lake Compute

Development Guide

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 2
of 48

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

The complete copyright of this document, including all text, data, images, and other content, is solely and

exclusively owned by Tencent Cloud Computing (Beijing) Co., Ltd.（"Tencent Cloud"); Without prior explicit

written permission from Tencent Cloud, no entity shall reproduce, modify, use, plagiarize, or disseminate the

entire or partial content of this document in any form. Such actions constitute an infringement of Tencent

Cloud's copyright, and Tencent Cloud will take legal measures to pursue liability under the applicable laws.

Trademark Notice

This trademark and its related service trademarks are owned by Tencent Cloud Computing (Beijing) Co., Ltd.

and its affiliated companies("Tencent Cloud"). The trademarks of third parties mentioned in this document are

the property of their respective owners under the applicable laws. Without the written permission of Tencent

Cloud and the relevant trademark rights owners, no entity shall use, reproduce, modify, disseminate, or copy

the trademarks as mentioned above in any way. Any such actions will constitute an infringement of Tencent

Cloud's and the relevant owners' trademark rights, and Tencent Cloud will take legal measures to pursue liability

under the applicable laws.

Service Notice

This document provides an overview of the as-is details of Tencent Cloud's products and services in their

entirety or part. The descriptions of certain products and services may be subject to adjustments from time to

time.

The commercial contract concluded by you and Tencent Cloud will provide the specific types of Tencent Cloud

products and services you purchase and the service standards. Unless otherwise agreed upon by both parties,

Tencent Cloud does not make any explicit or implied commitments or warranties regarding the content of this

document.

Contact Us

We are committed to providing personalized pre-sales consultation and technical after-sale support. Don't

hesitate to contact us at 4009100100 or 95716 for any inquiries or concerns.

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 3
of 48

Contents

Development Guide

SparkJar Job Development Guide

PySpark Job Development Guide

Guide to Query Performance Optimization

UDF Function Development Guide

Materialized View

Guide to Developing in Hudi Table Format

Overview

Create a Hudi Table

Data Writing in Hudi

Hudi Data Query

System Restraints

Metadata Information

Computing Task

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 4
of 48

Development Guide

SparkJar Job Development Guide
Last updated：2024-01-10 16:42:10

Data Lake Compute is fully compatible with open-source Apache Spark, allowing users to write business

programs for data reading, writing, and analysis. This example demonstrates the detailed operations of reading

and writing data on COS, creating databases and tables on Data Lake Compute, and reading and writing tables

through Java code, assisting users in job development on Data Lake Compute.

Dependencies: JDK1.8, Maven, IntelliJ IDEA

The development process for Data Lake Compute Spark JAR jobs is as follows:

For the first time running a job on Data Lake Compute, you need to create new Spark job compute resources,

for instance, creating a Spark job resource named "dlc-demo".

1. Log in to the Data Lake Compute DLC Console , select the service region, and click on Data Engine in the

navigation menu.

2. Click Create Resource in the upper left corner to enter the resource configuration purchase page.

3. Select Spark as the job engine under the Cluster Configuration > Calculation Engine Type option.

Scenarios

Environment Preparation

Development Process

Development Flowchart

 Resource Creation

https://console.cloud.tencent.com/dlc

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 5
of 48

Enter "dlc-demo" in the Information Configuration > Resource Name field. For more information on creating a

new resource, see Purchasing a Dedicated Data Engine .

4. Click Activate Now to confirm the resource configuration information.

5. After ensuring the information is accurate, click Submit to complete the resource configuration.

Create a bucket named "dlc-demo", upload the people.json file to serve as an example for reading and writing

data from COS. The content of the people.json file is as follows:

Uploading Data to COS

"name":"Michael"{ }

https://cloud.tencent.com/document/product/1342/74056

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 6
of 48

1. Log in to the Cloud Object Storage (COS) console and click on Bucket List in the left navigation menu.

2. Create a bucket: Click Create Bucket in the upper left corner, fill in the name field with "dlc-dmo", then click

Next to complete the configuration.

3. Upload File: Click on File List > Upload File, select the local "people.json" file to upload to the "dlc-demo-

1305424723" bucket (-1305424723 is a random string generated by the platform when creating the bucket),

click Upload to complete the file upload. For details on creating a new bucket, refer to Create Bucket .

1. Create a new Maven project named "demo" using IntelliJ IDEA.

2. Add Dependencies: Incorporate the following dependencies into the pom.xml file:

"name":"Andy" "age":30

"name":"Justin" "age":3

"name":"WangHua" "age":19

"name":"ZhangSan" "age":10

"name":"LiSi" "age":33

"name":"ZhaoWu" "age":37

"name":"MengXiao" "age":68

"name":"KaiDa" "age":89

{ , }

{ , }

{ , }

{ , }

{ , }

{ , }

{ , }

{ , }

Creating a Maven Project

<dependency>

 <groupId>org.apache.spark</groupId>

 <artifactId>spark-core_2.12</artifactId>

 <version>3.2.1</version>

 <scope>provided</scope>

</dependency>

<dependency>

 <groupId>org.apache.spark</groupId>

 <artifactId>spark-sql_2.12</artifactId>

 <version>3.2.1</version>

https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/436/13309

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 7
of 48

The code functionality involves reading and writing data from COS, creating databases and tables on Data Lake

Compute, and querying and writing data.

1. Example code for reading and writing data from COS:

 2. Creating databases, tables, querying data, and writing data on Data Lake Compute:

 <scope>provided</scope>

</dependency>

Writing Code

package

import Dataset

import Row

import SaveMode

import SparkSession

public class CosService

 public static void main String args

 //1. Create SparkSession

 SparkSession spark = SparkSession

 builder

 appName "Operate data on cos"

 config "spark.some.config.option" "some-value"

 getOrCreate

 //2. Generate a dataset by reading the JSON file on COS. It supports various types of files such as

JSON, CSV, Parquet, ORC, Text.

 String readPath = "cosn://dlc-demo-1305424723/people.json"

 Dataset<Row> readData = spark read json readPath

 //3. Perform business calculations on the dataset to generate result data. The calculations

support both API and SQL formats. Here, a temporary table is created to read data using SQL.

 readData createOrReplaceTempView "people"

 Dataset<Row> result = spark sql "SELECT * FROM people where age > 3"

 //4. Save the result data to COS

 String writePath = "cosn://dlc-demo-1305424723/people_output"

 // Writing supports various file types, such as JSON, CSV, Parquet, ORC, and Text.

 result write mode SaveMode.Append json writePath

 spark read json writePath show

 //5. Close session

 spark stop

com.tencent.dlc;

org.apache.spark.sql. ;

org.apache.spark.sql. ;

org.apache.spark.sql. ;

org.apache.spark.sql. ;

{

([])

{

. ()

. ()

. (,)

. ();

;

. (). ();

. ();

. ();

;

. (). (). ();

. (). (). ();

. ();

}

}

package

import SparkSession

com.tencent.dlc;

org.apache.spark.sql. ;

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 8
of 48

When creating an external table, follow the steps to upload data to COS and first create a corresponding

table name folder in the bucket to save the table files.

public class DbService

 public static void main String args

 //1. Initialize SparkSession

 SparkSession spark = SparkSession

 builder

 appName "Operate DB Example"

 getOrCreate

 //2. Create Database

 String dbName = " DataLakeCatalog .dlc_db_test "

 String dbSql = "CREATE DATABASE IF NOT EXISTS" + dbName + " COMMENT 'demo test'"

 spark sql dbSql

 //3. Create an internal table

 String tableName = " test "

 String tableSql = "CREATE TABLE IF NOT EXISTS " + dbName + "." + tableName

 + "(id int,name string, age int)"

 spark sql tableSql

 //4. Write Data

 spark sql "INSERT INTO " + dbName + "." + tableName + "VALUES (1,'Andy',12),(2,'Justin',3) "

