&> Tencent Cloud TDMQ for RabbitMQ

TDMQ for RabbitMQ

Practical Tutorial

&S

Tencent Cloud

©2013-2024 Tencent Cloud. All rights reserved. Page 10f18

> Tencent Cloud TDMQ for RabbitMQ

Copyright Notice
©2013-2024 Tencent Cloud. All rights reserved.

The complete copyright of this document, including all text, data, images, and other content, is
solely and exclusively owned by Tencent Cloud Computing (Beijing) Co., Ltd. ("Tencent
Cloud"); Without prior explicit written permission from Tencent Cloud, no entity shall
reproduce, modify, use, plagiarize, or disseminate the entire or partial content of this
document in any form. Such actions constitute an infringement of Tencent Cloud's copyright,
and Tencent Cloud will take legal measures to pursue liability under the applicable laws.

Trademark Notice

2y Tencent Cloud

This trademark and its related service trademarks are owned by Tencent Cloud Computing
(Beijing) Co., Ltd. and its affiliated companies("Tencent Cloud"). The trademarks of third
parties mentioned in this document are the property of their respective owners under the
applicable laws. Without the written permission of Tencent Cloud and the relevant trademark
rights owners, no entity shall use, reproduce, modify, disseminate, or copy the trademarks as
mentioned above in any way. Any such actions will constitute an infringement of Tencent
Cloud's and the relevant owners' trademark rights, and Tencent Cloud will take legal
measures to pursue liability under the applicable laws.

Service Notice

This document provides an overview of the as—is details of Tencent Cloud's products and
services in their entirety or part. The descriptions of certain products and services may be
subject to adjustments from time to time.

The commercial contract concluded by you and Tencent Cloud will provide the specific types
of Tencent Cloud products and services you purchase and the service standards. Unless
otherwise agreed upon by both parties, Tencent Cloud does not make any explicit or implied
commitments or warranties regarding the content of this document.

Contact Us

We are committed to providing personalized pre—sales consultation and technical after-sale
support. Don't hesitate to contact us at 4009100100 or 95716 for any inquiries or concerns.

©2013-2024 Tencent Cloud. All rights reserved. Page 2 0f 18

> Tencent Cloud TDMQ for RabbitMQ

Contents

Practical Tutorial
RabbitMQ Client Practice Tutorial
RabbitMQ Message Reliability Practice Guide
Notes
RabbitMQ MQTT Protocol Usage Instructions

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 18

> Tencent Cloud TDMQ for RabbitMQ

Practical Tutorial
RabbitMQ Client Practice Tutorial

Please do not create a connection/channel every time you send a
message

Creating a connection in RabbitMQ is a time—consuming/resource—consuming operation.
Each connection uses at least 100KB of memory, and too many connections will increase the
memory pressure on the Broker. It is recommended to create a connection when the program
starts and reuse this long connection every time a message is sent to improve sending
performance and reduce server memory usage.

Channels are a lighter form of communication and it is recommended to use as many channels
as possible to reuse connections. However, it is best not to use the same channel across
threads concurrently, as many RabbitMQ client implementations are not thread-safe.

Set areasonable send timeout time for producers

RabbitMQ clients of different languages and versions have set different default send times,
with some clients having an excessively long default timeout, such as 580 seconds or 900
seconds. In the event of a network anomaly, an excessively long send timeout can block the
sending thread and even cause an avalanche effect. It is recommended to set a reasonable
timeout time according to the business scenario, with 3 seconds being a recommended value.

Producers and consumers use separate connections

Due to RabbitMQ's unique flow control mechanism, if producers and consumers reuse the
same physical connection, and the consumer traffic triggers flow control, it may cause the
producer to be flow—controlled, leading to slow sending or timeouts. Therefore, it is
recommended that producers and consumers use different physical connections during
initialization to avoid mutual interference.

