
TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 1 of 18

TDMQ for RabbitMQ

Practical Tutorial

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 2 of 18

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

The complete copyright of this document, including all text, data, images, and other content, is

solely and exclusively owned by Tencent Cloud Computing (Beijing) Co., Ltd.（"Tencent

Cloud"); Without prior explicit written permission from Tencent Cloud, no entity shall

reproduce, modify, use, plagiarize, or disseminate the entire or partial content of this

document in any form. Such actions constitute an infringement of Tencent Cloud's copyright,

and Tencent Cloud will take legal measures to pursue liability under the applicable laws.

Trademark Notice

This trademark and its related service trademarks are owned by Tencent Cloud Computing

(Beijing) Co., Ltd. and its affiliated companies("Tencent Cloud"). The trademarks of third

parties mentioned in this document are the property of their respective owners under the

applicable laws. Without the written permission of Tencent Cloud and the relevant trademark

rights owners, no entity shall use, reproduce, modify, disseminate, or copy the trademarks as

mentioned above in any way. Any such actions will constitute an infringement of Tencent

Cloud's and the relevant owners' trademark rights, and Tencent Cloud will take legal

measures to pursue liability under the applicable laws.

Service Notice

This document provides an overview of the as-is details of Tencent Cloud's products and

services in their entirety or part. The descriptions of certain products and services may be

subject to adjustments from time to time.

The commercial contract concluded by you and Tencent Cloud will provide the specific types

of Tencent Cloud products and services you purchase and the service standards. Unless

otherwise agreed upon by both parties, Tencent Cloud does not make any explicit or implied

commitments or warranties regarding the content of this document.

Contact Us

We are committed to providing personalized pre-sales consultation and technical after-sale

support. Don't hesitate to contact us at 4009100100 or 95716 for any inquiries or concerns.

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 18

Contents

Practical Tutorial

RabbitMQ Client Practice Tutorial

RabbitMQ Message Reliability Practice Guide

Notes

RabbitMQ MQTT Protocol Usage Instructions

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 18

Practical Tutorial

RabbitMQ Client Practice Tutorial
Last updated：2024-08-02 15:48:01

Creating a connection in RabbitMQ is a time-consuming/resource-consuming operation.

Each connection uses at least 100KB of memory, and too many connections will increase the

memory pressure on the Broker. It is recommended to create a connection when the program

starts and reuse this long connection every time a message is sent to improve sending

performance and reduce server memory usage.

Channels are a lighter form of communication and it is recommended to use as many channels

as possible to reuse connections. However, it is best not to use the same channel across

threads concurrently, as many RabbitMQ client implementations are not thread-safe.

RabbitMQ clients of different languages and versions have set different default send times,

with some clients having an excessively long default timeout, such as 580 seconds or 900

seconds. In the event of a network anomaly, an excessively long send timeout can block the

sending thread and even cause an avalanche effect. It is recommended to set a reasonable

timeout time according to the business scenario, with 3 seconds being a recommended value.

Due to RabbitMQ's unique flow control mechanism, if producers and consumers reuse the

same physical connection, and the consumer traffic triggers flow control, it may cause the

producer to be flow-controlled, leading to slow sending or timeouts. Therefore, it is

recommended that producers and consumers use different physical connections during

initialization to avoid mutual interference.

RabbitMQ server provides at least once delivery semantics to ensure that messages are

correctly delivered to downstream business systems. Once the consumer enables automatic

message acknowledgment, the server will automatically confirm and delete the message after

pushing it to the consumer side, even if there is an exception during message processing,

which may lead to missed message processing in the business.

Please do not create a connection/channel every time you send a

message

Set a reasonable send timeout time for producers

Producers and consumers use separate connections

It is not recommended for consumers to enable automatic

message acknowledgment

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 18

RabbitMQ server provides at least once delivery semantics, and in extreme cases, messages

may be delivered repeatedly. Therefore, it is recommended that key business processes must

perform idempotent processing when handling messages, so that even if duplicate messages

are received, there will be no negative business impact.

Business idempotent processing can be achieved by adding a unique business identifier to the

message, and the consumer checks such identifiers and message status during consumption,

processing duplicate messages according to business needs, ensuring that even if duplicate

messages are received, there will be no negative business impact.

An excessively long queue (a large accumulation of messages) will occupy a lot of memory

and consume more server system resources. Not only does it take longer to perform state

synchronization during operation, but it also leads to a significant increase in the startup

recovery time of the server Broker.