 //5. Query Data

 spark sql " SELECT * FROM " + dbName + "." + tableName show

 //6. Creating an External Table

 String extTableName = "ext_test "

 spark sql

 "CREATE EXTERNAL TABLE IF NOT EXISTS " + dbName + "." + extTableName + ""

 + " (id int, name string, age int) "

 + "ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe' "

 + "STORED AS TEXTFILE LOCATION 'cosn://dlc-demo-1305424723/ext_test '"

 //7. Write data to the external table

 spark sql "INSERT INTO " + dbName + "." + extTableName + "VALUES (1,'LiLy',12),(2,'Lucy',3) "

 //8. Query data from foreign table

 spark sql " SELECT * FROM " + dbName + "." + extTableName show

 //9. Close Session

 spark stop

{

([]) {

. ()

. ()

. ();

;

;

. ();

;

;

. ();

. ();

. (). ();

;

. (

);

. ();

. (). ();

. ();

}

}

Debug, compile the code and package it into a JAR file

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 9
of 48

Compile and package the demo project using IntelliJ IDEA, generating the JAR package demo-1.0-

SNAPSHOT.jar in the project's target folder.

Log in to the COS console and follow the steps in Uploading Data to COS to upload demo-1.0-SNAPSHOT.jar

to COS.

Before creating a data job, you need to complete the data access policy configuration to ensure that the data

job can securely access the data. For details on configuring the data access policy, please refer to Configuring

Data Access Policy . If the data policy has been configured, the name is:

qcs::cam::uin/100018379117:roleName/dlc-demo.

1. Log in to the Data Lake Compute DLC Console , select the service region, and click on Data Jobs in the

navigation menu.

2. Click Create Job in the upper left corner to navigate to the creation page.

3. On the job configuration page, set the job running parameters as detailed below:

Retain the default values of other parameters.

Upload the JAR Package to COS

Create a New Spark Jar Data Job

Parameter

Configuration
Note

Job name Customize the Spark JAR job name, for instance: cosn-demo

Job type Select Batch Processing Type

Data engine Select the dlc-demo compute engine created in the Create Resource step.

Application Package
Select COS and upload the JAR package demo-1.0-SNAPSHOT.jar in the

Upload JAR package to COS step.

Main Class

Fill in according to the program code, as follows:

Reading and Writing Data from COS: com.tencent.dlc.CosService

For creating databases, tables, etc. on Data Lake Compute, use:

com.tencent.dlc.DbService

CAM role arn
Select the policy created in the previous step:

qcs::cam::uin/100018379117:roleName/dlc-demo

https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/1342/74583
https://console.cloud.tencent.com/dlc

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 10
of 48

4. Click Save to view the created job on the Spark Job page.

1. Run the job: On the Spark Job page, locate the newly created job and click Run to execute the job.

2. Viewing Job Execution Results: You can view the job execution logs and results.

1. Click Job Name > Historical Tasks to view the status of the task execution.

Execute and View Job Results

Viewing Job Execution Logs

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 11
of 48

2. Click Task ID > Run Log to view the job execution log.

1. To run the example of reading and writing data from COS, go to the COS Console to view the results of the

data write operation.

2. To create tables and databases on Data Lake Compute, go to the Data Exploration page on Data Lake

Compute.

Viewing Job Execution Results

https://console.cloud.tencent.com/cos

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 12
of 48

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 13
of 48

PySpark Job Development Guide
Last updated：2024-01-10 16:42:16

Data Lake Compute supports the execution of programs written in Python. This example demonstrates the

detailed operations of reading and writing data on Cloud Object Storage (COS), creating libraries and tables on

Data Lake Compute, and reading and writing tables, assisting users in job development on Data Lake Compute.

Dependencies: PyCharm or other Python programming development tools.

The development process for Data Lake Compute Spark JAR jobs is as follows:

For the first time running a job on Data Lake Compute, you need to create new Spark job compute resources,

for instance, creating a Spark job resource named "dlc-demo".

1. Log in to the Data Lake Compute DLC Console , select the service region, and click on Data Engine in the

navigation menu.

2. Click Create Resource in the upper left corner to enter the resource configuration purchase page.

3. In the Cluster Configuration > Calculation Engine Type option, select Spark as the job engine.

Scenarios

Environment Preparation

Development Process

Development Flowchart

 Resource Creation

https://console.cloud.tencent.com/dlc

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 14
of 48

Fill in "dlc-demo" for Information Configuration > Resource Name. For a detailed introduction to creating new

resources, please refer to Purchasing a Dedicated Data Engine .

4. Click Activate Now to confirm the resource configuration information.

5. Upon verifying that the information is accurate, click Submit to complete the resource configuration.

Create a bucket named "dlc-demo" and upload the file people.json for the example of reading and writing data

from COS. The content of the people.json file is as follows:

1. Log in to the Cloud Object Storage (COS) console and click on Bucket List in the left navigation menu.

2. Creating a Bucket:

Click Create Bucket in the upper left corner, fill in the name field with "dlc-dmo", and click Next to complete

the configuration.

3. Upload File:

Click on File List > Upload File, select the local "people.json" file to upload to the "dlc-demo-1305424723"

bucket (-1305424723 is a random string generated by the platform when creating the bucket), click Upload to

complete the file upload. For details on creating a new bucket, please refer to Create Bucket .

Uploading Data to COS

"name":"Michael"

"name":"Andy" "age":30

"name":"Justin" "age":3

"name":"WangHua" "age":19

"name":"ZhangSan" "age":10

"name":"LiSi" "age":33

"name":"ZhaoWu" "age":37

"name":"MengXiao" "age":68

"name":"KaiDa" "age":89

{ }

{ , }

{ , }

{ , }

{ , }

{ , }

{ , }

{ , }

{ , }

https://cloud.tencent.com/document/product/1342/74056
https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/436/13309

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 15
of 48

Create a new project named "demo" using PyCharm.

1. Create a new cos.py file, write code with the functionality to read and write data from COS, create libraries

and tables on DLC, query data, and write data.

2. Create a new db.py file, write code, the functions of which include creating libraries, tables, querying data,

Creating a Python Project

Writing Code

import sys

from pyspark sql import SparkSession

from pyspark sql import Row

if __name__ == "__main__"

 spark = SparkSession \

 builder \

 appName "Operate data on cos" \

 getOrCreate

 # 1. Read data from COS, supporting various file types such as JSON, CSV, Parquet, ORC, Text.

 read_path = "cosn://dlc-demo-1305424723/people.json"

 peopleDF = spark read json read_path

 # 2. Operate on the data

 peopleDF createOrReplaceTempView "people"

 data_src = spark sql "SELECT * FROM people WHERE age BETWEEN 13 AND 19"

 data_src show

 # 3. Writing Data

 write_path = "cosn://dlc-demo-1305424723/people_output"

 data_src write csv path=write_path header=True sep="," mode='overwrite'

 spark stop

.

.

:

.

. ()

. ()

. . ()

. ()

. ()

. ()

. . (, , ,)

. ()

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 16
of 48

and writing data on Data Lake Compute.