It is not recommended for consumers to enable automatic
message acknowledgment

RabbitMQ server provides at least once delivery semantics to ensure that messages are
correctly delivered to downstream business systems. Once the consumer enables automatic
message acknowledgment, the server will automatically confirm and delete the message after
pushing it to the consumer side, even if there is an exception during message processing,
which may lead to missed message processing in the business.

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 18

> Tencent Cloud TDMQ for RabbitMQ

Consumer idempotent processing of messages

RabbitMQ server provides at least once delivery semantics, and in extreme cases, messages
may be delivered repeatedly. Therefore, it is recommended that key business processes must
perform idempotent processing when handling messages, so that even if duplicate messages
are received, there will be no negative business impact.

Business idempotent processing can be achieved by adding a unique business identifier to the
message, and the consumer checks such identifiers and message status during consumption,
processing duplicate messages according to business needs, ensuring that even if duplicate
messages are received, there will be no negative business impact.

Limit queue length to avoid a large accumulation of messages

An excessively long queue (a large accumulation of messages) will occupy a lot of memory
and consume more server system resources. Not only does it take longer to perform state
synchronization during operation, but it also leads to a significant increase in the startup
recovery time of the server Broker.

A shorter queue will provide faster processing speed and system performance.

Therefore, it is necessary for the client to improve the consumption capacity as much as
possible, and use queue dimension limitations such as max-length to ensure that the queue is
as short as possible.

Use Consume or Get to consume messages?

Get is a polling—based pull consumption mode where each message consumed requires a
request to be sent to the Broker. If there are no messages in the queue, it might result in a
large number of ineffective empty pulls leading to resource occupation. On the other hand,
Consume can receive a batch of messages at once, with the server pushing messages based
on actual conditions. In most cases, Consume should be used instead of Get for message
consumption.

If the business process must use Get to consume messages, attention should be paid to the
Get mechanism at the business level to avoid continuous Get Empty pulls (when the queue
has no messages pending consumption, but the consumer continuously performs Get),
causing high server CPU load.

Set a reasonable Prefetch Count for consumers

Prefetch setting is a mechanism where the consumer side, in order to improve consumption
throughput, pushes messages to the consumer’ s cache in advance, reducing consumption
waiting time and latency. However, if the Prefetch Count is too high or unlimited, it can lead to
a large number of messages being cached on the consumer side, and the server Broker also
maintaining the state of unacknowledged messages in memory, occupying a lot of resources;

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 18

> Tencent Cloud TDMQ for RabbitMQ

if messages remain in unacknowledged state, these messages cannot be consumed by other
idle consumers, manifesting as increased consumption delay or unbalanced consumer load.
It is recommended to set the Prefetch Count within a reasonable range according to the
business consumption rate.

Set a reasonable exception handling strategy for consumers

When consuming messages, encountering unprocessable exceptions, messages not set for
automatic acknowledgment will trigger message retries. If the exception continues without a
normal exit, it will trigger infinite retries of the message, not only causing a high load on the
Broker side but also preventing subsequent messages from being reasonably consumed.

Ensure client reconnection mechanism

In extreme scenarios such as OOM, host machine failure, etc., the server Broker may self-
heal and restart. Everyday business operations such as cluster upgrade can also trigger
Broker restart. To avoid continuous connection exceptions during the Broker's restart period,
please ensure that the client has implemented an automatic reconnection mechanism.

Do not disable the heartbeat setting in the client SDK

heartbeat has a configuration value on both the server and client side (60 seconds for the
server), the effective heartbeat is determined through negotiation between the server and
client, and different languages/versions of clients have different negotiation mechanisms.
Setting heartbeat=0 on the client side, which turns off heartbeat detection, will prevent the
server from automatically removing long—term idle connections, potentially leading to
unexpected connection leaks.

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 18

> Tencent Cloud TDMQ for RabbitMQ

RabbitMQ Message Reliability
Practice Guide

Last updated: 2024-08-02 15:48:28

Message Persistence

To ensure that the queue metadata and the messages within the queue are not lost after the
Broker restarts, it is recommended to set the queue as durable and the messages as
persistent. This way, the queue willimmediately persist the messages to disk upon receiving
them.

