
IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 1 of 97

Mobile Live Video Broadcasting

IOS-based Integration

Product Introduction



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 2 of 97

Copyright Notice

©2013-2018 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy

or distribute in any way, in whole or in part, the contents of this document without Tencent Cloud's the

prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing

(Beijing) Company Limited and its affiliated companies. Trademarks of third parties referred to in this

document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and

services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products

or services are subject to change. Specific products and services and the standards applicable to them are

exclusively provided for in Tencent Cloud's applicable terms and conditions.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 3 of 97

Contents

IOS-based Integration

Basic Features

Getting Started

TXLivePusher

TXLivePlayer

TXVodPlayer

Screen Recording (ReplayKit)

Effect Feature

Advanced Feature

SDK Internal Principles

SDK Metric Monitoring

QoS Traffic Control

Coding Parameter Adjustment

Video Data Customization



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 4 of 97

SDK Information

You can update the LVB SDK on Tencent Cloud's official website, which has the following versions:

Version Feature

LVB simplified
version

Supports push, LVB, and VOD

Independent
player version

Supports LVB and VOD

Short video
feature version

Supports short video and VOD

Full-featured
professional
version

Supports push, LVB, VOD, joint broadcasting, and short video

Commercial
enterprise
version

Motion effect sticker, eyes beautifying and face slimming, and green screen
keying-out features are added on the basis of full-featured professional version

In professional version, for example, the decompressed SDK is composed as follows:

IOS-based Integration
Basic Features
Getting Started
Last updated：2018-09-21 19:17:25

https://cloud.tencent.com/document/product/454/7873


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 5 of 97

File Name Description

SDK Contains the SDK directory of framework

Demo
The simplified demo based on framework, including a simple demonstration of UI
and main SDK features. Use Xcode to quickly import the demo and try it out.

iOS package
user
guide.pdf

Describes the basic features of SDK

Xcode Project Settings

1. Supported platform

SDK is supported on iOS 8.0 or above.

2. Development environment

Xcode 9 or above

OS X 10.10 or above

3. Xcode project settings

Here, we use an iOS Application project to show you how to configure SDK in an Xcode project.

3.1 Copy SDK file

In this example, we create an iOS project named HelloSDK and copy the downloaded

 TXLiteAVSDK_Professional.framework  to the project directory. The figure below shows the directory

structure:

3.2 Add framework



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 6 of 97

Add  TXLiteAVSDK_Professional.framework  to the project, and also add the following dependent libraries:

(1) libz.tbd 

(2) libstdc++.tbd 

(3) libresolv.tbd 

(4) Accelerate.framework

3.3 Add header file

Add the header file search path to Build Settings -> Search Paths -> User Header Search Paths. Please

note that this operation is not required. If you do not add the header file search path for

TXLiteAVSDK_Professional, "TXLiteAVSDK_Professional/" needs to be added before the SDK-related

header file when the header file is referenced, as shown below:

#import "TXLiteAVSDK_Professional/TXLivePush.h" 

4. Verification

Call SDK API in the HelloSDK code and obtain SDK version information to verify whether the project is

correctly configured.

4.1 Reference header file

Reference the SDK header file at the beginning of ViewController.m:

#import "TXLiteAVSDK_Professional/TXLiveBase.h" 

4.2 Add calling code

Add the following code to viewDidLoad method:

- (void)viewDidLoad { 
[super viewDidLoad]; 
//Print SDK version information 
NSLog(@"SDK Version = %@", [TXLiveBase getSDKVersionStr]); 
} 

4.3 Compile and run the project

If all of the above steps are performed correctly, the HelloSDK project can be compiled successfully. Run

the App in Debug mode. SDK version information is output in Xcode's Console pane.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 7 of 97

2017-08-11 16:16:15.767 HelloSDK[17929:7488566] SDK Version = 3.0.1185

Now, the project configuration is completed.

Printing LOG

The code used to configure whether to print log from the console and set the log level in TXLiveBase is

described as follows:

setConsoleEnabled 

Configures whether to print the output of SDK from the Xcode console.

setLogLevel 

Configures whether to allow SDK to print local log. By default, SDK writes log to the Documents/logs

folder of the current App. 

To get technical support, you are recommended to enable printing and provide the log file when a

problem occurs. Thank you for your support.

View log file 

To reduce the storage size of logs, Mini LVB SDK encrypts local log files and limits the number of logs.

Therefore, the log decompression tool is required to view the text content of logs.

[TXLiveBase setConsoleEnabled:YES]; 
[TXLiveBase setLogLevel:LOGLEVEL_DEBUG]; 

SDK log callback: You can print the logs to your log file by implementing the method in

 TXLiveBaseDelegate  callback:

-(void) onLog:(NSString*)log LogLevel:(int)level WhichModule:(NSString*)module 

http://dldir1.qq.com/hudongzhibo/log_tool/decode_mars_log_file.py


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 8 of 97

Basics

Push means pushing the collected and encoded audio/video data to your specified cloud video platform.

Since the process involves a large amount of basic audio/video knowledge, you can only achieve desired

results after lots of refinements and optimizations.

Tencent Video Cloud SDK mainly helps you push streams on smart phones. The SDK comes with easy-to-

use APIs which can be driven by a single push URL. 

Notes

Not bound to Tencent Cloud

TXLivePusher
Last updated：2018-08-10 16:20:46



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 9 of 97

The SDK is not bound to Tencent Cloud. If you want to push streams to non-Tencent Cloud

addresses, please set enableNearestIP in TXLivePushConfig to NO first. If you want to push

streams to Tencent Cloud addresses, set enableNearestIP to Yes. Otherwise the push quality may

be affected due to inaccurate ISP DNS.

x86 simulator debugging

Since the SDK uses a great number of advanced features of the iOS system, we cannot ensure

that all the features can function normally under the simulator in the x86 environment.

Furthermore, audio and video are performance-sensitive features, the performance under the

simulator will be greatly different from that on a real phone. Therefore, it is recommended to use

an actual mobile phone for debugging if possible.

Preparations

Acquiring SDK 

Download SDK and follow the instructions in Project Configuration to add the SDK into your

application development project.

Acquiring a test URL 

After activating the LVB service, you can use LVB Console -> LVB Code Access -> Push Generator to

generate a push URL. For more information, please see Acquiring Push/ Playback URL. 

https://cloud.tencent.com/document/product/454/7873
https://cloud.tencent.com/document/product/454/7876
https://console.cloud.tencent.com/live
https://console.cloud.tencent.com/live/livecodemanage
https://cloud.tencent.com/document/product/454/7915


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 10 of 97

Code Interfacing

This guide is specific to camera LVB and is mainly used for scenarios such as beauty show LVB and

event LVB. For information on game LVB, please see relevant documents under this directory.

Step 1: Create a Pusher object

Create a LivePush object, which will be used later to complete the push task.

Before creating a LivePush object, you need to specify a LivePushConfig object to determine the

configuration parameters for various LivePush push phases, such as push resolution, frames per second

(FPS) and GOP (seconds between I frames).

The LivePushConfig is already equipped with some parameters we have repeatedly tuned as a result of

calling alloc. If you do not wish to customize these parameters, you can simply alloc and assign them to

the LivePush object. If you have experience in the related field and want to adjust the default

configuration, you can read the Advanced Guide.

