

材料研究平台

快速入门

【版权声明】

©2013-2024 腾讯云版权所有

本文档(含所有文字、数据、图片等内容)完整的著作权归腾讯云计算(北京)有限责任公司单独所有,未经腾讯云事先明确书面许可,任何主体不得 以任何形式复制、修改、使用、抄袭、传播本文档全部或部分内容。前述行为构成对腾讯云著作权的侵犯,腾讯云将依法采取措施追究法律责任。

【商标声明】

🔗 腾讯云

及其它腾讯云服务相关的商标均为腾讯云计算(北京)有限责任公司及其关联公司所有。本文档涉及的第三方主体的商标,依法由权利人所有。未经腾 讯云及有关权利人书面许可,任何主体不得以任何方式对前述商标进行使用、复制、修改、传播、抄录等行为,否则将构成对腾讯云及有关权利人商标 权的侵犯,腾讯云将依法采取措施追究法律责任。

【服务声明】

本文档意在向您介绍腾讯云全部或部分产品、服务的当时的相关概况,部分产品、服务的内容可能不时有所调整。 您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定,除非双方另有约定,否则,腾讯云对本文档内容不做任何明示 或默示的承诺或保证。

【联系我们】

我们致力于为您提供个性化的售前购买咨询服务,及相应的技术售后服务,任何问题请联系 4009100100或95716。

文档目录

快速入门 服务授权和创建项目 实验计算 Cloud Shell 数据处理

快速入门 服务授权和创建项目

最近更新时间: 2024-10-11 17:35:11

本文提供简单的操作指引,方便您快速了解如何在 MRP 控制台进行服务授权和创建项目。

步骤1:服务授权

在您开通并登录腾讯云账号后,进入 MRP 控制台,在弹出的页面中开通服务授权。 1. 单击弹窗中的**前往授权**,页面将跳转至访问管理控制台。

当前功能需要您的授权	×
若需使用 材料研究平台 功能,需要您允许 材料研究平台 访问您的部分资源,他们将通过服务角色访问您已授权给予他们 资源以实现当前功能,请您点击前往授权,为 材料研究平台 进行相关服务接口的授权	的
前往授权取消	

2. 单击同意授权,即可创建服务预设角色并授予材料模拟平台相关权限。

角色	
服务授权	
同意赋予 🖡	材料研究平台 权限后,将创建服务预设角色并授予 材料研究平台 相关权限
角色名称	MRP_QCSLinkedRoleInSimulate
角色类型	服务相关角色
角色描述	材料模拟实验
授权策略	预设策略 QcloudAccessForMRPLinkedRoleInSimulate①
同意授	权取消

3. 完成授权后,切换回原标签页,单击**已完成授权**,即可执行后续步骤。

步骤2: 创建项目

完成服务授权后,您可在 MRP 中创建一个项目。 在 MRP 中,项目是一个基础的管理单元,承载着对人员、实验、消耗资源进行管理的功能。用户需在项目中进行实验提交、数据处理等操作。

注意:
创建项目和添加项目成员操作需要主账号权限。

创建项目流程如下:

1. 进入 MRP 控制台,默认显示项目列表页面,单击页面左上角创建项目。

材料研究平台MRP	项目列表		
💾 项目列表 🔺	<u> 왕隆明</u> 开递shell		
• 数据统计	项目名称	创建时间	操作
い 変验列表 ・ こ Cloud Shell	项目1	2019-05-01	进入项目 新增成员 宣看成员
	项目2	2019-05-01	进入项目 新增成员 查看成员

- 2. 填写项目名称,并且选择是否开通 Cloud Shell 服务。
 - 若选择开通 Cloud Shell 服务,用户需选择功能依赖的 容器服务 相关参数。
 - 若不选择开通 Cloud Shell 服务,后续也可在 MRP 项目列表开通该服务。
- 3. 完成项目创建。

步骤3:子账号授权

🕛 说明:

子账号授权为添加项目成员的前置步骤,若用户不需要拉取其他账号作为项目成员,则可忽略该步骤。

子账号首次登录时,主账号需要为子账号授予 QcloudMRPFullAccess 权限。添加权限的方式如下:

- 1. 登录腾讯云 账号信息 页面创建子账号,详情请参见 创建子账号并授权。
- 2. 在策略列表中搜索 QcloudMRPFullAccess 策略,选择相应的策略名称后单击确定。

① 说明: 对于已有的子账号,主账号可以在用户列表页面中找到此账号,并单击授权进行权限修改。

步骤4:添加项目成员

创建项目完成后,添加项目成员的步骤如下:

- 1. 具有 QcloudMRPFullAccess 权限的子账号用户可单击 MRP 控制台项目列表中的申请加入申请加入项目。子账号用户需填写申请信息。
- 2. 子账号申请后,主账号用户单击**新增成员**,弹出申请列表弹窗。主账号可在弹窗中对申请账号进行**通过**和**拒绝**判断。
- 3. 项目成员添加完成后,用户单击查看成员即可查看项目内成员列表。

实验计算

最近更新时间: 2024-12-12 22:16:22

MRP 为用户提供操作简便的可视化操作页面,为材料研究人员提供从实验计算到数据处理的全流程支持。在您使用之前,您需要先创建或加入一个项目。

步骤1: 创建实验

- 1. 进入 MRP 控制台,单击左侧导航栏中的**实验列表**,页面将跳转至实验列表页面。此列表包括用户通过可视化页面和 cloud shell 创建的所有实验。
- 2. 在实验列表页面中,单击左上角创建实验,弹出实验参数填写弹窗。实验参数包括以下内容:
 - 计算软件:必填项,可选择 VASP 和 LAMMPS。
 - **实验名称**:必填项,设置要创建的实验名字。
 - 备注:选填项,用户可在此处记录实验特征、内容、计算目标等备注信息。
 - 父实验:选填项,父子实验是 MRP 设计用来管理实验之间逻辑关系的方法。用户若选择某一实验为当前所创建实验的父实验,则在实验列表中会展示实验之间的逻辑关系,如下图所示。

创建实验 导入结果				实验类型: ALL	• 请输入实验名称,多个	`关键词用" "分割	C	λ Ξ
实验名称	实验ID	实验状态	编辑时间	计算时长	计算软件	操作		
lammps	1175	已完成	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	更多
222	1176	运行中	2019-05-01 12:00:00	2分钟32秒	MASP	创建子实验	查看日志	删除
m	1177	失败 查看详情 🖸	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	删除
2113	1177	草稿	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	删除
▼ 1	1177	草稿	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	删除
▼ 2	1177	草稿	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	删除
▼ 3	1177	草稿	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	删除
▼ 4	1177	草稿	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	删除
5	1177	草稿	2019-05-01 12:00:00	2分钟32秒	VASP	创建子实验	查看日志	删除
共30项					每页显示行 50 🔻	H 4	1/2	н

步骤2:编辑实验

实验创建完成后,页面跳转至实验编辑页面。

VASP 实验

- 针对 VASP 实验,MRP 平台提供两种实验编辑的方法:上传计算文件、手动编辑计算文件。
- 支持的计算文件包括:
 - 必要文件: INCAR、POSCAR、POTCAR、 KPOINTS。
 - 非必要文件: CHGCAR、OPTCELL、WAVECAR、WAVEDER、vdw_kernel.bindat。

- 🕥 腾讯云
 - 对于手动编辑计算文件的用户,MRP 提供多种计算文件的模板供用户使用。用户可单击复制模板,并且粘贴在编辑框中。

	← 创建实验 実验1			
88	上传文件 全部清除			
	INCAR	请输入描述或修改内容	INCAR常用模板	
E	POSCAR		▼ 晶格地障	
	POTCAR			
	KPOINTS		# Global Parameters	制
	WAVECAR		ISTART = 1 (Read existing)	
	CHGCAR		▶ 静态计算	
	OPTCELL			
	WAVEDER		▶ 能带结构、态密度计算	
	vdw_kernel.bin			
E	运行实验存为草稿			