When creating an external table, you can follow the steps to upload data to COS and first create a

corresponding table name folder in the bucket to save the table files.

from os path import abspath

from pyspark sql import SparkSession

if __name__ == "__main__"

 spark = SparkSession \

 builder \

 appName "Operate DB Example" \

 getOrCreate

 # 1. Create a Database

 spark sql "CREATE DATABASE IF NOT EXISTS DataLakeCatalog .dlc_db_test_py COMMENT 'demo

test' "

 # 2. Create Internal Table

 spark sql "CREATE TABLE IF NOT EXISTS DataLakeCatalog .dlc_db_test_py . test (id int,name

string,age int) "

 # 3. Writing Internal Data

 spark sql "INSERT INTO DataLakeCatalog .dlc_db_test_py . test VALUES (1,'Andy',12),(2,'Justin',3) "

 # 4. Inspect Internal Data

 spark sql "SELECT * FROM DataLakeCatalog .dlc_db_test_py . test " show

 # 5. Create External Table

 spark sql "CREATE EXTERNAL TABLE IF NOT EXISTS DataLakeCatalog .dlc_db_test_py .ext_test (id

int, name string, age int) ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe' STORED AS

TEXTFILE LOCATION 'cosn://cry-1305424723/ext_test' "

 # 6. Write external data

 spark sql "INSERT INTO DataLakeCatalog .dlc_db_test_py .ext_test VALUES (1,'Andy',12),

(2,'Justin',3) "

 # 7. Inspect External Data

 spark sql "SELECT * FROM DataLakeCatalog .dlc_db_test_py .ext_test " show

 spark stop

.

.

:

.

. ()

. ()

. (

)

. (

)

. ()

. (). ()

. (

)

. (

)

. (). ()

. ()

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 17
of 48

Ensure PyCharm debugging is free of syntax errors.

Log in to the COS console and follow the steps in the previous section Upload data to COS to upload cos.py and

db.py to COS.

Before creating a data job, you need to complete the data access policy configuration to ensure that the data

job can safely access the data. For details on configuring the data access policy, please refer to Configuring

Data Access Policy . If the data policy name has been configured as: qcs::cam::uin/100018379117:roleName/dlc-

demo

1. Log in to the Data Lake Compute DLC Console , select the service region, and click on Data Jobs in the

navigation menu.

2. Click the Create Job button in the upper left corner to enter the creation page.

3. On the job configuration page, set the job running parameters as detailed below:

Retain the default values of other parameters.

Debugging

Upload PY Files to COS

Create a New Spark Jar Data Job

Parameter

Configuration
Note

Job name Specify a custom Spark job name, for instance: cosn_py

Job type Select Batch Processing Type

Data engine Select the dlc-demo compute engine created in the Create Resource step.

Application

Package

Select COS, and in the step of uploading a py file to COS, upload the py file:

To read and write data from COS, select: cosn://dlc-demo-1305424723/cos.py

To create a library, table, etc. on Data Lake Compute, select: cosn://dlc-demo-

1305424723/db.py

CAM role arn
Select the policy created in the previous step:

qcs::cam::uin/100018379117:roleName/dlc-demo

https://console.cloud.tencent.com/cos
https://cloud.tencent.com/document/product/1342/74583
https://console.cloud.tencent.com/dlc

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 18
of 48

4. Click Save to view the created job on the Spark Job page.

1. Run the job: On the Spark Job page, locate the newly created job and click Run to execute the job.

2. Viewing Job Execution Results: You can view the job execution logs and results.

1. Click Job Name > Historical Tasks to view the task execution status:

Execute and View Job Results

Viewing Job Execution Logs

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 19
of 48

2. Click Task ID > Run Log to view the job execution log.

1. To run the example of reading and writing data from COS, go to the COS console to view the data write

results.

2. To create tables and libraries on Data Lake Compute, navigate to the Data Exploration page on Data Lake

Compute to view the creation of libraries and tables.

View Job Execution Results

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 20
of 48

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 21
of 48

Guide to Query Performance Optimization
Last updated：2024-01-10 16:42:22

To enhance task execution efficiency, the DLC engine incorporates numerous optimization measures during

computation, such as data governance, Iceberg indexing, caching, and more. Proper utilization not only reduces

unnecessary scanning costs but can also boost efficiency by several folds. Herein, we provide optimization

strategies across various dimensions.

Scenario: The SQL statement itself is irrational, leading to suboptimal execution efficiency.

When a query involves JOIN operations across multiple tables, the Presto engine prioritizes the completion of

JOIN operations on the tables on the right side of the query. Generally, executing JOIN operations on smaller

tables first, followed by the result set and larger tables, enhances execution efficiency. Therefore, the order of

JOIN operations directly impacts query performance. The DLC Presto automatically collects statistical data

from the inner tables and uses CBO to reorder the tables in the query.

For external tables, users can typically gather statistical data through the analyze statement or manually

specify the order of JOIN. If manual specification is required, please arrange the tables in order of size, placing

smaller tables on the right and larger tables on the left. For instance, if table A > B > C, the statement would be:

select * from A Join B Join C. It's important to note that this doesn't guarantee efficiency improvement in all

scenarios. In fact, it depends on the size of the data after the JOIN.

A rational arrangement of field order in the GROUP BY statement can enhance performance. Please sort the

aggregation fields in descending order based on their cardinality. For instance:

Another optimization method is to use numbers as much as possible in place of specific grouping fields. These

numbers represent the position of the column names after the SELECT keyword. For example, the above SQL

can be replaced in the following way:

For query scenarios that allow minor discrepancies, employing these approximate aggregation functions can

significantly enhance query performance.

For instance, in Presto, the APPROX_DISTINCT() function can be used as a substitute for COUNT(distinct x),

while in Spark, the corresponding function is APPROX_COUNT_DISTINCT . The downside of this approach is

Preamble

Optimizing SQL Statements

Optimizing JOIN Statements

Optimizing GROUP BY Statements

// Efficient Approach

SELECT id gender COUNT * FROM table_name GROUP BY id gender

// Inefficient Approach

SELECT id gender COUNT * FROM table_name GROUP BY gender id

, , () , ;

, , () , ;

SELECT id gender COUNT * FROM table_name GROUP BY 1 2 , , () , ;

Utilizing Approximate Aggregate Functions

https://cloud.tencent.com/document/product/1342/71414
https://cloud.tencent.com/document/product/1342/82411

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 22
of 48

that the approximate aggregation function has an error rate of about 2.3%.

When multiple LIKE statements are present in SQL, they can typically be replaced with regular expressions to

significantly enhance execution efficiency. For instance:

Can be optimized to:

Scenario: Real-time writing. Flink CDC real-time writing typically employs the upsert method, which generates

a substantial number of small files during the writing process. When these small files accumulate to a certain

extent, it can slow down data queries, or even cause them to time out and fail.

You can view the number of table files and snapshot information through the following methods.

Example:

When the number of table files and snapshots is excessive, you can refer to the document Enable Data

Governance to activate the data governance feature.

After enabling data governance, the query efficiency has significantly improved. For instance, the table below

compares the query time before and after merging files. This experiment used a 16CU Presto, with a data

volume of 14M, 2921 files, and an average file size of 0.6KB.

Utilize REGEXP_LIKE instead of multiple LIKE statements

SELECT COUNT * FROM table_name WHERE field_name LIKE '%guangzhou%' OR LIKE '%beijing%' OR

LIKE '%chengdu%' OR LIKE '%shanghai%'

()

SELECT COUNT * FROM table_name WHERE regexp_like field_name

'guangzhou|beijing|chengdu|shanghai'

() (,

)

Data Governance

Applicable Scenarios for Data Governance

SELECT COUNT * FROM catalog_name db_name table_name$files

SELECT COUNT * FROM catalog_name db_name table_name$snapshots

() [.][.] ;

() [.][.] ;

SELECT COUNT * FROM DataLakeCatalog db1 tb1$files

SELECT COUNT * FROM DataLakeCatalog db1 tb1$snapshots

() . . ;

() . . ;

Data Governance Outcomes

Executed Statement
Should Files be

Consolidated?
Files

Record

Count

Query

Duration
Effect

SELECT count(*)

FROM tb
Not required 2,921 7895 32s

Speed: 93%

Efficiency
SELECT count(*)

FROM tb
Supported

1

partition
7895 2s

https://cloud.tencent.com/document/product/1342/90648

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 23
of 48

Partitioning can categorize related data based on column values with different characteristics such as time and

region, significantly reducing scan volume and enhancing query efficiency. For more detailed information about

DLC external table partitioning, please refer to Quick Start Guide to Partitioned Tables . The table below shows

the comparison of query duration and scan volume effects between partitioned and non-partitioned scenarios

in a single table with 66.6GB of data, 1.4 billion data records, and an orc data format. Here, dt is a partitioned

field with 1837 partitions.