Non-persistent messages will also occupy more server—-side memory resources, potentially
causing high memory load on the server under extreme conditions.

Sender Confirmation

The Confirmation Mechanism can ensure that the message is successfully sent to the Broker.
However, if the mandatory setting is not configured when sending the message, the Broker
will respond with a confirm to the sender regardless of whether the message is successfully
routed to the target queue. If the mandatory setting is configured (delayed exchange does not
support the mandatory setting), the Broker will return the message to the client if it cannot be
routed. The client can sense these unroutable messages by implementing basic.return
handling; the Broker will only respond with a confirm to the sender when the message is
successfully routed to the target queue.

Consumption End Acknowledgement

The ACK Mechanism at the consumption end ensures that the client receives the messages,
providing at least once level consumption semantics guarantee, ensuring the message is
correctly processed before it can be deleted. However, the client also needs to implement
idempotence to avoid errors from consuming duplicate messages, and messages that are not
ACKed will pile up in memory, increasing memory usage on both the client and server sides.

Enabling Image Queue

Image Queue ensures the high availability of the queue by replicating the queue data to other
Brokers within the cluster. Configuring the image queue policy may increase Broker startup
duration and resource usage, but it ensures that the queue remains available in the event of a
single Broker failure, making every effort to prevent message loss.

When configuring the image queue policy, it is advisable to avoid setting ha—sync-
mode=automatic, as this configuration will trigger automatic full synchronization of the queue

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 18

> Tencent Cloud TDMQ for RabbitMQ

data after the server—side Broker restarts (regardless of whether the queue data has been
previously synchronized). If the queue accumulates too much data, it will eventually result in a
prolonged synchronization time, continued memory resource usage, and the queue will
remain unavailable until synchronization is complete. This has serious implications on
business availability and server stability.

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 18

> Tencent Cloud TDMQ for RabbitMQ

Notes

Last updated: 2024-08-02 15:48:57

The rabbitmq_delayed_message_exchange plugin implements
delayed messages

1.

The current plugin design is not suitable for scenarios with a large volume of delayed
messages (hundreds of thousands or even millions of un—scheduled messages). In a
production environment, please carefully assess the message volume to avoid unexpected
long delays and message loss.

. Delayed messages have only one persistent replica on each node. If the node cannot run

properly (e.g., due to continuous OOM caused by message accumulation, leading to a
restart and failure to recover), the delayed messages on that node cannot be consumed by
the consumer.

. The delayed exchange does not support setting mandatory. Producers cannot be aware of

unrouted messages through the basic.return event. Therefore, before sending delayed
messages, please ensure the corresponding exchange, queue, and routing relationships
exist.

In summary, we strongly recommend against using this plugin and instead using dead letter
queues to indirectly implement Delayed Messages. If you still choose to use this plugin after

understanding its several flaws, we highly recommend keeping the number of delayed

messages as low as possible to avoid triggering high memory load issues.

Network Partition

1.

Network partitioning is an issue that must be faced when using RabbitMQ. Network
partitions can lead to inconsistencies in cluster states, and even after network recovery,
RabbitMQ still needs to restart the Broker to resynchronize the state. Tencent Cloud
RabbitMQ currently uses the autoheal mode, which automatically determines a winning
partition and then restarts the Brokers within the non-trusted partition.

. We recommend that clients take the following measures to minimize the negative impact of

network partitions:

Message sender, consider using the mandatory mechanism when sending messages
and have the ability to handle basic.return events to timely handle message routing
failures during network partitions.

Message consumer, during the occurrence/processing of network partitions, there may
be message duplication, and the consumer side needs to handle idempotent
processing.

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 18

> Tencent Cloud TDMQ for RabbitMQ

Alarm Configuration

Tencent Cloud provides multi-dimensional monitoring metrics such as cluster/node, etc. For
details, see Monitoring and Alarm.