// Create a LivePushConfig object, which is initialized with the basic configuration by default. 
TXLivePushConfig* _config = [[TXLivePushConfig alloc] init];  
//In _config, you can perform certain initialization operations on push parameters (e.g. whitening, har
dware acceleration, and front/rear camera). Note that _config cannot be nil.  
_txLivePush = [[TXLivePush alloc] initWithConfig: _config]; 

Step 2: Rendering view

Next, we need to find a place to display the camera images. In iOS systems, a view is used as the basic

interface rendering unit. Therefore, all you need to do is to prepare a view and pass it to the startPreview

API function of the LivePush object.

Recommended layout!

In fact, the SDK does not directly render the images on the view you provided. Instead, it creates

a subView used for OpenGL rendering upon the view. The size of this subView will be adjusted



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 11 of 97

automatically according to that of the view you provided. 

However, if you want to implement UI controls such as on-screen comment and flower

presenting on the rendered screen, we recommend that you create another view at the same

level to avoid screen overlay.

How to make an animation?

You can freely make animations for a view. But note that the target attribute modified for

animations is transform, instead of frame.

[UIView animateWithDuration:0.5 animations:^{ 
_myView.transform = CGAffineTransformMakeScale(0.3, 0.3); //Shrink by 1/3 
}]; 

Step 3: Start push

After completing Step 1 and Step 2, you can use the following code to start the push:

NSString* rtmpUrl = @"rtmp://2157.livepush.myqcloud.com/live/xxxxxx";  
[_txLivePush startPreview:_myView]; //_myView is the view to be specified in Step 2  



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 12 of 97

[_txLivePush startPush:rtmpUrl]; 

startPush is used to tell the SDK to which push URL the audio/video streams are being pushed.

The parameter of startPreview is the view you need to specify in Step 2; startPreview is used to

associate the interface view control with the LivePush object, thus rendering the images collected by

the mobile phone camera onto the screen.

Step 3+: Audio-only push

For audio-only LVB scenarios, you need to update the push configuration. Perform Step 1 and Step 2 as

described above. Configure audio-only push using the following code and start the push.

//The API only takes effect if it is called before push starts. 
txLivePush.config.enablePureAudioPush = YES; // "YES" means enabling audio-only push. Default is 
"NO". 
[_txLivePublisher setConfig:_config]; // Reset config. 
 
NSString* rtmpUrl = @"rtmp://2157.livepush.myqcloud.com/live/xxxxxx";  
[_txLivePush startPush:rtmpUrl]; 

If you cannot pull streams from playback URLs in rtmp, flv and hls format after enabling audio-only push,

it is because the line configuration is incorrect. Submit a ticket to us and we will help you modify the

configuration.

Step 4: Configure video definition

If this is your first time to use audio-video streams, you are not recommended to set video parameters

such as resolution and bitrate by yourself. This is because improper parameter configuration may have a

negative effect on the final video quality. You can configure image definition for push using

TXLivePusher::setVideoQuality API.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 13 of 97

Recommended parameter settings

Application
Scenario

quality adjustBitrate adjustResolution

Live show
VIDEO_QUALITY_HIGH_DEFINITION or  
VIDEO_QUALITY_SUPER_DEFINITION

NO NO

Mobile game
LVB

VIDEO_QUALITY_SUPER_DEFINITION YES YES

Joint
broadcasting

(primary screen)
VIDEO_QUALITY_LINKMIC_MAIN_PUBLISHER YES YES

Joint
broadcasting
(secondary

screen)

VIDEO_QUALITY_LINKMIC_SUB_PUBLISHER NO NO

Video chat VIDEO_QUALITY_REALTIEM_VIDEOCHAT YES YES

Internal data metrics

quality adjustBitrate adjustResolution Bitrate Range Resolution Range



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 14 of 97

quality adjustBitrate adjustResolution Bitrate Range Resolution Range

STANDARD YES YES 300~800kbps 270x480 ~ 360x640

STANDARD YES NO 300~800kbps 360x640

STANDARD NO NO 800kbps 360x640

HIGH YES YES 600~1500kbps 360x640~540x960

HIGH YES NO 600~1500kbps 540x960

HIGH NO NO 1200kbps 540x960

SUPER YES YES 600~1800kbps 360x640~720x1280

SUPER YES NO 600~1800kbps 720x1280

SUPER NO NO 1800kbps 720x1280

MAIN_PUBLISHER YES YES 600~1500kbps 360x640~540x960

SUB_PUBLISHER NO NO 350kbps 320x480

VIDEOCHAT YES YES 200~800kbps 190x320~360x640

Step 5: Beauty filter



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 15 of 97

Beauty filter 

You can set beauty filter style, dermabrasion level, whitening level, and blushing level using

setBeautyStyle API. You can obtain the best video quality using beauty filter with 540 * 960 resolution

(setVideoQuality - VIDEO_QUALITY_HIGH_DEFINITION):

// beautyStyle : Dermabrasion style. Smooth and Natural are supported. 
// beautyLevel : Dermabrasion level. The values range from 0 to 9. 0 means disabling dermabrasio
n. A higher value means a stronger effect. 
// whitenessLevel : Whitening level. The values range from 0 to 9. 0 means disabling whitening. A h
igher value means a stronger effect. 
// ruddinessLevel : Blushing level. The values range from 0 to 9. 0 means disabling blushing. A high
er value means a stronger effect. 
(void)setBeautyStyle:(int)beautyStyle beautyLevel:(float)beautyLevel  
whitenessLevel:(float)whitenessLevel ruddinessLevel:(float)ruddinessLevel; 

Filter 

The setFilter API can be used to configure filter effects. A filter is actually a histogram file. Our designer

group provides 8 materials which are packaged inside the Demo by default. You can use them as you

like, without considering about copyright issues.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 16 of 97

The setSpecialRatio API is used to configure the effect level of a filter (0-1). A higher value means a

stronger effect. Default is 0.5.

NSString * path = [[NSBundle mainBundle] pathForResource:@"FilterResource" ofType:@"bundle"
]; 
if (path != nil && index != FilterType_None && _txLivePublisher != nil) { 
path = [path stringByAppendingPathComponent:lookupFileName]; 
UIImage *image = [UIImage imageWithContentsOfFile:path]; 
[_txLivePublisher setFilter:image]; 
} 

Use PNG images if you need to customize the filters. Do NOT use JPG images.

Step 6: Control the camera

Switch between front and rear cameras 

The front camera is used by default (this can be changed by modifying the configuration option

frontCamera in LivePushConfig). The camera is switched each time switchCamera is called. Make sure

both LivePushConfig and LivePush objects have been initialized before you switch the camera.