A shorter queue will provide faster processing speed and system performance.

Therefore, it is necessary for the client to improve the consumption capacity as much as

possible, and use queue dimension limitations such as max-length to ensure that the queue is

as short as possible.

Get is a polling-based pull consumption mode where each message consumed requires a

request to be sent to the Broker. If there are no messages in the queue, it might result in a

large number of ineffective empty pulls leading to resource occupation. On the other hand,

Consume can receive a batch of messages at once, with the server pushing messages based

on actual conditions. In most cases, Consume should be used instead of Get for message

consumption.

If the business process must use Get to consume messages, attention should be paid to the

Get mechanism at the business level to avoid continuous Get Empty pulls (when the queue

has no messages pending consumption, but the consumer continuously performs Get),

causing high server CPU load.

Prefetch setting is a mechanism where the consumer side, in order to improve consumption

throughput, pushes messages to the consumer’s cache in advance, reducing consumption

waiting time and latency. However, if the Prefetch Count is too high or unlimited, it can lead to

a large number of messages being cached on the consumer side, and the server Broker also

maintaining the state of unacknowledged messages in memory, occupying a lot of resources;

Consumer idempotent processing of messages

Limit queue length to avoid a large accumulation of messages

Use Consume or Get to consume messages?

Set a reasonable Prefetch Count for consumers

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 18

if messages remain in unacknowledged state, these messages cannot be consumed by other

idle consumers, manifesting as increased consumption delay or unbalanced consumer load.

It is recommended to set the Prefetch Count within a reasonable range according to the

business consumption rate.

When consuming messages, encountering unprocessable exceptions, messages not set for

automatic acknowledgment will trigger message retries. If the exception continues without a

normal exit, it will trigger infinite retries of the message, not only causing a high load on the

Broker side but also preventing subsequent messages from being reasonably consumed.

In extreme scenarios such as OOM, host machine failure, etc., the server Broker may self-

heal and restart. Everyday business operations such as cluster upgrade can also trigger

Broker restart. To avoid continuous connection exceptions during the Broker's restart period,

please ensure that the client has implemented an automatic reconnection mechanism.

heartbeat has a configuration value on both the server and client side (60 seconds for the

server), the effective heartbeat is determined through negotiation between the server and

client, and different languages/versions of clients have different negotiation mechanisms.

Setting heartbeat=0 on the client side, which turns off heartbeat detection, will prevent the

server from automatically removing long-term idle connections, potentially leading to

unexpected connection leaks.

Set a reasonable exception handling strategy for consumers

Ensure client reconnection mechanism

Do not disable the heartbeat setting in the client SDK

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 18

RabbitMQ Message Reliability

Practice Guide
Last updated：2024-08-02 15:48:28

To ensure that the queue metadata and the messages within the queue are not lost after the

Broker restarts, it is recommended to set the queue as durable and the messages as

persistent. This way, the queue will immediately persist the messages to disk upon receiving

them.

Non-persistent messages will also occupy more server-side memory resources, potentially

causing high memory load on the server under extreme conditions.

The Confirmation Mechanism can ensure that the message is successfully sent to the Broker.

However, if the mandatory setting is not configured when sending the message, the Broker

will respond with a confirm to the sender regardless of whether the message is successfully

routed to the target queue. If the mandatory setting is configured (delayed exchange does not

support the mandatory setting), the Broker will return the message to the client if it cannot be

routed. The client can sense these unroutable messages by implementing basic.return

handling; the Broker will only respond with a confirm to the sender when the message is

successfully routed to the target queue.

The ACK Mechanism at the consumption end ensures that the client receives the messages,

providing at least once level consumption semantics guarantee, ensuring the message is

correctly processed before it can be deleted. However, the client also needs to implement

idempotence to avoid errors from consuming duplicate messages, and messages that are not

ACKed will pile up in memory, increasing memory usage on both the client and server sides.

Image Queue ensures the high availability of the queue by replicating the queue data to other

Brokers within the cluster. Configuring the image queue policy may increase Broker startup

duration and resource usage, but it ensures that the queue remains available in the event of a

single Broker failure, making every effort to prevent message loss.