We strongly recommend focusing on node CPU, memory, disk utilization rate, message
backlog, and other indicators and configuring alarms to avoid continuous high server load
affecting cluster stability.

Message Tracking Usage Limitations

Overview of the implementation principles of message querying: After the Trace plugin is
enabled in the Tencent Cloud console for a VHost, the service component will consume the
corresponding RabbitMQ cluster's trajectory messages, and after a series of processing, it
can realize the feature of querying message trajectories in the console.

Based on the above principle, message tracking depends on the service component
consuming trajectory messages. Since the service component is a underlying public service, it
cannot guarantee that the trajectory messages of RabbitMQ clusters with high traffic can be
consumed in time; if trajectory messages accumulate, it will cause high memory load issues,
affecting RabbitMQ cluster stability.

Therefore, it is not recommended to enable the Trace plugin in production environments,
especially in scenarios where the overall cluster (including all VHosts) sends TPS exceeding
1000. The Trace plugin is recommended for use in low-traffic verification/troubleshooting
scenarios and is not suitable for production environments.

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 18

> Tencent Cloud TDMQ for RabbitMQ

RabbitMQ MQTT Protocol Usage
Instructions

Last updated: 2024-08-02 15:49:31

Solution Introduction

MQTT is a widely used loT protocol, and RabbitMQ is a widely used open—-source message
queue product based on the AMQP 0.9.1 protocol. RabbitMQ supports the MQTT protocol
through plugins, making it easy to support MQTT on a RabbitMQ cluster to cater to IoT and
other business scenarios.

Community Reference Documentation:

1. RabbitMQ versions before 3.11 support MQTT through a plugin: MQTT Plugin — RabbitMQ

2. RabbitMQ version 3.12 natively supports MQTT: Serving Millions of Clients with Native
MQTT | RabbitMQ - Blog

Operation step
Step 1: Purchase a cloud or self-built RabbitMQ cluster

Purchase a RabbitMQ cluster on cloud, Buy Now .
Or build your own RabbitMQ cluster, see details: Downloading and Installing RabbitMQ —
RabbitMQ.

Step 2: Enable the MQTT plugin

Enable the MQTT plugin by executing the following command on cluster nodes:

sudo rabbitmg-plugins enable rabbitmg mgtt

Tencent Cloud's RabbitMQ plugin management feature is under development. Currently, you
can submit a ticket to enable the MQTT plugin and set up network operations.
After enabling the MQTT plugin, you can see the newly added port 1883 in the console:

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 18

https://www.rabbitmq.com/mqtt.html
https://blog.rabbitmq.com/posts/2023/03/native-mqtt/
https://blog.rabbitmq.com/posts/2023/03/native-mqtt/
https://buy.cloud.tencent.com/tdmq?protocol=AMQP&rid=1&clusterType=profession&config=eyJ6b25lSWRzIjpbIjEwMDAwMyIsIjEwMDAwNCJdLCJub2RlU3BlYyI6InJhYmJpdC12aXAtYmFzaWMtNSIsInN0b3JhZ2VTaXplIjoyMDAsInZwY3MiOlt7InZwY0lkIjoidnBjLTcwaHNwOXVwIiwic3VibmV0SWQiOiJzdWJuZXQtMTlnbnltd2sifV19
https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html
https://console.cloud.tencent.com/workorder/category

> Tencent Cloud TDMQ for RabbitMQ

Ports and contexts

Listening ports

Protocol Bound to Port

amqp . 5672

clustering :: 25672

http o 15672

mqtt i 1883 —

Step 3: Verify the availability of MQTT

You can download the commonly used mqttx (MQTTX: Full-featured MQTT client tool) client

tool to verify:

1. Create a new connection, and fill in the address and port. Use the RabbitMQ username and
password for the username and password fields.