As can be observed from the above table, partitioning can effectively reduce query latency and scanning

volume. However, excessive partitioning may have the opposite effect, as illustrated in the table below.

We recommend filtering partitions in your SQL statements using the WHERE keyword.

In the current trend of distributed computing and separation of storage and computation, accessing metadata

and massive data through the network will be constrained by network IO. DLC, by default, enables the following

caching technologies to significantly reduce response latency, without the need for your intervention.

The DLC Presto engine inherently supports RaptorX and Alluxio tiered caching, effectively reducing latency in

similar task scenarios over a short period. Both Spark and Presto engines support result caching.

Partition

Query statement

Non-partitioned Partition

Durati

on

Compa

rison

Comparing

Scan

Volumes

Dur

ati

on

Scanne

d data

volume

Dura

tion

Scan

ned

data

volum

e

SELECT count(*) FROM tb WHERE

dt='2001-01-08'

2.6

s

235.9M

B

480

ms

16.5

KB

81%

Faster

Less than

99.9%

SELECT count(*) FROM tb WHERE

dt<'2022-01-08' AND dt>'2001-07-08'

3.8

s

401.6M

B
2.2s

2.8M

B

42%

faster
Less 99.3%

Query statement

Non-partitioned Partition
Duration

Comparis

on

Comparing Scan

VolumesDurat

ion

Scanne

d data

volume

Durat

ion

Scanned

data

volume

SELECT count(*)

FROM tb
4s 24MB 15s 34.5MB

73%

slower
30% more

Cache

Alluxio is a data orchestration technology. It provides caching, moving data from the storage layer to a

location closer to data-driven applications, making it more accessible. Alluxio's memory-first hierarchical

architecture allows data access speeds to be several orders of magnitude faster than existing solutions.

RaptorX: This is a connector for Presto. It operates above the storage, offering sub-second latency, just like

Presto. Its goal is to provide a unified, cost-effective, fast, and scalable solution for OLAP and interactive use

cases.

Result Caching: This technique caches repeated identical queries, significantly enhancing speed and

efficiency.

https://cloud.tencent.com/document/product/1342/72560

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 24
of 48

The table below presents TPCH test data in a 1TB Parquet file. This test uses 16CU Presto. As the test focuses

on caching functionality, we primarily selected SQL statements with significant IO usage from TPCH. The main

tables involved include lineitem, orders, customer, etc., and the SQL statements involved are Q1, Q4, Q6, Q12,

Q14, Q15, Q17, Q19, and Q20. The horizontal axis represents the SQL statements, and the vertical axis

represents the running time (in seconds).

It's important to note that the DLC Presto engine dynamically loads the cache based on data access frequency.

Therefore, the first task execution after engine startup cannot hit the cache, resulting in the first execution still

being limited by network IO. However, as the number of executions increases, this limitation is significantly

alleviated. The table below shows the performance comparison of three queries in a Presto 16CU cluster.

You can view the cache hit situation of the executed SQL tasks in the Data Exploration feature of the DLC

console.

Compared to external tables, the creation of internal tables with indices significantly reduces both time and

scan volume. For more detailed information on table creation, please refer to Data Table Management .

After creating a table, establish an index based on the frequency of business usage before the insert, following

the fields indexed by WRITE ORDERED BY.

Query statement Query
Durati

on
Data Scanning Volume

SELECT * FROM table_namewhere

udid='xxx';

Initial Query 3.2s 40.66MB

Second Query 2.5s 40.66MB

Third Query 1.6s 40.66MB

Index

alter table DataLakeCatalog dbname tablename WRITE ORDERED BY udid. . ;

https://cloud.tencent.com/document/product/1342/61870

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 25
of 48

The table below shows a comparison of query performance on external and internal tables (with indexing) in a

Presto 16cu cluster.

As can be observed from the table, the method of creating an internal table with an index, as compared to an

external table, significantly reduces both time and scan volume. Moreover, due to cache acceleration, the

execution time will also decrease with an increase in the number of executions.

DLC has specifically optimized for BI scenarios. You can enable synchronous or asynchronous modes by

configuring the engine parameter dlc.query.execution.mode (only supported by the Presto engine). The value

descriptions are as follows.

Configuration Method: After selecting the data engine, you can configure its parameters. Once the data engine

is selected, click 'Add' in the advanced settings to start the configuration.

Table Type Query Duration Data Scanning Volume

Outer Table

Initial Query 16.5s 2.42GB

Second Query 15.3s 2.42GB

Third Query 14.3s 2.42GB

Inner Table (Index)

Initial Query 3.2s 40.66MB

Second Query 2.5s 40.66MB

Third Query 1.6s 40.66MB

Synchronous and Asynchronous Queries

Async (default): In this mode, the task will perform a full query computation, save the results to COS, and

then return them to the user. This allows users to download the query results after the query is completed.

Sync: Under this mode, queries may not necessarily execute full computations. Once partial results are

available, they are directly returned to the user by the engine without being saved to COS. Consequently,

users can achieve lower query latency and duration, but the results are only retained in the system for 30

seconds. This mode is recommended for users who do not need to download the complete query results

from COS but expect lower query latency and duration, such as during the query exploration phase or BI

result display.

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 26
of 48

Evaluate whether resources have reached their limit. The DLC engine provides monitoring for CPU, memory,

cloud disk, and network resources. You can adjust resource specifications based on the scale of your business.

For configuration changes, please refer to the Configuration Adjustment Cost Description . The steps to view

engine resource usage are as follows:

1. Open the Data Engine tab on the left.

2. Click the Monitor button on the right side of the corresponding engine.

3. Navigate to the Tencent Cloud Observability Platform to view all monitoring metrics, as shown below. For

detailed operations and monitoring metrics, please refer to the Data Engine Monitoring. You can also

configure alarms for each metric. For a detailed introduction, please refer to Monitoring Alarm Configuration .

Resource Bottlenecks

https://cloud.tencent.com/document/product/1342/68141
https://cloud.tencent.com/document/product/1342/81535

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 27
of 48

To enhance stability, DLC enables adaptive shuffle by default. This is a system that supports regular shuffle with

limited local disk space while ensuring stability in scenarios with large shuffle and data skew. The advantages of

adaptive shuffle include:

1. Reducing Storage Costs: The disk mount volume of cluster nodes is further reduced, with each node in a

general scale cluster requiring only 50G, and large-scale clusters not exceeding 200G.

2. Stability: The task execution stability will no longer fail due to local disk limitations in scenarios where the

shuffle data volume dramatically increases or data skew occurs.

Although adaptive shuffle reduces storage costs and enhances stability, in certain scenarios, such as when

resources are insufficient, it can introduce approximately 15% latency.

DLC supports automatic or manual suspension of clusters, which ceases any further charges. Therefore, upon

the first task execution after cluster startup, there might be a "Queuing" notification due to the cold start of the

cluster pulling up resources. If you frequently submit tasks, it is recommended to purchase a yearly or monthly

subscription cluster . This type of cluster does not have a cold start and can execute tasks quickly at any time.