When configuring the image queue policy, it is advisable to avoid setting ha-sync-

mode=automatic, as this configuration will trigger automatic full synchronization of the queue

Message Persistence

Sender Confirmation

Consumption End Acknowledgement

Enabling Image Queue

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 18

data after the server-side Broker restarts (regardless of whether the queue data has been

previously synchronized). If the queue accumulates too much data, it will eventually result in a

prolonged synchronization time, continued memory resource usage, and the queue will

remain unavailable until synchronization is complete. This has serious implications on

business availability and server stability.

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 18

Notes
Last updated：2024-08-02 15:48:57

1. The current plugin design is not suitable for scenarios with a large volume of delayed

messages (hundreds of thousands or even millions of un-scheduled messages). In a

production environment, please carefully assess the message volume to avoid unexpected

long delays and message loss.

2. Delayed messages have only one persistent replica on each node. If the node cannot run

properly (e.g., due to continuous OOM caused by message accumulation, leading to a

restart and failure to recover), the delayed messages on that node cannot be consumed by

the consumer.

3. The delayed exchange does not support setting mandatory. Producers cannot be aware of

unrouted messages through the basic.return event. Therefore, before sending delayed

messages, please ensure the corresponding exchange, queue, and routing relationships

exist.

In summary, we strongly recommend against using this plugin and instead using dead letter

queues to indirectly implement Delayed Messages . If you still choose to use this plugin after

understanding its several flaws, we highly recommend keeping the number of delayed

messages as low as possible to avoid triggering high memory load issues.

1. Network partitioning is an issue that must be faced when using RabbitMQ. Network

partitions can lead to inconsistencies in cluster states, and even after network recovery,

RabbitMQ still needs to restart the Broker to resynchronize the state. Tencent Cloud

RabbitMQ currently uses the autoheal mode, which automatically determines a winning

partition and then restarts the Brokers within the non-trusted partition.

2. We recommend that clients take the following measures to minimize the negative impact of

network partitions:

The rabbitmq_delayed_message_exchange plugin implements

delayed messages

Network Partition

Message sender, consider using the mandatory mechanism when sending messages

and have the ability to handle basic.return events to timely handle message routing

failures during network partitions.

Message consumer, during the occurrence/processing of network partitions, there may

be message duplication, and the consumer side needs to handle idempotent

processing.

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 18

Tencent Cloud provides multi-dimensional monitoring metrics such as cluster/node, etc. For

details, see Monitoring and Alarm .

We strongly recommend focusing on node CPU, memory, disk utilization rate, message

backlog, and other indicators and configuring alarms to avoid continuous high server load

affecting cluster stability.

Overview of the implementation principles of message querying: After the Trace plugin is

enabled in the Tencent Cloud console for a VHost, the service component will consume the

corresponding RabbitMQ cluster's trajectory messages, and after a series of processing, it

can realize the feature of querying message trajectories in the console.

Based on the above principle, message tracking depends on the service component

consuming trajectory messages. Since the service component is a underlying public service, it

cannot guarantee that the trajectory messages of RabbitMQ clusters with high traffic can be

consumed in time; if trajectory messages accumulate, it will cause high memory load issues,

affecting RabbitMQ cluster stability.

Therefore, it is not recommended to enable the Trace plugin in production environments,

especially in scenarios where the overall cluster (including all VHosts) sends TPS exceeding

1000. The Trace plugin is recommended for use in low-traffic verification/troubleshooting

scenarios and is not suitable for production environments.

Alarm Configuration

Message Tracking Usage Limitations

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 18

RabbitMQ MQTT Protocol Usage

Instructions
Last updated：2024-08-02 15:49:31

MQTT is a widely used IoT protocol, and RabbitMQ is a widely used open-source message

queue product based on the AMQP 0.9.1 protocol. RabbitMQ supports the MQTT protocol

through plugins, making it easy to support MQTT on a RabbitMQ cluster to cater to IoT and

other business scenarios.

Community Reference Documentation:

1. RabbitMQ versions before 3.11 support MQTT through a plugin: MQTT Plugin — RabbitMQ

2. RabbitMQ version 3.12 natively supports MQTT: Serving Millions of Clients with Native

MQTT | RabbitMQ - Blog

Purchase a RabbitMQ cluster on cloud, Buy Now .

Or build your own RabbitMQ cluster, see details: Downloading and Installing RabbitMQ —

RabbitMQ .