<&M [R T | @
*Client!D [m 0 |c o
RS | maw I SCRT IP bt |
*#O 1883 °
FPE admin
B oo
SSL/TLS

2. Create a new subscription to subscribe to the testtopic/# topic messages.

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 18

https://mqttx.app/zh

> Tencent Cloud TDMQ for RabbitMQ

AANIT X
* Topic)

testtopic/#

* QoS FFiE]
1 E/h—R #85CB54 o
3% 0}
p

Y WE

3. Check the RabbitMQ queue status, you can see that a new queue is created in RabbitMQ
for each subscription.

Queues

All queues (3)

Pagination

Page of 1 - Filter: (J Regex ?

Overview

Messages Message rates +/-
Name Type Features State Ready Unacked Total incoming deliver / get ack
mgqtt-subscription-JavaSubSampleqosl classic D Exp idle 0 0 0 0.00/s 0.00/s 0.00/s
mqtt-subscription-mqttx_fd753890qos1 classic D AD idle 0 0 0
testtopic.123456 classic D Args idle 0 0 0 0.00/s 0.00/s 0.00/s

4. Verify message sending and receiving. Send a testtopic/123456 message, and it will be
received immediately through the subscription.

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 18

> Tencent Cloud TDMQ for RabbitMQ

RabbitMQMQTT ¥ @& () L e
Plaintext 2% BEK SR2
| testtopic/# QoS 1 Topic: testtopic/123456 QoS: 1

{

"msg": "test mqtt on RabbitMQ"
+

2023-09-27 11:13:46:749

Topic: testtopic/123456 QoS:1

{

}

2023-09-27 11:13:46:749

msg': "test mgtt on RabbitMQ"

5. View RabbitMQ monitoring, you can see that the just-created queue has one send-receive
message monitoring record.

Queue mqtt-subscription-mqttx_fd753890qos1

v Overview

Queued messages last minute ?

1.0 Ready 0
Unacked 0
0.0 Total o
11:13:40 11:13:50 11:14:00 11:14:10 11:14:20
Message rates last minute ?
0.3/ Publish 0.00/s Consumer Get (auto
0.2 /s ' ack M0.00/s ack) M 0.00/s
8%;3 (Delive: y Redelivered , c
' manua 0.00/s edelivere W 0.00/s et
8(]5 /: ack) (empty) [] 0.00/5
11:13:3011:13:4011:13:5011:14:00 11:14:10 11:14:20 . Get
Deliver B 0.00/s (manual | W 0.00/s
(auto ack) ' ack)
Details
Features durable: true State idle Total Ready Unacked In memory
auto-delete: true Consumers | 1 Messages ? 0 0 0 0
Message body bytes ? 0B 0B 0B 0B

Policy Consumer capacity ? = 100%

Operator policy Process memory ? | 18 KiB

Effective policy definition
6. Verify the interoperability of MQTT upstream messages and RabbitMQ messages. MQTT

messages can be routed to a normal queue for consumption by downstream RabbitMQ
applications.

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 18

> Tencent Cloud TDMQ for RabbitMQ

Exchange: amgq.topic

Overview

Message rates last ten minutes ?

3.0 /s .
Publish
2.0 /s (G3) 0.007s
1.0 /s Publish
(Out) 0.00/5
0.0 /s
11:08 11:10 11:12 11:14 11:16
Details
Type topic
Features = durable: true
Policy
Bindings
This exchange
To Routing key Arguments
testtopic.123456 i
mgqtt-subscription-JavaSubSampleqos1 P
testtopic.# i
mgqtt-subscription-mqttx_fd753890qos1 P
testtopic.123456 i
testtopic.123456 i

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 18

> Tencent Cloud TDMQ for RabbitMQ

Queue testtopic.123456

Overview

Queued messages last ten minutes ?

L5 Ready 1

1.0

Unacked 0
0.5
0.0 Total W1

11:06 11:08 11:10 11:12 11:14

Message rates last ten minutes ?