Other Factors

Adaptive Shuffle

Cold Start of the Cluster

https://cloud.tencent.com/document/product/1342/74056

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 28
of 48

UDF Function Development Guide
Last updated：2024-01-10 16:42:28

Users can write UDF functions, package them into JAR files, and define them as functions in data lake

computations for use in query analysis. Currently, the UDF of Data Lake Computing DLC is in HIVE format,

inheriting org.apache.hadoop.hive.ql.exec.UDF, and implementing the evaluate method.

Example: Simple array UDF function.

Reference for pom file:

If you are familiar with SQL syntax, you can create a function by executing the CREATE FUNCTION syntax

through Data Exploration, or you can create it through a visual interface, as follows:

1. Log in to the Data Lake Compute console and select the service region.

2. Navigate through the left sidebar menu to Data Management, select the database where you want to create

the function. If you need to create a new database, refer to Database Management .

UDF description

public class MyDiff extends UDF

 public ArrayList<Integer> evaluate ArrayList<Integer> input

 ArrayList<Integer> result = new ArrayList<Integer>

 result.add 0, 0

 for int i = 1 i < input.size i++

 result.add i, input.get i - input.get i - 1

 return result

{

() {

();

();

(; ();) {

(() ());

}

;

}

}

<dependencies>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.7.16</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.hive</groupId>

 <artifactId>hive-exec</artifactId>

 <version>1.2.1</version>

 </dependency>

</dependencies>

Creating function version alias

Note:

If you are creating udaf/udtf functions, you need to add the _udaf/_udtf suffix to the function name

accordingly.

https://cloud.tencent.com/document/product/1342/61808
https://console.cloud.tencent.com/dlc
https://cloud.tencent.com/document/product/1342/71246

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 29
of 48

3. Click on Functions to navigate to the function management page.

4. Click on Create Function to proceed with the creation.

The UDF package supports either local upload or selection of a COS path (requires relevant COS

permissions). The example here involves creating via a COS path. The function class name includes both the

"package information" and the "executable class name of the function".

1. Log in to the Data Lake Compute console and select the service region.

2. Navigate through the left sidebar menu to Data Exploration, select the computation engine, and you can then

utilize SQL to invoke functions.

Function utilization

https://console.cloud.tencent.com/dlc

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 30
of 48

Materialized View
Last updated：2024-01-10 16:42:34

A Materialized View is a unique object within a database, embodying a pre-calculated and stored query result

set. It offers rapid query performance when dealing with substantial data volumes and intricate queries.

While enhancing query performance, materialized views also introduce storage and computation costs. We

recommend utilizing materialized views in the following scenarios:

DLC supports both standard materialized views and mapped materialized views. The following provides an

introduction and comprehensive usage examples. For a list of supported syntax, please refer to Materialized

View Syntax .

The fundamental usage process for a standard materialized view encompasses creation, refreshment, and

utilization.

The following illustrates a complete process using the Presto engine as an example.

Execute SQL to create a table and insert data. The following statement creates a table named student .

Use the CREATE MATERIALIZED VIEW statement to create a materialized view. Specify the name of the

materialized view and the query statement, optionally designating the source table and conditions for the query.

In the following example, a simple SELECT statement is used to select all scores from the table student and

perform a sum operation on them. This sum result is then used as the content for the materialized view

mv_student_sum .

Note:

Currently, Data Lake Compute (DLC) materialized views only support SparkSQL and Presto engines.

When the source table undergoes infrequent changes.

When compared to the source table, the number of fields and results in the materialized view table is

significantly reduced.

Standard Materialized View

Data Preparation

CREATE DATABASE IF NOT EXISTS mv_test3

create table student id int name string score int

insert into student values 1 'zhangsan' 90

insert into student values 2 'lisi' 100

insert into student values 3 'wangwu' 80

insert into student values 4 'zhaoliu' 30

select * from student order by id

;

(, ,);

(, ,);

(, ,);

(, ,);

(, ,);

;

Creating a Standard Materialized View

CREATE MATERIALIZED VIEW mv_student_sum AS

 select sum score from student

(

()

);

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 31
of 48

Use the DESCRIBE MATERIALIZED VIEW statement to view detailed information about the materialized view,

including its name, query statement, and refresh status.

Use the REFRESH MATERIALIZED VIEW statement to manually refresh the data in the materialized view.

This is merely a demonstration. In most cases, you do not need to manually refresh the materialized view. As

long as the SQL hits a materialized view with changes in the source table, it will refresh automatically.

Use the SHOW MATERIALIZED VIEW JOBS command to view the execution task list of the materialized view,

providing insight into the refresh history and status of the materialized view.

When querying data using SELECT statements, with the expectation of automatic rewriting and hitting the

materialized view. You can check whether it has been automatically rewritten to the materialized view through

the statistical data in the query results.

View Materialized View Details

DESCRIBE MATERIALIZED VIEW mv_student_sum;

Manually refreshing the materialized view.

REFRESH MATERIALIZED VIEW mv_student_sum;

Viewing the execution task list of materialized views.

SHOW MATERIALIZED VIEW JOBS IN mv_student_sum;

Execution of SQL rewriting.

select sum score from student() ;

Deleting a Materialized View

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 32
of 48

A mapped materialized view is a distinct type of materialized view that associates with an existing table. By

utilizing mapped materialized views, one can associate the query results of the materialized view with the data

of an existing table, thereby optimizing the query performance of the existing table.

Relative to standard materialized views, materialized views have the following limitations:

We suggest employing mapped materialized views in the following scenarios:

When the Iceberg table is the source table, a complete configuration sample is as follows:

The name of the materialized view to be mapped must be consistent with the table to be mapped. The following

example first creates a table based on CTAS for the creation of the mapped MV. Data preparation can refer to

the data preparation section in the complete example of a regular materialized view.

DROP MATERIALIZED VIEW mv_student_sum;

Mapping Materialized View

Restrictions

Mapped materialized views do not support refresh operations, meaning that the data of the materialized view

cannot be refreshed using the REFRESH MATERIALIZED VIEW statement. Consequently, the data of the

materialized view can only remain consistent with the data of the mapped table and cannot be updated

automatically.

The materialized view does not automatically rewrite SQL, meaning the query statement will not

automatically convert to use the materialized view. It necessitates manually specifying the query statement

that utilizes the materialized view.

When deleting a mapped materialized view, only the association with the mapped table will be removed, not

the mapped table itself. The mapped table will continue to exist and can still be utilized.

Recommended scenarios

When there is an existing table with a large volume of data and its query performance is subpar, query

performance can be optimized by mapping a materialized view.

When it is necessary to maintain data consistency between the materialized view and the existing table, and

there is no need for automatic refresh of the materialized view, a mapped materialized view can be utilized.

When the source table is of the Iceberg type.

Creating mapped materialized views based on CTAS (Create Table As Select).

CREATE TABLE link_mv_student AS

 select sum score from student

--Create a mapped materialized view: Use the CREATE MATERIALIZED VIEW statement to establish a

mapped materialized view.

-- When creating a materialized view, use the WITH META LINK clause and specify the name of the

mapping table as the association.

CREATE MATERIALIZED VIEW link_mv_student WITH META LINK AS

 select sum score from student

(

()

);

(

()

);

View Mapped Materialized View

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 33
of 48

The DESCRIBE MATERIALIZED VIEW statement can be used to view detailed information about the mapped

materialized view, including its name, query statement, and refresh status.

Mapped materialized views do not support REFRESH operations, meaning the data in the materialized view

cannot be refreshed using the REFRESH MATERIALIZED VIEW statement. Consequently, the data in the

materialized view can only remain consistent with the data in the mapped table and cannot be updated

automatically.

The mapped materialized view will not automatically rewrite the SQL query statement.

For instance, executing select sum(score) from student; will not hit the mapped materialized view.