LAMMPS 实验

- 针对 LAMMPS 实验,MRP 平台同样提供两种实验编辑的方法:上传计算文件、手动编辑计算文件。
- 支持的计算文件类型包括: in 文件、势文件、结构文件。
 - in 文件:用户可选择上传或者使用页面右侧提供的模板。用户在页面右侧选择合适的模板,单击**使用此模板**,系统会自动在左侧编辑框中添加 一个名称为 in,内容为模板内容的文件。用户可在编辑框中对该文件进行编辑。

	← 创建实验	实验2			
	上传文件	全部清除			
			请输入描述或修改内容	101文件常用模板 说明	
Ð				✓ 晶体结构模拟	
				晶体结构模拟	
				详细教程见 https://github.com/mrklintschpp/lammps-tutorials/blob/master/LAMMPS-Tutorials-01.ipynb	
				# Global Parameters	使用此模板
				ISTART = 1 (Read existing)	
				▶ AI傘晶体約单轴拉伸	
				▶ AI单晶体的单轴压缩	
				▶ 对称链斜晶界	
				▶ 晶界断裂	
				▶ 高分子链模拟	
⋿	运行实验	存为草稿			

○ 势文件和结构文件: 仅支持用户以上传的形式添加。

步骤3:运行实验

实验编辑完成后,单击页面左下角运行实验,弹出运行参数填写弹窗。针对 VASP 和 LAMMPS 两种软件,运行的参数有所不同,以下会分别说明。

🔗 腾讯云

MRP 平台在实验计算的过程中会调用 云服务器(CVM),用户需要根据实验情况选择云服务器参数。云服务器参数包括以下字段:

字段	内容
计费类型	云服务器的购买参数,包括 按量计费 和 竞价实例 两种。
机器配置	选择云服务器的机型和配置。目前 MRP 支持的服务器机型包括:标准型 SA2、标准型 SA3、标准型 S5、内存型 M5、 GPU 计算型 GN10Xp、GPU 计算型 GN10X。根据用户选择的服务器配置和计费类型,弹窗中会展示出相应的配置单 价。
并行机器数目	计算调用的云服务器数目。MRP 平台建议用户优先选择并行机器数目为1。

除了云服务器参数外,用户需根据实验状况选择计算参数和计算镜像。包括以下字段:

运行实验	字段	内容
VASP	CPU 计算核数	当用户选择 CPU 型腾讯云服务器进行计算时,可以自主定义计算过程中调用的机器 CPU 核数,该核数小 于等于机器的最大核数。若选择 GPU 型腾讯云服务器进行计算,实际计算过程中,调用机器的 CPU 核数 始终等于该 GPU 服务器上V100的卡数。
	VASP 版本	MRP 平台支持多个版本的 VASP 镜像,用户根据自身的计算要求选择合适的 VASP 版本。
LAMMP	CPU 计算核数	当用户选择腾讯云服务器进行计算时,可以自主定义计算过程中调用的机器 CPU 核数,该核数小于等于机 器的最大核数。
S	in 文件	用户需根据编辑的实验内容,选择 LAMMPS 实验中运行所需的 in 文件。

(MRP)	← 创建实验 实验2			
88	上传文件 全部清除			
	INCAB			
		######################################		
≥_		# Find minimum energy fcc (face-centered cubic configuration # Mark Techoon	ic) atomic LAMMPS的編入文件主要分为3类: in文件, 结构文件和劳函数文件, 若结构或劳函数简单, 则通常可以在in文件中设置。 合约文称 后而公别为这个合会的参数和参数取值 参数和合合力间用改成	
		# Syntax, Imp_exe < calc_fcc.i 运行实验	× 包括4mm、内面加力的方面上的包括4mm的空管方手册。含金属4mm(于合称为上的 和数约当样间参考国际的实管方手册。含金属4mm(于合于续入、一行一行数 中的命令国下的顺序。例如、如果需要使用变量器必须在这个命令的前面定义	
		#####################################) ◆ 按量计费 ○ 竟价实例 ③ 模拟过程设置和运行。	
		clear 机器配置 * ④ units metal) 请法择服务器机型 ▼ 请选择服务器配置 ▼ X概拟盒子的边界条件、维度、概拟体系的结构和使用的相互作用力场等信件、输出文件的格式和输出频率等信息:运行部分位于最后,当程序读到这	
		boundary p p 配置费用 atom_style atomic	00.00 元/小时	
		atom_modify map array 并行机器数目	• 1	
		#####################################	• 1	
		region box block 0 1 0 1 0 1 un create_box 1 box	③ vasp_std ○ vasp_gam ○ vasp_ncl	
		create_atoms 1 box replicate 1 1 1	進行 取消	
		pair_style eam/alloy pair_coeff * * Al99.eam.alloy Al		
		neighbor 2.0 bin neigh_modify delay 10 check yes		
Ξ	运行实验存为草稿			