//The front camera is used by default. This can be changed by modifying the configuration option fr
ontCamera in LivePushConfig.  
[_txLivePush switchCamera]; 

Turn the flashlight on or off 

Flashlight is only available for the rear camera. (You can find out whether the front or the rear camera is

used now by checking the frontCamera member in "TXLivePush.h")

if(!frontCamera) { 
BOOL bEnable = YES; 
//Flashlight is on when bEnable is YES; flashlight is off when bEnable is NO 
BOOL result = [_txLivePush toggleTorch: bEnable]; 
//A result of YES means the flashlight is successfully turned on, while NO means the flashlight fails to
be turned on 
} 

Customize manual focus 

Default manual focus logic is provided in the iOS version of the SDK. Although there is no problem

regarding its functionality, the logic usually fails to work when touch events of the screen are occupied.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 17 of 97

Meanwhile, as a principle, we cannot intervene with the free interface arrangement practice. 

A setFocusPosition function API is added to the new version of TXLivePush. You can perform manual

focus based on where your finger is touching.

//If the customer calls this API, the focus trigger logic in the SDK will stop, avoiding repeated trigger
of the focus logic 
- (void)setFocusPosition:(CGPoint)touchPoint; 

Step 7: Set Logo watermark

Recent policies require that LVB videos must be marked with watermarks. With that in mind, we will focus

on this feature that had seemed insignificant before. 

Tencent Video Cloud supports two watermark setting methods. One is to set watermark in the push SDK,

where the videos are marked with watermarks in the SDK before being encoded. Another is to apply

watermarks in the cloud. That is, the cloud resolves videos and adds Logo watermarks to them.

We suggest that you add watermarks with the SDK, because there are three major problems when

watermarking in the cloud: 

(1) This service increases load on the cloud machine and is not free, which will increase your cost. 

(2) It is not ideally compatible with certain situations such as resolution switching during the push

process. This may cause problems like blurred screen. 

(3) It may bring about an extra 3-second video delay, which is caused by the transcode service.

The SDK requires that watermark images are in PNG format, because such images contain transparency

information, which helps better solve issues like jagged screen. (Do not just change the extension of a JPG

image to PNG in Windows and use it as a watermark image. Professional PNG logos need to be processed

by professional art designers)

//Set video watermark 
_config.watermark = [UIImage imageNamed:@"watermark.png"]; 
_config.watermarkPos = (CGPoint){10, 10}; 

Step 8: Local recording

You can start local recording using startRecord API. The recording format is MP4. You can specify the

storage path for the MP4 files using videoPath.

Do not change resolution and soft/hard encoding during recording. Otherwise, exceptions may exist in

the generated videos.

For cloud recording, you only need to concatenate &record=mp4 to the end of the push URL. For more

information, please see Cloud Recording.

https://cloud.tencent.com/document/product/454/7917


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 18 of 97

You will be notified of the generation of a recorded file through TXLiveRecordListener after stopRecord

is called.

-(int) startRecord:(NSString *)videoPath; 
-(int) stopRecord; 

Step 9: Push at the backend

Usually, once the App switches to the backend, the camera's capture function will be temporarily disabled

by the iOS system, which means the SDK cannot continue capturing and encoding audio/video data. This

is what happens if we don't do anything:

Phase 1 (from switching to the backend -> 10 seconds later) - CDN cannot provide video streams to

viewers because it doesn't have any data, and the viewers will see a frozen display.

Phase 2 (10 seconds -> 70 seconds) - The player at the viewer end exits because it haven't received LVB

streams for a long time. Everyone leaves the room.

Phase 3 (after 70 seconds) - The RTMP linkage of the push is disconnected by the server. The VJ needs

to restart LVB to continue.

Sometimes a VJ may have to answer a phone call which will cause a pause. But even a short pause can

bring unsatisfactory interaction experience as described above that leads to exit of viewers from the room.

So, how can we optimize this? 

We introduced a solution since SDK 1.6.1. Below is the result achieved at the viewer end when this



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 19 of 97

solution is used: 

9.1) Adjust XCode configuration 

9.2) Set pauseImg 

Before push starts, you can use the pauseImg API of LivePushConfig to set a waiting picture saying like

"The VJ will come back soon".

// 300 is the maximum duration of the image displayed at the pause of backend push (in sec). 
_config.pauseTime = 300; 
// 10 is the frame rate of the image displayed at the pause of backend push. The minimum is 5 and t



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 20 of 97

he maximum is 20. 
_config.pauseFps = 10; 
// The size of the image displayed at the pause of backend push cannot exceed 1920*1920. 
_config.pauseImg = [UIImage imageNamed:@"pause_publish.jpg"]; 
[_txLivePublisher setConfig:_config]; 

9.3) Set temporary running of App at the backend 

The App goes into sleep mode when it is switched to the backend, and consequently the SDK stops

pushing streams. As a result, viewers can only see a black screen or frozen screen of the live room. The

following code enables the App to run for a few minutes after it is switched to the backend, which is

long enough for a VJ to answer a short phone call.

//Register before pushing message notification 
[[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handleEnterBackground:)  
name:UIApplicationDidEnterBackgroundNotification object:nil]; 
 
//Call beginBackgroundTaskWithExpirationHandler after receiving the notification 
-(void)handleEnterBackground:(NSNotification *)notification 
{ 
[[UIApplication sharedApplication] beginBackgroundTaskWithExpirationHandler:^{ 
}]; 
} 

9.4) Switch to the backend 

In handleEnterBackground mentioned in the last step, call the API function pausePush of TXLivePush.

The SDK cannot capture camera images, but it can keep pushing streams via pauseImg you just

configured.

//Switch to the backend: Add the following to the code from the last step 
- (void)handleEnterBackground:(NSNotification *)notification 
{ 
[[UIApplication sharedApplication] beginBackgroundTaskWithExpirationHandler:^{ 
}]; 
[_txLivePush pausePush]; 
} 

9.5) Switch to the frontend 

After the App is switched to the frontend, (in handleEnterForeground), call the API function

resumePush of TXLivePush to resume capturing camera images. Note: pausePush and resumePush

need to be used in pairs, because they are closely related to SDK internal state. Otherwise, many bugs

will be introduced.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 21 of 97

//Switch to the frontend 
- (void)handleEnterForeground:(NSNotification *)notification 
{ 
[_txLivePush resumePush]; 
} 

Step 10: Stutter alert

What should we do if the network quality is poor at the VJ end?

Should we lower the definition to ensure the smoothness? It will lead to blurry video images with many

mosaics at the viewer end.

Should we drop some of the video frames to maintain the image definition? It will lead to continuous

stutter at the viewer end.

Since neither of the above is satisfactory, what should we do?

We all know that it's impossible to "eat your cake and have it."

You can capture the PUSH_WARNING_NET_BUSY event by using onPlayEvent in TXLivePushListener. This

event indicates that the VJ's network is extremely poor and stutters occur at the viewer end.

You can prompt the VJ with a message indicating "Poor network quality. Please move closer to your

WiFi, and make sure the signal isn't blocked by any wall or obstacle".

Step 11: Push in landscape mode

In most cases, VJs push videos in an LVB by holding the screen in a portrait orientation so that the viewers

can get portrait images. However, sometimes VJs may need to hold the screen in a landscape orientation

to allow the viewers to get landscape images with a wider view. In this case, push in landscape mode is

required. The figures below show the difference between landscape mode and portrait mode in terms of



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 22 of 97

the images at the viewer end. 

Note: The aspect ratios of images at viewer end are different between landscape mode and portrait

mode. In portrait mode, the aspect ratio is 9:16, while in landscape mode, 16:9.