You can specify the allowance for SQL rewriting based on mapped materialized views by utilizing Hint or

TaskConf parameters.

Utilize the DROP MATERIALIZED VIEW statement to delete the mapped materialized view. After deleting the

mapped materialized view, only the association with the mapped table will be removed, while the mapped table

itself will continue to exist.

When using a Hive table as the source table, a complete example is as follows:

Initially, it is necessary to prepare the initial data and create a Hive base table. Utilize the CREATE EXTERNAL

TABLE statement to establish a Hive base table, and manually insert data using the INSERT statement.

DESCRIBE MATERIALIZED VIEW link_mv_student

SHOW MATERIALIZED VIEW JOBS IN link_mv_student

;

;

Mapped materialized views do not support refresh operations.

SQL Rewriting

-- Manually specify the SQL that needs to be rewritten.

select /*+ OPTIONS('eos.sql.materializedView.enableRewrite'='true') */

sum score from student () ;

Deleting Mapped Materialized Views

DROP MATERIALIZED VIEW link_mv_student

DESCRIBE link_mv_student -- This can be used to check if the source table still exists.

;

;

When dealing with Hive type source tables.

Preparing to initialize data.

CREATE EXTERNAL TABLE student_2 id int name string score int

LOCATION 'cosn://guangzhou-test-1305424723/mv_test4/student_2'

insert into student_2 values 1 'zhangsan' 90

insert into student_2 values 2 'lisi' 100

insert into student_2 values 3 'wangwu' 80

insert into student_2 values 4 'zhaoliu' 30

select * from student_2

(, ,)

;

(, ,);

(, ,);

(, ,);

(, ,);

;

Establish a mapped Hive external table.

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 34
of 48

Utilize the CREATE EXTERNAL TABLE statement to establish a mapped Hive external table.

Insert data into the mapping table, using the INSERT OVERWRITE statement to insert the query results into the

mapping table, ensuring the data in the mapping table is consistent with the data in the Hive base table.

Use the CREATE MATERIALIZED VIEW statement to create a mapped materialized view. When creating a

materialized view, use the WITH META LINK clause and specify the name of the aforementioned Hive external

table as the association.

CREATE EXTERNAL TABLE link_mv_student_hive

sum_score BIGINT

 LOCATION 'cosn://guangzhou-test-1305424723/mv_test4/link_mv_student_hive'

(

) ;

-- Inserting data into the mapped table

INSERT OVERWRITE link_mv_student_hive

select sum score from student() ;

Creating mapped materialized views based on Hive external tables.

CREATE MATERIALIZED VIEW link_mv_student_hive WITH META LINK AS

 select sum score from student_2

(

()

);

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 35
of 48

Guide to Developing in Hudi Table Format

Overview
Last updated：2024-01-10 16:42:52

Apache Hudi is a next-generation streaming data lake platform. Its most prominent feature is the support for

record-level upserts and deletions, along with incremental queries.

You can utilize the Hudi table format when creating, writing to, and querying tables. If you encounter any issues

with the Hudi table format on DLC, feel free to submit a ticket to contact us.

Scenarios

Near Real-Time Data Ingestion

Hudi supports the ability to insert, update, and delete data. Compared to other traditional file formats, Hudi

optimizes the issue of small files generated during the data writing process.

You can use DLC Spark or Flink to ingest log data from message queues (such as Kafka) into Hudi in real-

time. It also supports real-time synchronization of change data generated by database Binlog.

Incremental Data Processing

In the past, incremental processing often partitioned data into hourly granules. Once the data within this

partition was written, the partition could provide corresponding queries, making the "freshness" of the data

reach an hourly level. However, if data latency occurs, the only remedy is to ensure accuracy through

recalculating the entire partition, which increases the performance overhead of the entire system in terms of

computation and storage.

Hudi supports the Incremental Query type. You can use DLC Spark Streaming to query data changes that

occurred after a given COMMIT. This reduces the consumption of computational resources and can elevate

the freshness of data from an hourly level to a minute level, allowing data to flow quickly between different

layers within the lake.

Near Real-Time Data Analysis

By reducing the data update time to a few minutes, Hudi provides a more effective solution for real-time

analysis. Moreover, with the seamless integration and excellent performance of DLC Presto and SparkSQL

with Hudi, you can perform faster analysis on more real-time data without any additional configuration.

Guide to Developing in Hudi Table Format

Create a Hudi Table

Hudi Data Writing

Hudi Data Query

https://console.cloud.tencent.com/workorder/category
https://cloud.tencent.com/document/product/1342/82249
https://cloud.tencent.com/document/product/1342/82250
https://cloud.tencent.com/document/product/1342/82252

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 36
of 48

Create a Hudi Table
Last updated：2024-01-10 16:42:58

Hudi supports the following two types of tables:

The differences between the two types of tables are illustrated in the following table.

DLC Spark engine supports the direct creation of Hudi tables using SQL. For more details, please refer to the

syntax format and examples.

Explanation of Hudi Table Types

Copy On Write

Abbreviated as COW, it stores data in Parquet format. The update operations for Copy On Write tables are

implemented through rewriting.

Merge On Read

Abbreviated as MOR, it employs a hybrid approach to data storage, using both columnar (Parquet) and row-

based (Avro) file formats. Merge On Read stores base data in a columnar format, while incremental data is

stored in a row-based format. The most recently written incremental data is stored in row-based files, and a

COMPACTION operation is performed according to a configurable strategy to merge incremental data into

columnar files.

Trade-offs Copy On Write Merge On Read

Data latency Height Low

Query Latency Low Height

Update Costs High (rewrite the entire Parquet file) Low (Appended to Incremental Log)

Write Amplification Height Low

Scenarios Write less, read more High write, low read, real-time upsert

Creating a Hudi Table with Spark SQL

Syntax Format and Parameter Descriptions

Syntax Format

CREATE TABLE [IF NOT EXISTS] table_identifier

 (col_name[:] col_type [COMMENT col_comment], ...)

USING data_source

 [COMMENT table_comment]

 [PARTITIONED BY (col_name1, transform(col_name2), ...)]

 [LOCATION path]

 [TBLPROPERTIES (property_name=property_value, ...)]

CREATE TABLE [IF NOT EXISTS] [db_name.]table_name

 [(col_name1 col_type1 [COMMENT col_comment1], ...)]

 USING hudi

 [COMMENT table_comment]

 [PARTITIONED BY (col_name1, col_name2, ...)]

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 37
of 48

 [LOCATION path]

 [TBLPROPERTIES (property_name=property_value, ...)]

TBLPROPERTIES Parameter Description

Category

Def

ault

valu

e

Description

primaryKey uuid
Specify the primary key column. When there are multiple primary keys, separate

them with a comma.

type cow
Table Type: Two types are supported as follows: COW, representing Copy-On-

Write type tables, and MOR, representing Merge-On-Read type tables.

preCombine

Field
-

This value is used to merge and deduplicate rows with the same key before

writing. It corresponds to the

DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY field in Hudi.

Sample

Creating a Non-Partitioned Table

create table hudi_mor_tbl (

 id int,

 name string,

 price double,

 ts bigint

) using hudi

comment 'hudi demo'

location 'cosn://<cos_bucket>/spark_hudi/hudi_mor_tbl'

tblproperties (

 'type' = 'mor',

 'primaryKey' = 'id',

 'preCombineField' = 'ts'

);

Creating a Partitioned Table

create table hudi_cow_pt_tbl (

 id bigint,

 name string,

 ts bigint,

 dt string,

 hh string

) using hudi

comment 'hudi partition demo'

partitioned by (dt, hh)

location 'cosn://<cos_bucket>/spark_hudi/hudi_cow_pt_tbl'

tblproperties (

 'type' = 'cow',

 'primaryKey' = 'id',

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 38
of 48

 'preCombineField' = 'ts'

)

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 39
of 48

Data Writing in Hudi
Last updated：2024-01-10 16:43:03

DLC Hudi currently supports the use of Spark Streaming and Flink to real-time import external data into the

lake.