15/s

Publish 0.00/s Consumer Get (auto
1075 ack | M0.00/s ack) 0.00/s
05/ (Deliverl ™ "
2 /S manua 0.00/s Redelivere W 0.00/s Get
0.0/s ack) (empty) W 0.00/s
“ 1106 11:08 11:10 11:12 11:14) Get
Deliver H 0.00/ (manual W 0.00/s
(auto ack) -00/s ack)
Details
Features = arguments: x-queue-type: classic State idle
durable: true Consumers | 0
Palicy Consumer capacity ? = 0%
Operator policy Total Ready Unacked Inmemory Persistent Transient, Paged Out
Effective policy definition Messages ? 1 1 0 1 1 10
Message body bytes ? 36B 368 0B 368 368 0B

Process memory ? = 20 KiB

7. Verify the interoperability of RabbitMQ and MQTT downstream messages. RabbitMQ can
send messages, and MQTT can subscribe to them.

Publish message

Routing key: testtopic.123456

Headers: ? =

Properties: ? =

Payload: |message from RabbitMQ

Publish message

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 18

> Tencent Cloud TDMQ for RabbitMQ

RabbitMQMQTT v ©) 2 e
+ HImTE Plaintext 3 2Rk BRE
QoS 1 Topic: testtopic/123456 Qo0S: 1
{
"msg": "test mqtt on RabbitMQ"
1

2023-09-27 11:13:46:749

Topic: testtopic/123456 QoS: 1

{

""msg": "test mqtt on RabbitMQ"
b

2023-09-27 11:13:46:749

Topic: testtopic/123456 QoS: 1

message from RabbitMQ

2023-09-27 11:19:52:456

testtopic/123456

{ <
| "msg": "test mgtt on RabbitMQ"

¥

8. Verification summary: The above verification confirms that the RabbitMQ MQTT plugin
supports normal MQTT message sending and receiving, upstream messaging to
applications, downstream messaging from applications to subscriptions, and
comprehensive monitoring.

How It Works

» The implementation principle before version 3.11 was to convert MQTT messages to AMQP
protocol for message sending and receiving.

MQTT publish ¥ marT g publish
publisher via MQTT = plugin A= via AMQP

0.91

AMQP 0.9.1 route

channel

Queue(s)

RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 17 of 18

> Tencent Cloud TDMQ for RabbitMQ

The implementation principle after version 3.12 no longer involves AMQP protocol
conversion, theoretically offering better performance.

MQTT publish MQTT route Queusis)
publisher via MQTT plugin

Notes

We recommend using stable versions like 3.8.x or 3.11.x, which have no known bugs.

Since version 3.12.x is newly released with a reimplemented initial version of MQTT,
our validation found issues such as inaccurate monitoring and occasional RabbitMQ
interoperability problems. Therefore, we do not recommend using version 3.12 in
production environments.

Currently, mainstream MQTT v3 and v3.1 versions are supported, but not v5. RabbitMQ is
expected to support v5 in version 3.13.

The MQTT protocol uses "/" to separate topics, while the AMQP protocol uses "." to
separate topics (Routingkey). Automatic conversion happens during protocol translation,
so applications should be aware of this difference.

Itis not recommended to use anonymous connections or "no login credentials" for MQTT
because the AMQP protocol will automatically convert to the default user guest or
mqtt.default_user, which complicates permission management.

Regarding subscription persistence, note the mapping of MQTT and AMQP queue
persistence.

Transient clients that use transient (non—-persistent) messages

Stateful clients that use durable subscriptions (non—clean sessions, QoS1) should
prioritize using image queues. Do not use Quorum Queues features because Quorums
require at least three nodes, and the stability of new features is yet to be verified, so it
is not recommended for now.

Prioritize using image queues. Do not use Quorum Queues features because Quorums
require at least three nodes, and the stability of new features is yet to be verified, so it is
not recommended for now.

©2013-2024 Tencent Cloud. All rights reserved. Page 18 of 18

https://blog.rabbitmq.com/posts/2023/07/mqtt5
https://blog.rabbitmq.com/posts/2023/07/mqtt5