To implement landscape mode, you need to make two configurations:

Adjust image display at the viewer end 

Configure the homeOrientation option in LivePushConfig. It controls whether the aspect ratio of

images at the viewer end is 16:9 or 6:19. You can check whether the aspect ratio is adjusted as

expected by using your player.

Adjust image display at the VJ end 

Next, you need to see whether the local rendering at the VJ end is normal. You can use the

setRenderRotation API in TXLivePush to set the rotation of the images at the VJ end. This API provides

four parameters (0, 90, 180 and 270) for setting the rotation angle.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 23 of 97

Step 12: Background audio mixing

SDK 1.6.1 and later versions support background audio mixing, and VJs can choose to wear or not wear a

headset. You can implement background audio mixing by using the following APIs in TXLivePush:

API Description

playBGM
Passes a piece of music via path. In Mini LVB Demo, we obtain music files from the
iOS local media library

stopBGM Stops background music

pauseBGM Pauses background music

resumeBGM Resumes background music

setMicVolume
Sets microphone volume for audio mixing. It is recommended to add a slider in
the UI to allow VJs to set volume on their own

setBGMVolume
Sets background music volume for audio mixing. It is recommended to add a
slider in the UI to allow VJs to set volume on their own

Step 13: In-ear monitoring/Reverb

In-ear monitoring 

This means when a VJ is singing with a headset on, the headset will feed back the VJ's voice in real

time. This is because the VJ hears his or her own voice transmitted through bone structures in the skull

(solid), while the viewers hear the voice transmitted through the air. These two voices can be very

https://cloud.tencent.com/doc/api/258/6164


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 24 of 97

different, thus the VJ needs to hear the voice effect at the viewer end. 

In-ear monitoring can be enabled through the enableAudioPreview API in TXLivePushConfig. In joint

broadcasting scenarios, it is recommended that only the primary VJ enables this feature while

secondary VJs do not, because it sounds strange in real-time video/audio chats when in-ear monitoring

is enabled.

Reverb 

This means adding certain special effects when using in-ear monitoring, such as KTV, Grand Hall,

Magnetic and Metallic, to make VJs' voice more impressive to viewers. Reverb effects can be set

through setReverbType (supported by version 1.9.2 and later), the member function of TXLivePush.

The following reverb effects are supported: KTV, Small Room, Grand Hall, Low-pitched, Sonorous,

Metallic and Magnetic.

Step 14: End push

Ending a push is simple, but proper cleanup is required. Since only one TXLivePush object can run at a

time, improper cleanup may adversely affect the next LVB.

//End a push with proper cleanup 
- (void)stopRtmpPublish { 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 25 of 97

[_txLivePush stopPreview]; 
[_txLivePush stopPush]; 
_txLivePush.delegate = nil; 
} 

Send messages

This feature is used to deliver certain custom messages from the pusher end to the viewer end via

audio/video lines. It is applicable to the following scenarios: 

(1) Online quiz: The pusher end delivers the questions to the viewer end. Perfect "sound-image-question"

synchronization can be achieved. 

(2) Live show: The pusher end delivers lyrics to the viewer end. The lyric effect can be displayed on the

viewer end in real time and its image quality is not affected by video encoding. 

(3) Online education: The pusher end delivers the operations of Laser pointer and Doodle pen to the

viewer end. The drawing can be performed at the viewer end in real time.

[_answerPusher sendMessage:[mesg dataUsingEncoding:NSUTF8StringEncoding]]; 

onPlayEvent (PLAY_EVT_GET_MESSAGE) of TXLivePlayer can be used to receive messages.

Event Handling

1. Event listening

SDK listens to push related events using the TXLivePushListener proxy. Note that the TXLivePushListener

only listens to push events with prefix PUSH_.

2. Normal events

A notification event is prompted after each successful push. For example, receiving 1003 means that the

system will start rendering the camera pictures.

Event ID Value Description

PUSH_EVT_CONNECT_SUCC 1001 Successfully connected to Tencent Cloud push server



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 26 of 97

Event ID Value Description

PUSH_EVT_PUSH_BEGIN 1002
Handshake with the server completed, everything is
OK, ready to start push

PUSH_EVT_OPEN_CAMERA_SUCC 1003
The pusher has successfully started the camera (this
will take 1-2 seconds on some Android phones)

3. Error notifications

The push cannot continue as the SDK detected critical problems. For example, the user disabled camera

permission for the App so the camera cannot be started.

Event ID Value Description

PUSH_ERR_OPEN_CAMERA_FAIL -1301 Failed to enable camera

PUSH_ERR_OPEN_MIC_FAIL -1302 Failed to enable microphone

PUSH_ERR_VIDEO_ENCODE_FAIL -1303 Video encoding failed

PUSH_ERR_AUDIO_ENCODE_FAIL -1304 Audio encoding failed

PUSH_ERR_UNSUPPORTED_RESOLUTION -1305 Unsupported video resolution

PUSH_ERR_UNSUPPORTED_SAMPLERATE -1306 Unsupported audio sampling rate

PUSH_ERR_NET_DISCONNECT -1307
Network disconnected. Three failed
reconnection attempts have been made.
Restart the push for more retries.

4. Warning events

Some non-fatal errors occurred with SDK can be solved in most cases by throwing warning events to

trigger protection or recovery logics.

WARNING_NET_BUSY 

VJ's network is busy. This warning can be used as a UI message for users (Step 10).

WARNING_SERVER_DISCONNECT 

Push request rejected by backend. This is usually caused by the miscalculated txSecret in the push URL,

or because the push URL is already in use (a push URL can only be used by one pusher at a time).

Event ID Value Description



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 27 of 97

Event ID Value Description

PUSH_WARNING_NET_BUSY 1101
Bad network condition: data upload is
blocked because upstream bandwidth is too
small.

PUSH_WARNING_RECONNECT 1102
Network disconnected. Auto reconnection
has been initiated (no more attempts will be
made after three failed attempts).

PUSH_WARNING_HW_ACCELERATION_FAIL 1103
Failed to start hard encoding. Soft encoding
is used instead.

PUSH_WARNING_DNS_FAIL 3001
RTMP - DNS resolution failed (this triggers a
retry)

PUSH_WARNING_SEVER_CONN_FAIL 3002
Failed to connect to the RTMP server (this
triggers a retry)

PUSH_WARNING_SHAKE_FAIL 3003
Handshake with RTMP server failed (this
triggers a retry)

PUSH_WARNING_SERVER_DISCONNECT 3004
The RTMP server disconnected automatically
(this triggers a retry)



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 28 of 97

Basics

This document describes the LVB playback feature of Tencent Video Cloud SDK. The following are the

basics you must learn before getting started.

LVB and VOD 

The video source of LVB (LIVE) is pushed by VJ in real time. When the VJ stops broadcasting, the video

image on the playback device stops. In addition, the video is broadcasted in real time, no progress bar

is displayed when the player is playing the LVB URL.

The video source of Video On-demand (VOD) is a video file on cloud, which can be played at any time

as long as it has not been deleted from the cloud. You can control the playback progress using the

progress bar. The video playbacks on Tencent Video and Youku Tudou are typical VOD scenarios.