DLC supports the deployment of Spark Streaming jobs and recommends using DLC Spark jobs to write into DLC

Hudi tables.

In addition to the recommended DLC SPARK jobs, you can also opt for Tencent Cloud Stream Compute Service

to write into DLC Hudi in real-time. For more details, refer to the Oceanus product documentation .

If you wish to write into DLC Hudi tables through a self-built Flink program, you can refer to the following sample

code:

Real-time Writing with Spark Streaming

Code Example

kafkaDF writeStream

 option "checkpointLocation" "cosn://<cos_bucket>/spark_hudi/spark_ck"

 trigger Trigger.ProcessingTime 10 TimeUnit SECONDS

 queryName "write hudi"

 foreachBatch batchDF:DataFrame _:Long =>

 batchDF write

 mode SaveMode.Append

 format "hudi"

 option "hoodie.datasource.write.table.type" "MERGE_ON_READ"

 option "hoodie.datasource.write.precombine.field" "ts"

 option "hoodie.datasource.write.recordkey.field" "uuid"

 option "hoodie.datasource.write.partitionpath.field" "partitionpath"

 option "hoodie.datasource.write.table.name" "hudi_mor"

 save "cosn://<cos_bucket>/spark_hudi/hudi_mor"

 start awaitTermination

.

. (,)

. ((, .))

. ()

. ((,) {

.

. ()

. ()

. (,)

. (,)

. (,)

. (,)

. (,)

. ()

}). (). ()

Real-time Writing with Flink

// Prepare the Flink Stream Table execution environment

EnvironmentSettings settings = EnvironmentSettings

 newInstance

 inStreamingMode

 build

StreamTableEnvironment tableEnv = StreamTableEnvironment create env settings

. ()

. ()

. ();

. (,) ;

// Specify the Kafka source table

tableEnv executeSql "CREATE TABLE tbl_kafka (\n" +

 "\tuuid STRING,\n" +

 "\trider STRING,\n" +

 "\tdriver STRING,\n" +

 "\tbegin_lat DOUBLE,\n" +

 "\tbegin_lon DOUBLE,\n" +

 "\tend_lat DOUBLE,\n" +

. (

https://cloud.tencent.com/document/product/849

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 40
of 48

 "\tend_lon DOUBLE,\n" +

 "\tfare DOUBLE,\n" +

 "\tpartitionpath STRING,\n" +

 "\tts BIGINT\n" +

 ") WITH (\n" +

 " 'connector' = 'kafka',\n" +

 " 'topic' = 'hudi_source',\n" +

 " 'properties.bootstrap.servers' = '<kafka_server>:9092',\n" +

 " 'properties.group.id' = 'test-group-10001',\n" +

 " 'scan.startup.mode' = 'latest-offset',\n" +

 " 'format' = 'json'\n" +

 ")");

// Specify the Hudi target table

tableEnv executeSql "CREATE TABLE hudi_cow (\n" +

 "uuid STRING PRIMARY KEY NOT ENFORCED,\n" +

 "rider STRING,\n" +

 "driver STRING,\n" +

 "begin_lat DOUBLE,\n" +

 "begin_lon DOUBLE,\n" +

 "end_lat DOUBLE,\n" +

 "end_lon DOUBLE,\n" +

 "fare DOUBLE,\n" +

 "partitionpath STRING,\n" +

 "ts BIGINT\n" +

 ") " +

 "partitioned by(partitionpath) " +

 "WITH (\n" +

 " 'connector' = 'hudi',\n" +

 " 'path' = 'cosn://<cos_bucket>/flink_hudi/hudi_cow',\n" +

 " 'fs.cosn.impl' = 'org.apache.hadoop.fs.CosFileSystem',\n" +

 " 'fs.AbstractFileSystem.cosn.impl' = 'org.apache.hadoop.fs.CosN',\n" +

 " 'fs.cosn.bucket.region' = 'ap-chongqing',\n" +

 " 'fs.cosn.credentials.provider' = 'org.apache.hadoop.fs.auth.SimpleCredentialProvider',\n" +

 " 'fs.cosn.userinfo.secretId' = '<secretId>',\n" +

 " 'fs.cosn.userinfo.secretKey' = '<secretKey>',\n" +

 " 'table.type' = 'COPY_ON_WRITE',\n" +

 " 'write.operation' = 'upsert',\n" +

 " 'hoodie.datasource.write.recordkey.field' = 'uuid',\n" +

 " 'write.precombine.field' = 'ts',\n" +

 " 'write.tasks' = '1'\n" +

 ")"

. (

);

// Writing into Hudi tables using Flink SQL

tableEnv.executeSql("insert into hudi_cow select

uuid,rider,driver,begin_lat,begin_lon,end_lat,end_lon,fare,partitionpath,ts from tbl_kafka");

Relevant Configuration

Common Write Configurations

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 41
of 48

Category Default value Description

hoodie.datasource.write.table.n

ame
-

Specify the name of the Hudi table to be written

into

hoodie.datasource.write.table.ty

pe

COPY_ON_W

RITE

Specify the Hudi table type. Once this table type is

specified, subsequent modifications to this

parameter are prohibited. The optional values are:

COPY_ON_WRITE, MERGE_ON_READ.

hoodie.datasource.write.operati

on
upsert

The operation type specified for writing to the

Hudi table is currently supported in the following

modes: UPSERT, DELETE, INSERT,

BULK_INSERT, INSERT_OVERWRITE, and

INSERT_OVERWRITE_TABLE.

hoodie.datasource.write.recordk

ey.field
uuid

This is used to specify the primary key for Hudi.

Hudi tables require a unique primary key.

hoodie.datasource.write.partitio

npath.field
-

This is used to specify the partition key. This

value, in conjunction with

hoodie.datasource.write.keygenerator.class, can

meet different partition scenarios.

hoodie.datasource.write.hive_st

yle_partitioning
false

This is used to specify whether the partitioning

method is consistent with Hive. It is recommended

to set this value to true.

hoodie.datasource.write.precom

bine.field
ts

This value is used to merge and deduplicate rows

with the same key before writing.

Compaction Configuration

Compaction is used to merge the Base and Log files of the MOR table. For Merge-On-Read tables, data is

stored in columnar Parquet files and row-based Avro files. Updates are recorded to incremental files, and

then synchronous/asynchronous compaction is performed to generate new versions of columnar files.

Merge-On-Read tables can reduce data ingestion latency. It is recommended to use a synchronous method

to generate compaction scheduling plans and an asynchronous method to execute these plans.

Category Default value Description

hoodie.compact.schedule.in

line
false

It is recommended to set it to true for

whether to generate a compact plan

after each task completion.

hoodie.compact.inline false

Whether to execute the compression

operation inline after a transaction is

completed. Enabling this does not

necessarily trigger the index

operation every time, as there is a

policy judgment following.

hoodie.compact.inline.trigg

er.strategy

CompactionTriggerStrategy.NU

M_COMMITS

Compression strategy parameters,

which include NUM_COMMITS,

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 42
of 48

If there is only one client writing to the Hudi table at the time of writing, there will be no data conflict. However, in

practical applications, if multiple clients are writing at the same time, such as multiple stream programs needing

to write to the same Hudi table simultaneously, write conflicts causing task failure may occur. We refer to this

situation as concurrent writing. To solve the concurrent writing problem, DLC Metastore can be used to

implement optimistic lock-based concurrent writing.

TIME_ELAPSED, NUM_AND_TIME,

NUM_OR_TIME.