Enable the MQTT plugin by executing the following command on cluster nodes:

Tencent Cloud's RabbitMQ plugin management feature is under development. Currently, you

can submit a ticket to enable the MQTT plugin and set up network operations.

After enabling the MQTT plugin, you can see the newly added port 1883 in the console:

Solution Introduction

Operation step

Step 1: Purchase a cloud or self-built RabbitMQ cluster

Step 2: Enable the MQTT plugin

sudo rabbitmq-plugins enable rabbitmq_mqtt

https://www.rabbitmq.com/mqtt.html
https://blog.rabbitmq.com/posts/2023/03/native-mqtt/
https://blog.rabbitmq.com/posts/2023/03/native-mqtt/
https://buy.cloud.tencent.com/tdmq?protocol=AMQP&rid=1&clusterType=profession&config=eyJ6b25lSWRzIjpbIjEwMDAwMyIsIjEwMDAwNCJdLCJub2RlU3BlYyI6InJhYmJpdC12aXAtYmFzaWMtNSIsInN0b3JhZ2VTaXplIjoyMDAsInZwY3MiOlt7InZwY0lkIjoidnBjLTcwaHNwOXVwIiwic3VibmV0SWQiOiJzdWJuZXQtMTlnbnltd2sifV19
https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/download.html
https://console.cloud.tencent.com/workorder/category

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 18

You can download the commonly used mqttx (MQTTX: Full-featured MQTT client tool) client

tool to verify:

1. Create a new connection, and fill in the address and port. Use the RabbitMQ username and

password for the username and password fields.

2. Create a new subscription to subscribe to the testtopic/# topic messages.

Step 3: Verify the availability of MQTT

https://mqttx.app/zh

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 18

3. Check the RabbitMQ queue status, you can see that a new queue is created in RabbitMQ

for each subscription.

4. Verify message sending and receiving. Send a testtopic/123456 message, and it will be

received immediately through the subscription.

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 18

5. View RabbitMQ monitoring, you can see that the just-created queue has one send-receive

message monitoring record.

6. Verify the interoperability of MQTT upstream messages and RabbitMQ messages. MQTT

messages can be routed to a normal queue for consumption by downstream RabbitMQ

applications.

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 18

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 18

7. Verify the interoperability of RabbitMQ and MQTT downstream messages. RabbitMQ can

send messages, and MQTT can subscribe to them.

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 17 of 18

8. Verification summary: The above verification confirms that the RabbitMQ MQTT plugin

supports normal MQTT message sending and receiving, upstream messaging to

applications, downstream messaging from applications to subscriptions, and

comprehensive monitoring.

How It Works

The implementation principle before version 3.11 was to convert MQTT messages to AMQP

protocol for message sending and receiving.

TDMQ for RabbitMQ

©2013-2024 Tencent Cloud. All rights reserved. Page 18 of 18

The implementation principle after version 3.12 no longer involves AMQP protocol

conversion, theoretically offering better performance.

Notes

We recommend using stable versions like 3.8.x or 3.11.x, which have no known bugs.

Since version 3.12.x is newly released with a reimplemented initial version of MQTT,

our validation found issues such as inaccurate monitoring and occasional RabbitMQ

interoperability problems. Therefore, we do not recommend using version 3.12 in

production environments.

Currently, mainstream MQTT v3 and v3.1 versions are supported, but not v5. RabbitMQ is

expected to support v5 in version 3.13 .

The MQTT protocol uses "/" to separate topics, while the AMQP protocol uses "." to

separate topics (Routingkey). Automatic conversion happens during protocol translation,

so applications should be aware of this difference.

It is not recommended to use anonymous connections or "no login credentials" for MQTT

because the AMQP protocol will automatically convert to the default user guest or

mqtt.default_user, which complicates permission management.

Regarding subscription persistence, note the mapping of MQTT and AMQP queue

persistence.

Transient clients that use transient (non-persistent) messages

Stateful clients that use durable subscriptions (non-clean sessions, QoS1) should

prioritize using image queues. Do not use Quorum Queues features because Quorums

require at least three nodes, and the stability of new features is yet to be verified, so it

is not recommended for now.

Prioritize using image queues. Do not use Quorum Queues features because Quorums

require at least three nodes, and the stability of new features is yet to be verified, so it is

not recommended for now.

https://blog.rabbitmq.com/posts/2023/07/mqtt5
https://blog.rabbitmq.com/posts/2023/07/mqtt5