Supported Protocols 

Commonly used LVB protocols are as follows. It is recommended to use an LVB URL based on the FLV

protocol (starting with "http" and ending with ".flv") on Apps: 

Notes

Is there any restriction? 

Tencent Cloud SDK does not impose any restrictions on the source of playback URLs, which means you

can use the SDK to play videos from both Tencent Cloud and non-Tencent Cloud addresses. But the

player in Tencent Video Cloud SDK only supports three LVB video address formats (FLV, RTMP and HLS

(m3u8)) and three VOD address formats (MP4, HLS (m3u8) and FLV).

TXLivePlayer
Last updated：2018-09-26 10:20:50



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 29 of 97

Historical factors 

In earlier versions of the SDK, TXLivePlayer works as the only Class carrying both LVB and VOD features.

With the expansion of the VOD features, we have made VOD a separate set of features carried by

TXVodPlayer starting from SDK 3.5. For the compilation to be successful, VOD features such as seek are

still visible in TXLivePlayer.

Interfacing

Step 1: Create a player

The TXLivePlayer module in Tencent Video Cloud SDK is responsible for the LVB playback feature.

TXLivePlayer _txLivePlayer = [[TXLivePlayer alloc] init]; 

Step 2: Render a view

Next, we need to find a place to display the video images in the player. In iOS system, a view is used as the

basic rendering unit. Therefore you simply need to prepare a view and configure the layout.

//Use setupVideoWidget to bind the view used to determine render area for the player. The first par
ameter "frame" has been deprecated since 1.5.2 
[_txLivePlayer setupVideoWidget:CGRectMake(0, 0, 0, 0) containView:_myView insertIndex:0]; 

Technically, the player does not directly render the video image to the view (_myView in the sample code)

you provided. Instead, it creates a subView used for OpenGL rendering on top of the view.

You can adjust the size of the rendered image by simply adjusting the size and position of the view. The

SDK will automatically adapt the video images to the size and position of the view.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 30 of 97

How to make an animation? 

You can freely make animations for a view. But note that the target attribute modified for

animations is transform, instead of frame.

[UIView animateWithDuration:0.5 animations:^{ 
_myView.transform = CGAffineTransformMakeScale(0.3, 0.3); //Shrink by 1/3 
}]; 

Step 3: Start playback

NSString* flvUrl = @"http://2157.liveplay.myqcloud.com/live/2157_xxxx.flv"; 
[_txLivePlayer startPlay:flvUrl type:PLAY_TYPE_LIVE_FLV]; 

Option
Enumerated
Value

Description

PLAY_TYPE_LIVE_RTMP 0 The URL passed in is an RTMP-based LVB URL

PLAY_TYPE_LIVE_FLV 1 The URL passed in is an FLV-based LVB URL



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 31 of 97

Option
Enumerated
Value

Description

PLAY_TYPE_LIVE_RTMP_ACC 5
Low-latency URL (only for joint broadcasting
scenarios)

PLAY_TYPE_VOD_HLS 3
The URL passed in is an HLS (m3u8)-based
playback URL

About HLS (m3u8) 

Considering its high latency, HLS is not recommended as the playback protocol for playing LVB

videos on your App (although it is suitable for playing VOD videos). Recommended playback

protocols include LIVE_FLV and LIVE_RTMP.

Step 4: Adjust the view

view: size and position 

You can modify the size and position of the video images by adjusting the size and position of the

parameter "view" of setupVideoWidget. The SDK will automatically adapt the video images to the size

and position of the view.

setRenderMode: Full Screen or Self-Adaption

Option Description

RENDER_MODE_FILL_SCREEN

The image spread across the entire screen proportionally, with the
excess parts cut out. There are no black edges in this mode, but the
image may not be displayed completely because of the cut-out
areas.

RENDER_MODE_FILL_EDGE

The image is scaled proportionally to adapt to the longest edge.
Both the width and the height of the scaled image will not extend
beyond the display area and the image is centered. In this mode,
black edges maybe appear in the screen.

setRenderRotation: Screen rotation

Option Description



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 32 of 97

Option Description

RENDER_ROTATION_PORTRAIT
Normal playback (The Home button is located directly below the
image)

RENDER_ROTATION_LANDSCAPE
The image rotates 270° clockwise (the Home button is directly to
the left of the image)

Step 5: Pause playback

Strictly speaking, you cannot pause LVB playback. The so-called pausing LVB playback means freezing

the image and turning off the sound, but the video source keeps updating on the cloud. When you call

resume, the video is resumed from the latest time, which works quite differently from VOD videos that are

paused and resumed in the same way as local video files).

// Pause 
[_txLivePlayer pause]; 
// Resume 
[_txLivePlayer resume]; 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 33 of 97

Step 6: End playback

To exit the current UI at the end of playback, be sure to terminate the view control using

removeVideoWidget. Otherwise, memory leak or flickering screen will occur.

// Stop playback 
[_txLivePlayer stopPlay]; 
[_txLivePlayer removeVideoWidget]; // Be sure to terminate the view control 

Step 7: Receive messages

This feature is used to deliver certain custom messages from the pusher end to the viewer end via

audio/video lines. It is applicable to the following scenarios: 

(1) Online quiz: The pusher end delivers the questions to the viewer end. Perfect "sound-image-question"

synchronization can be achieved. 

(2) Live show: The pusher end delivers lyrics to the viewer end. The lyric effect can be displayed on the

viewer end in real time and its image quality is not affected by video encoding. 

(3) Online education: The pusher end delivers the operations of Laser pointer and Doodle pen to the

viewer end. The drawing can be performed at the viewer end in real time.

You can use this feature as follows:

Switch the enableMessage toggle button in TXLivePlayConfig to YES.

TXLivePlayer listens into messages by TXLivePlayListener, message No.: PLAY_EVT_GET_MESSAGE

(2012).

-(void) onPlayEvent:(int)EvtID withParam:(NSDictionary *)param { 
[self asyncRun:^{ 
if (EvtID == PLAY_EVT_GET_MESSAGE) { 
dispatch_async(dispatch_get_main_queue(), ^{ 
if ([_delegate respondsToSelector:@selector(onPlayerMessage:)]) { 
[_delegate onPlayerMessage:param[@"EVT_GET_MSG"]]; 
} 
}); 
} 
}]; 
} 

Step 8: Screencap



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 34 of 97

You can capture the current image as a frame by calling snapshot. This feature can only capture the

frames from the current live stream. To capture the entire UI, call the API of iOS system.

Step 9: Recode the captured stream

As an extension in LVB playback scenarios, Recording Captured Stream means that during the LVB, the

viewer can capture and record a segment of video by clicking the "Record" button and publish the

recorded content via the video delivery platform (e.g. Tencent Cloud's VOD system) so that the content

can be shared through UGC message on social platforms such as the "Moment" of WeChat.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 35 of 97

//The following code is used to show how to record videos in LVB scenarios 
// 
//Specify a TXVideoRecordListener used to synchronize the progress and result of the recording proc
ess 
_txLivePlayer.recordDelegate = recordListener; 
//Start the recording. It can be placed in the response function of the "Record" button. You can only
record the video source, but not the other contents such as the on-screen comments. 
[_txLivePlayer startRecord: RECORD_TYPE_STREAM_SOURCE];  
// ... 
// ... 
//End the recording. It can be placed in the response function of the "End" button 
[_txLivePlayer stopRecord]; 

The progress of recording process is indicated as a time value by the onRecordProgress of

TXVideoRecordListener.