NUM_COMMITS determines whether

to compress based on the number of

commits.

TIME_ELAPSED determines whether

to compress based on time, while

NUM_AND_TIME determines

whether to compress based on both

the number of submissions and time.

NUM_OR_TIME determines whether

to compress based on the number of

submissions or time.

hoodie.compact.inline.max.

delta.commits
5

Set the number of submissions after

which the compression policy is

triggered. Effective in

NUM_COMMITS, NUM_AND_TIME,

and NUM_OR_TIME policies.

hoodie.compact.inline.max.

delta.seconds
60 * 60 (1 Hour)

Set the duration after which the

compression policy is triggered. This

is effective in TIME_ELAPSED,

NUM_AND_TIME, and

NUM_OR_TIME policies.

hoodie.parquet.small.file.lim

it
104857600(100MB)

Files smaller than this value are

considered small files, and newly

added data will be written into these

small files as a priority.

Table-level Concurrency Control for Writing

Enable Concurrent Write Mechanism:

hoodie.write.concurrency.mode=optimistic_concurrency_control

hoodie.cleaner.policy.failed.writes=LAZY

Set the concurrency lock mode to DLC Metastore mode:

hoodie.write.lock.provider=org.apache.hudi.hive.HiveMetastoreBasedLockProvider

hoodie.write.lock.hivemetastore.database=<database_name>

hoodie.write.lock.hivemetastore.table=<table_name>

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 43
of 48

Example of DLC Spark MultiWriter:

 kafkaDF writeStream

 option "checkpointLocation" "cosn://<cos_bucket>/spark_hudi/spark_ck/writer2"

 trigger Trigger.ProcessingTime 10 TimeUnit SECONDS

 queryName "write hudi"

 foreachBatch batchDF:DataFrame _:Long =>

 batchDF write

 mode SaveMode.Append

 format "hudi"

 option "hoodie.datasource.write.table.type" "MERGE_ON_READ"

 option "hoodie.datasource.write.precombine.field" "ts"

 option "hoodie.datasource.write.recordkey.field" "uuid"

 option "hoodie.datasource.write.partitionpath.field" "partitionpath"

 option "hoodie.datasource.write.table.name" "multi_writer"

 option "hoodie.write.concurrency.mode" "optimistic_concurrency_control"

 option "hoodie.cleaner.policy.failed.writes" "LAZY"

option "hoodie.write.lock.provider" "org.apache.hudi.hive.transaction.lock.HiveMetastoreBasedLockPr

ovider"

 option "hoodie.write.lock.hivemetastore.database" "spark_hudi"

 option "hoodie.write.lock.hivemetastore.table" "multi_writer"

 save "cosn://<cos_bucket>/spark_hudi/multi_writer"

 start awaitTermination

.

. (,)

. ((, .))

. ()

. ((,) {

.

. ()

. ()

. (,)

. (,)

. (,)

. (,)

. (,)

. (,)

. (,)

. (,

)

. (,)

. (,)

. ()

}). (). ()

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 44
of 48

Hudi Data Query
Last updated：2024-01-10 16:43:09

The query operations on Hudi tables are performed over the three types of Hudi views. You can choose the

appropriate view for querying based on your specific requirements.

This view allows querying of the latest COMMIT snapshot data. For Merge On Read tables, it requires online

merging of base data in column storage and real-time data in logs during the query. For Copy On Write tables, it

allows querying of the latest version of Parquet data. Both Copy On Write and Merge On Read tables support

this type of query.

This view only queries the files of the newly written data set. It requires specifying an instant time of a

Commit/Compaction (an Instant on the Timeline) as a condition to query the new data after this condition. Both

Copy On Write and Merge On Read tables support this type of query.

Real-time Snapshot View (Snapshot Queries)

SparkSQL Sample:

SELECT count(*) FROM DataLakeCatalog .hudi_spark .hudi_test

Spark API Sample:

 spark read

 format "hudi"

 option QUERY_TYPE_OPT_KEY QUERY_TYPE_SNAPSHOT_OPT_VAL

 option BEGIN_INSTANTTIME_OPT_KEY "20221009003522620"

 load "cosn://<cos_bucket>/spark_hudi/hudi_cow_sync"

 createOrReplaceTempView "hudi_test"

 spark sql "select count(*) from hudi_test" show

. .

()

. (,)

. (,)

. ()

. ()

. . (). ()

Incremental View (Incremental Queries)

SparkSQL Sample:

In the advanced settings of the sparksql engine, add the following two parameters:

hoodie.datasource.query.type=incremental

hoodie.datasource.read.begin.instanttime=20221009003522620

SELECT count(*) FROM DataLakeCatalog .hudi_spark .hudi_test

Spark API Sample:

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 45
of 48

This view exposes only the base/column files (Parquet) in the latest file slice to the query, ensuring the same

columnar query performance as non-Hudi columnar datasets. This view is an optimization of snapshot queries

for Merge On Read table types, reducing query latency caused by online merging of log data at the expense of

query data timeliness.

 spark read

 format "hudi"

 option QUERY_TYPE_OPT_KEY QUERY_TYPE_INCREMENTAL_OPT_VAL

 option BEGIN_INSTANTTIME_OPT_KEY "20221009003522620"

 load "cosn://<cos_bucket>/spark_hudi/hudi_cow_sync"

 show false

. .

()

. (,)

. (,)

. ()

. ()

Read Optimized View (Read Optimized Queries)

SparkSQL Sample:

In the advanced settings of the sparksql engine, add the following two parameters:

hoodie.datasource.query.type=read_optimized

hoodie.datasource.read.begin.instanttime=20221009003522620

SELECT count(*) FROM DataLakeCatalog .hudi_spark .hudi_test

Spark API Sample:

 spark.read.

 format("hudi")

 .option(QUERY_TYPE_OPT_KEY,QUERY_TYPE_READ_OPTIMIZED_OPT_VAL)

 .load("cosn://<cos_bucket>/spark_hudi/hudi_cow_sync")

 .show(false)

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 46
of 48

System Restraints

Metadata Information
Last updated：2024-01-10 16:43:16

The following lists the limits on the numbers of databases, data tables, attribute columns, and partitions.

Item Maximum Quantity

Number of Databases per Account 1,000

Number of Data Tables per Account 10,000

Number of Tables per Database 4,096

Number of Columns per Data Table 4,096

Number of Partitions per Table 10,000

Number of Partitions per Master Account 1,000,000

Maximum Number of Fields per Table 4096

Number of Custom Functions per Account 100

Number of Catalogs that can be Created 20

Databases

Name: Should not exceed 127 characters, and within the same data link, identical database names are not

permitted.

Description: Should not exceed 2048 characters.

External Table Data Address (COS Address): 888 characters (limited by the length of the COS path).

Parameters: In the form of Map<string:string> , each parameter is limited to 127 characters, with a total

length limit of 3000 characters.

Data Table/View

Name: Should not exceed 127 characters, and within the same database, identical table names are not

permitted.

Description: Should not exceed 1000 characters.

External Table Data Address (COS Address): Should not exceed 888 characters (limited by the length of the

COS path).

Parameters: In the form of Map<string:string> , each parameter can contain up to 127 characters, with a

total character limit of 512,000.

Attribute Column

Name: Should not exceed 127 characters, and within the same table, identical attribute column names are

not permitted.

Description: Should not exceed 256 characters.

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 47
of 48

Type: Should not exceed 131,072 characters. Exceeding this limit will prevent creation.

Partition

Partition Field Name: Should not exceed 127 characters.

Data Lake Compute

©2013-2023 Tencent Cloud. All rights reserved. Page 48
of 48

Computing Task
Last updated：2024-01-10 16:44:26

The size limit for a single SQL statement is 2 MB.