步骤4:运行完成

- 1. 用户选择完运行参数后,单击运行,MRP 将会把实验提交到云服务器中进行计算。
- 2. 实验提交后,用户可在 实验列表页 中查看实验状态,单击"实验名称"可查看实验计算详情。
- 3. 实验计算完成后,用户可查看并处理实验计算数据。详情请参见数据处理。

Cloud Shell

最近更新时间: 2024-10-11 17:35:11

为了满足 Linux 用户的使用需求、编写和运行 Shell/Python 脚本、更自由地处理数据以及使用开源工具,MRP 支持 Cloud Shell 功能。在您使用 之前,您需要先创建或加入一个项目,且该项目已开通 Shell 功能。

步骤1:编辑实验

- 1. 进入 MRP 控制台,单击左侧导航栏中的 Cloud Shell,页面底部将会弹出 Cloud Shell 操作区域。用户可在操作区域内编辑操作指令。Cloud Shell 中的基本操作指令与 Linux 相同,例如:展开目录 1s 、创建文件夹 mkdir 、文件夹跳转 cd 等。
- 2. 在 Cloud Shell 中:
 - 当某目录下存在 INCAR、POSCAR、POTCAR 和 KPOINTS 文件,则该目录可被认为是一个 VASP 计算实验。
 - 当某文件夹中文件总数不超过10个,单个文件的大小不超过100M可被认为是一个 LAMMPS 实验。
- 3. Shell 支持上传文件功能,输入上传命令 rz ,页面中弹出上传弹窗,用户将需要上传的文件拖入弹窗中,单击**确定**即可上传。同时用户上传的文件支持利用 vim 工具进行编辑。

步骤2: 提交实验

- 1. 获取服务器机型信息 mrpcli cvm: 输入命令后,页面将展示 MRP 平台当前可以调用的云服务器相关信息。信息内容包括: 机型、CPU 和 GPU数目、内存、付费模式。其中 POSTPAID_BY_HOUR 和 SPOTPAID 分别表示按量付费和竞价实例,单位均为元/小时; --表示当前的 计费模式下没有可调用的对应机型。
- 2. 提交实验 mrpcli submit : 执行提交命令后,当前目录下的文件会被上传到用户的 对象存储(COS)和 云服务器(CVM)中,提交的实验 会在实验列表中显示。

mrpcli submit 命令参数

参数	是否可选	参数释义
-n	可选	指定腾讯云服务器 CVM 的数量,默认值为1。
-d	必填	device 的缩写,指定腾讯云服务器 CVM 的机型。
-c	可选	指定计费模式,当前包括竞价实例(SPOTPAID)和按量计费(POSTPAID_BY_HOUR)两种取值,默认值为 POSTPAID_BY_HOUR。
-t	可选	type 的缩写,指定计算软件的类型,包括 vasp_std、vasp_gam、vasp_ncl 和 lammps 四种可选类型,默认值 为 vasp_std
– ppn	可选	指定计算时每台腾讯云服务器 CVM 使用的核数,默认值为当前机器的总核数。对 GPU 版本的 VASP 计算,–ppn 的值始终等于 GPU 机型的卡数,不需要额外指定。
-in	可选	提交 lammps 实验时使用,用于指定 lammps 计算时的 in 文件。(为了保证实验的准确性,建议用户填写)。

实验示例

为了用户更好地理解提交实验指令,以下给出提交 VASP 和 LAMMPS 实验的示例:

• VASP 提交示例:

示例:调用2台竞价实例的 SA2.8XLARGE64 的机器做 VASP 计算,每台机器使用的总核数为16,vasp 版本为 vasp_std。

mrpcli submit -n 2 -d SA2.8XLARGE64 -c SPOTPAID -t vasp_std -ppn 16

LAMMPS 提交示例:

示例:调用1台竞价实例的 SA2.8XLARGE64 的机器做 LAMMPS 计算,每台机器使用的总核数为4,in 文件为 in.melt。

nrpcli submit -n 1 -d SA2.8XLARGE64 -c SPOTPAID -t lammps -ppn 4 -in in.melt

步骤3:提交完成

- 1. 用户编辑完成 mrpcli submit 命令,单击回车即可提交实验。
- 2. 实验提交后,用户可在控制台 实验列表 页中查看实验状态,单击"实验名称"可查看实验计算详情。
- 3. 实验计算完成后,用户可查看并处理实验计算数据。详情请参见数据处理。

数据处理

最近更新时间:2024-12-04 15:28:01

MRP 为用户提供自动化的实验数据处理服务,用户可根据自身的需求编辑图片参数,最终导出图片。在使用数据处理功能前,用户在 MRP 系统中成 功运行至少一个实验或上传一个有效结果数据。

步骤1:数据准备

MRP 平台支持两种产生数据的方法。

- 通过实验计算:用户成功运行实验后获得结果数据。详情请参见实验计算、Cloud Shell。用户可在 MRP 控制台实验列表页中查看所有实验, 单击已完成的实验名称,页面跳转至数据处理页面。
- 导入实验结果:用户在 MRP 控制台 实验列表 页中,单击页面左上角导入实验,弹出上传结果弹窗。目前 MRP 仅支持 VASP 实验结果导入。用 户上传有效的 .xml 文件后,页面跳转至数据处理页面。

步骤2:数据处理

由于 VASP 和 LAMMPS 两个软件返回的结果不同,所以对其处理方式也不同,以下将分别介绍。

VASP

- 目前 MRP 支持六类结果图片处理:晶体结构图、能量收敛曲线、能带结构、态密度、能带-态密度、能带投影。用户可利用数据处理页面右上角的 标签切换图片。
- 页面左侧为图片效果展示区域,右侧为参数调整区域。针对不同的图片,MRP 提供不同的参数编辑方式。
- 若不满意目前的图片参数,可单击参数编辑区域右上角重置所有参数(包括重置已上传的数据)。

图式名称	参数编辑方式
晶体结构图	展示视角切换;调整超胞大小。
能量收敛曲线图	图片宽高;图中文字字体字号、XY 轴名称和刻度;图示线宽和平滑度。
能带结构图	选择轨道;上传相关 KPOINTS 文件作为 X 轴刻度;图片宽高;图中文字字体字号、XY 轴名称和刻度;图示线宽和平滑 度;图例位置。
态密度图	选择轨道;图片宽高;图中文字字体字号、XY 名称和刻度;图示线宽和平滑度;图例位置。
能带-态密度图	选择轨道;上传能带/态密度数据;图片宽高;图中文字字体字号、XY 名称和刻度;图示线宽和平滑度;图例位置。
能带投影图	图片宽高;图中文字字体字号、XY 名称和刻度;图示线宽和平滑度;图例位置。

LAMMPS

- 目前 LAMMPS 实验结果页面呈现计算得到的体系结果。包括两部分内容:晶体结构演化轨迹,体系参数演化曲线图。
- 页面以视频的方式呈现晶体结构演化轨迹。页面右侧展示根据日志文件绘制的多种体系参数演化曲线图,用户可利用图片上方的标签进行切换。
- 目前 LAMMPS 的实验结果图示不支持编辑,仅支持下载。

步骤3:图片和数据下载

用户在图片参数编辑完成后,单击图片展示区域右上角的下载,选择合适的下载格式,即可下载当前图片。

- 对于 VASP 实验,用户单击数据处理页面左上角**导出文件**,勾选需要的文件,单击确定,即可下载包含相关文件的压缩包。
- 对于 LAMMPS 实验,用户单击数据处理页面左上角导出结果,即可下载包含所有输入输出数据的压缩包。