The recorded file is in the format of MP4, and is informed by onRecordComplete of

TXVideoRecordListener.

TXUGCPublish is used to upload and publish videos. For more information on how to use

TXUGCPublish, please see Short Video - Publish Files.

Adjusting delay

https://cloud.tencent.com/document/product/584/9367#6.-.E6.96.87.E4.BB.B6.E5.8F.91.E5.B8.8310


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 36 of 97

The LVB feature of Tencent Cloud SDK, equipped with the self-developed playback engine, is not

developed based on ffmpeg. Compared with open source players, it performs better in terms of LVB delay

control. We provide three delay adjusting modes, suitable for Live show, game LVB, and combined

scenarios.

Performance comparison among the three modes

Control
mode

Stutter rate
Average
delay

Applicable
scenarios

Principle description

Speedy
mode

High
(relatively
smooth)

2s - 3s
Live show
(online quiz)

It has the upper hand in delay control and
is suitable for delay-sensitive scenarios.

Smooth
mode

Lowest >= 5s
Game LVB
(Penguin e-
Sports)

It is suitable for the LVB of ultra-high-
bitrate games (such as battle royale games)

Auto
mode

Network
adaption

2s - 8s
Combined
scenarios

The better the viewers' network condition,
the lower the latency, and vice versa.

Interface codes of the three modes

TXLivePlayConfig* _config = [[TXLivePlayConfig alloc] init]; 
//Auto mode 
_config.bAutoAdjustCacheTime = YES; 
_config.minAutoAdjustCacheTime = 1;  
_config.maxAutoAdjustCacheTime = 5; 
//Speedy mode 
_config.bAutoAdjustCacheTime = YES; 
_config.minAutoAdjustCacheTime = 1; 
_config.maxAutoAdjustCacheTime = 1; 
//Smooth mode 
_config.bAutoAdjustCacheTime = NO; 
_config.cacheTime = 5; 
 
[_txLivePlayer setConfig:_config]; 
 
//Launch the playback after the configuration 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 37 of 97

For more technical information on how to deal with stutter and delay problems, please see How to

Deal with Stutter <ECI>

Ultra-low latency playback

Tencent Cloud LVB player supports ultra-low delay playback with a delay of about 400ms, which can be

used in scenarios that have high requirement for delay, such as remote prize claw and joint

broadcasting. Notes about this feature:

You don't need to activate this feature 

This feature does not need to be enabled in advance, but it requires that LVB streams reside in Tencent

Cloud. Implementing low-delay linkage across cloud providers is difficult, in more than just technical

terms.

Hotlink protection must be included in the URL 

The playback URL cannot be a normal CDN URL. It must have a hotlink protection signature. For more

information on how to calculate the hotlink protection signature, please see txTime&txSecret.

Specify the playback type as ACC 

Specify the type as PLAY_TYPE_LIVE_RTMP_ACC when calling the startPlay function. The SDK pulls LVB

streams using the RTMP-UDP protocol.

This feature has restrictions on concurrent playback 

It supports 10 channels of concurrent playback at most. Instead of being set due to limited technical

capabilities, this restriction is intended to encourage you to use this feature in interaction scenarios

only (for example, for VJs only in joint broadcasting and for players only in prize claw scenarios), so that

you do not incur any unnecessary costs in the mere pursuit of low delay (The price of low latency lines

is higher than that of CDN lines).

The delay performance of OBS is unsatisfactory 

If the push end is TXLivePusher, set  quality  to MAIN_PUBLISHER or VIDEO_CHAT using

setVideoQuality. If the push end is Windows, use Windows SDK. Pushing with OBS leads to

unsatisfactory delay due to the excessive accumulated data at the pusher end.

https://cloud.tencent.com/document/product/454/7946
https://cloud.tencent.com/document/product/454/9875
https://cloud.tencent.com/document/product/454/7879
https://cloud.tencent.com/document/product/454/7879#step-4.3A-.E8.AE.BE.E5.AE.9A.E6.B8.85.E6.99.B0.E5.BA.A6
https://cloud.tencent.com/document/product/454/7873#Windows


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 38 of 97

Listening to SDK Events

You can bind a TXLivePlayListener to the TXLivePlayer object to receive notifications about the internal

status of SDK through onPlayEvent (Event Notification) and onNetStatus (Quality Feedback).

1. Playback events

Event ID Value Description

PLAY_EVT_CONNECT_SUCC 2001 Connected to the server

PLAY_EVT_RTMP_STREAM_BEGIN 2002
Connected to the server and started to pull stream
(thrown only if the playback address is RTMP)

PLAY_EVT_RCV_FIRST_I_FRAME 2003
The network has received the first renderable video
packet (IDR)

PLAY_EVT_PLAY_BEGIN 2004
Video playback begins. The "loading" icon stops
flashing at this point

PLAY_EVT_PLAY_LOADING 2007
Video playback is being loaded. If video playback is
resumed, this will be followed by a BEGIN event

PLAY_EVT_GET_MESSAGE 2012
Used to receive messages inserted into the audio/video
stream. For more information, please see Message
Reception

Do not hide the playback view after receiving PLAY_LOADING 

The time length between PLAY_LOADING and PLAY_BEGIN can be different (sometimes 5 seconds,

sometimes 5 milliseconds). Some customers consider hiding the view upon LOADING and displaying

the view upon BEGIN, which will cause serious flickering (especially in LVB scenarios). It is

recommended to place a translucent Loading animation on top of the video view.

2. Ending events

Event ID Value Description

PLAY_EVT_PLAY_END 2006 Video playback ends

PLAY_ERR_NET_DISCONNECT -2301
Network is disconnected. Too many failed reconnection
attempts. Restart the playback for more retries



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 39 of 97

How do I tell whether the LVB is over? 

Because of the varying implementation principles of different standards, many LVB streams usually

don't throw end events (2006) and it is expected that when the VJ stops pushing stream, the SDK will

soon find that data stream pull fails (WARNING_RECONNECT) and attempt to retry until the

PLAY_ERR_NET_DISCONNECT event is thrown after three failed attempts.

Therefore, you need to listen to both 2006 and -2301 and use the result as the events to determine the

end of LVB.

3. Warning events

You don't need to consider the following events. We listed the information of these events for

synchronization purposes, according to the SDK white-box design concept

Event ID Value Description

PLAY_WARNING_VIDEO_DECODE_FAIL 2101 Failed to decode the current video frame

PLAY_WARNING_AUDIO_DECODE_FAIL 2102 Failed to decode the current audio frame

PLAY_WARNING_RECONNECT 2103

Network disconnected, automatic
reconnection has started (the
PLAY_ERR_NET_DISCONNECT event will be
thrown after three failed attempts)

PLAY_WARNING_RECV_DATA_LAG 2104

Unstable incoming packet from network: This
may be caused by insufficient downstream
bandwidth, or unstable outgoing stream at
the VJ end

PLAY_WARNING_VIDEO_PLAY_LAG 2105
Stutter occurred during the current video
playback

PLAY_WARNING_HW_ACCELERATION_FAIL 2106
Failed to start hard-decoding; Soft-decoding
is used

PLAY_WARNING_VIDEO_DISCONTINUITY 2107
Current video frames are discontinuous and
frame loss may occur

PLAY_WARNING_DNS_FAIL 3001
RTMP-DNS resolution failed (thrown only if
the playback address is RTMP)

PLAY_WARNING_SEVER_CONN_FAIL 3002
Failed to connect to RTMP server (thrown
only if the playback address is RTMP)



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 40 of 97

Event ID Value Description

PLAY_WARNING_SHAKE_FAIL 3003
RTMP server handshaking failed (thrown only
if the playback address is RTMP)

Video Width and Height

What is the video resolution (in width and height)? 

This question cannot be figured out if SDK only obtains one URL string. To know the width and the height

of a video image in pixels, SDK needs to access the cloud server until enough information is loaded to

analyze the size of the video image. Therefore, SDK can only tell the video information to your application

by notification.

The onNetStatus notification is triggered once per second to provide real-time feedback on the current

status of the pusher. Like a car dashboard, it can offer you a picture about what is happening inside the

SDK, so that you can keep track of current network conditions and video information.

Evaluation parameter Description

NET_STATUS_CPU_USAGE Current CPU utilization (instantaneous)

NET_STATUS_VIDEO_WIDTH Video resolution - Width

NET_STATUS_VIDEO_HEIGHT Video resolution - Height

NET_STATUS_NET_SPEED Current speed at which network data is received

NET_STATUS_NET_JITTER
Network jitter status. A bigger jitter means a more unstable
network

NET_STATUS_VIDEO_FPS The video frame rate of the current stream media

NET_STATUS_VIDEO_BITRATE Video bitrate of the current stream media (in Kbps)

NET_STATUS_AUDIO_BITRATE Audio bitrate of the current stream media (in Kbps)

NET_STATUS_CACHE_SIZE
Buffer size (jitterbuffer). A buffer length of 0 means that stutter will
occur in all probability

NET_STATUS_SERVER_IP IP of the connected server



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 41 of 97

Basics

This document describes the VOD playback feature of Tencent Video Cloud SDK. The following are the

basics you must learn before getting started.

LVB and VOD 

The video source of LVB (LIVE) is pushed by VJ in real time. When the VJ stops broadcasting, the video

image on the playback device stops. In addition, the video is broadcasted in real time, no progress bar

is displayed when the player is playing the LVB URL.

The video source of Video On-demand (VOD) is a video file on cloud, which can be played at any time

as long as it has not been deleted from the cloud. You can control the playback progress using the

progress bar. The video playbacks on Tencent Video and Youku Tudou are typical VOD scenarios.

Supported Protocols 

The following are the commonly used VOD protocols. Now, HLS-based VOD URLs are most popular

(starting with "http" and ending with ".m3u8"): 

Notes

Tencent Cloud SDK does not impose any restrictions on the source of playback URLs, which means you

can use the SDK to play videos from both Tencent Cloud and non-Tencent Cloud addresses. But the

player in Tencent Video Cloud SDK only supports three LVB video address formats (FLV, RTMP and HLS

(m3u8)) and three VOD address formats (MP4, HLS (m3u8) and FLV).

TXVodPlayer
Last updated：2018-08-10 16:20:59



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 42 of 97

Interfacing

Step 1: Create a player

The TXVodPlayer module in Tencent Video Cloud SDK is responsible for the VOD playback feature.

TXVodPlayer *_txVodPlayer = [[TXVodPlayer alloc] init]; 
[_txVodPlayer setupVideoWidget:_myView insertIndex:0] 

Step 2: Render a view

Next, we need to find a place to display the video images in the player. In iOS system, a view is used as the

basic rendering unit. Therefore you simply need to prepare a view and configure the layout.

[_txVodPlayer setupVideoWidget:_myView insertIndex:0] 

Technically, the player does not directly render the video image to the view (_myView in the sample code)

you provided. Instead, it creates a subView used for OpenGL rendering on top of the view.

You can adjust the size of the rendered image by simply adjusting the size and position of the view. The

SDK will automatically adapt the video images to the size and position of the view.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 43 of 97

How to make an animation? 

You can freely make animations for a view. But note that the target attribute modified for

animations is transform, instead of frame.

[UIView animateWithDuration:0.5 animations:^{ 
_myView.transform = CGAffineTransformMakeScale(0.3, 0.3); //Shrink by 1/3 
}]; 

Step 3: Start playback

TXVodPlayer supports two playback modes from which you may choose.

1. By URL 

TXVodPlayer can automatically recognize the playback protocol internally. You only need to pass your

playback URL to the startPlay function.

NSString* url = @"http://1252463788.vod2.myqcloud.com/xxxxx/v.f20.mp4"; 
[_txVodPlayer startPlay:url ]; 

2. By fileID

TXPlayerAuthParams *p = [TXPlayerAuthParams new]; 
p.appId = 1252463788; 
p.fileId = @"4564972819220421305"; 
[_txVodPlayer startPlayWithParams:p]; 

Find the file in VOD Video Management. The appID and fileID are shown in the video details on the

right of the page that opens.

https://console.cloud.tencent.com/video/videolist


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 44 of 97

By using fileID for playback, the player sends request to the backend for the real playback address. You

will receive  PLAY_ERR_GET_PLAYINFO_FAIL  event if the network is exceptional or fileID does not exist.

Otherwise, the request is successful and you will receive  PLAY_EVT_GET_PLAYINFO_SUCC .

Step 4: Adjust the view

view: size and position 

You can modify the size and position of the video images by adjusting the size and position of the

parameter "view" of setupVideoWidget. The SDK will automatically adapt the video images to the size

and position of the view.

setRenderMode: Full Screen or Self-Adaption

Option Description

RENDER_MODE_FILL_SCREEN

The image spread across the entire screen proportionally, with the
excess parts cut out. There are no black edges in this mode, but the
image may not be displayed completely because of the cut-out
areas.

RENDER_MODE_FILL_EDGE

The image is scaled proportionally to adapt to the longest edge.
Both the width and the height of the scaled image will not extend
beyond the display area and the image is centered. In this mode,
black edges maybe appear in the screen.

setRenderRotation: Screen rotation

Option Description

HOME_ORIENTATION_RIGHT Home button on the right

HOME_ORIENTATION_DOWN Home button at the bottom

HOME_ORIENTATION_LEFT Home button on the left

HOME_ORIENTATION_UP Home button at the top



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 45 of 97

Step 5: Control the playback

// Adjusts progress 
[_txVodPlayer seek:slider.value]; 
// Pauses playback 
[_txVodPlayer pause]; 
// Resumes playback 
[_txVodPlayer resume]; 

Step 6: End playback

To exit the current UI at the end of playback, be sure to terminate the view control using

removeVideoWidget. Otherwise, memory leak or flickering screen will occur.

// Stops playback 
[_txVodPlayer stopPlay]; 
[_txVodPlayer removeVideoWidget]; // Be sure to terminate the view control 

Step 7: Screencap



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 46 of 97

You can capture the current image as a frame by calling snapshot. This feature can only capture the

frames from the current live stream. To capture the entire UI, call the API of iOS system.

Step 8: Control the playback speed

The VOD player supports playback speed control. You can set the VOD playback speed, such as 0.5X, 1.0X,

1.2X, 2X, using the API  setRate  to speed up or slow down the playback.

//Set the speed to 1.2X 
[_txVodPlayer setRate:1.2];  
// ... 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 47 of 97

//Start the playback 
[_txVodPlayer startPlay:url]; 

Step 9: Local Cache [UGC version not supported]

In a short video playback scenario, the local caching of video files is a required feature. For viewers,

replaying a video should not consume traffic.

Supported Formats 

SDK supports caching for files in HLS (m3u8) and MP4 formats.

When do I enable the feature? 

By default, caching feature is disabled in the SDK. It is not recommended to enable this feature for

scenarios with low replay rates.

How do I enable the feature? 

To enable this feature, you need to configure two parameters: local cache directory and the number of

videos to be cached.

TXVodPlayConfig _config = [[TXVodPlayConfig alloc] init]; 
 
// Set the cache directory 
_config.cacheFolderPath =  
[NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES) objectAtIn
dex:0]; 
 
// Set the maximum number of cached files to avoid caching too much data. 
_config.maxCacheItems = 10; 
 
[_txVodPlayer setConfig: _config];  
// ... 
//Start the playback 
[_txVodPlayer startPlay:playUrl]; 

Step 10: Preloading

In the short video playback scenario, pre-loading helps to ensure a smooth viewing experience. The URL

of the next video is loaded at the background during the playback of the current video so that users can

play the next video immediately when switching to it, without needing to load it from the start.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 48 of 97

This feature allows the seamless switching in VOD, and can be enabled using the isAutoPlay of

TXVodPlayer by performing the following operations:

// Play video A: If isAutoPlay is set to YES, the video is loaded and played immediately when startPlay
is called. 
NSString* url_A = @"http://1252463788.vod2.myqcloud.com/xxxxx/v.f10.mp4"; 
_player_A.isAutoPlay = YES; 
[_player_A startPlay:url_A]; 
 
// To pre-load video B while playing video A, set isAutoPlay to NO. 
NSString* url_B = @"http://1252463788.vod2.myqcloud.com/xxxxx/v.f20.mp4"; 
_player_B.isAutoPlay = NO; 
[_player_B startPlay:url_B]; 

When video A ends and is automatically or manually switched to video B, call the "resume" function to

play video B immediately.

-(void) onPlayEvent:(TXVodPlayer *)player event:(int)EvtID withParam:(NSDictionary*)param 
{ 
// At the end of playback of video A, directly start the playback of video B for a seamless switching 
if (EvtID == PLAY_EVT_PLAY_END) { 
[_player_A stopPlay]; 
[_player_B setupVideoWidget:mVideoContainer insertIndex:0]; 
[_player_B resume]; 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 49 of 97

} 
} 

Step 11: Pre-roll ads

autoPlay can also be used for pre-roll ads. If autoPlay is set to NO, the player loads the video immediately

but does not play it immediately. Pre-roll ads can be presented during the delay between the loading and

playback. When the ads end, the video is played using resume function.

Step 12: Encrypted Playback [UGC version not supported]

Video encryption is mainly used for online education and other scenarios in need of video copyright

protection. To encrypt video resources, you not only need to make changes on the player, but also to

encrypt and transcode the source video. The engagement of backend and terminal R&D engineers is also

required. For more information, please see Video Encryption Solution .

TXVodPlayer also supports encrypted playback. You can use the solution where identity verification

information is carried in URL . With this solution, you can call the SDK as you would for any other scenario.

You can also use the solution where identity verification information is carried in Cookie. With this

solution, you need to configure the cookie information in the HTTP request head using the headers field

of TXVodPlayConfig.

Step 13: HTTP-REF [UGC version not supported]

The headers in TXVodPlayConfig can be used to set HTTP request headers, such as the Referer field

commonly used to prevent URLs from being copied (Tencent Cloud can provide a more secure hotlink

protection signature solution), and the cookie field used to verify client identity information.

Step 14: Hardware acceleration

For blu-ray (1080p) quality, it is difficult to obtain smooth playback experience just by using software

decoding. Therefore, if your scenario focuses on gaming LVB, it is recommended to enable hardware

acceleration.

It is strongly recommended to perform stopPlay before the switching between software decoding and

hardware decoding, and perform startPlay after switching. Otherwise serious blurred screen problems

may occur.

[_txVodPlayer stopPlay]; 
_txVodPlayer.enableHWAcceleration = YES; 
[_txVodPlayer startPlay:_flvUrl type:_type]; 

Step 15: Multi-bitrate File [UGC version not supported]

https://cloud.tencent.com/document/product/266/9638
https://cloud.tencent.com/document/product/266/9638#.E8.A7.86.E9.A2.91.E6.92.AD.E6.94.BE.E6.96.B9.E6.A1.881.EF.BC.9A.E9.80.9A.E8.BF.87querystring.E4.BC.A0.E9.80.92.E8.BA.AB.E4.BB.BD.E8.AE.A4.E8.AF.81.E4.BF.A1.E6.81.AF
https://cloud.tencent.com/document/product/266/9638#.E8.A7.86.E9.A2.91.E6.92.AD.E6.94.BE.E6.96.B9.E6.A1.882.EF.BC.9A.E9.80.9A.E8.BF.87cookie.E4.BC.A0.E9.80.92.E8.BA.AB.E4.BB.BD.E8.AE.A4.E8.AF.81.E4.BF.A1.E6.81.AF


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 50 of 97

The SDK supports hls in multiple bitrates, allowing users to switch between streams in different bitrates.

After receiving the PLAY_EVT_PLAY_BEGIN event, you can obtain the array of supported bitrates using the

following method:

NSArray *bitrates = [_txVodPlayer supportedBitrates]; //Obtain the array of supported bitrates 

You can switch between different bitrates using  -[TXVodPlayer setBitrateIndex:]  at any time during the

playback. Another stream of data will be pulled during the switch, which may lead to minor stuttering.

The SDK has been optimized for Tencent Cloud's multi-bitrate files, which enables the switch between

bitrates without any stutter.

Progress Display

VOD progress is indicated in two metrics: the loading progress and playback progress. Now, SDK uses

event notification to notify the two metrics.

You can bind a TXVodPlayerListener listener to the TXVodPlayer object. Then the progress notification

calls back your application via the PLAY_EVT_PLAY_PROGRESS event whose additional information

contains the two progress metrics above.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 51 of 97

-(void) onPlayEvent:(TXVodPlayer *)player event:(int)EvtID withParam:(NSDictionary*)param { 
if (EvtID == PLAY_EVT_PLAY_PROGRESS) { 
// Loading progress, in seconds, milliseconds for digits after decimal point 
float playable = [param[EVT_PLAYABLE_DURATION] floatValue]; 
[_loadProgressBar setValue:playable]; 
 
// Playback progress, in seconds, milliseconds for digits after decimal point 
float progress = [param[EVT_PLAY_PROGRESS] floatValue]; 
[_seekProgressBar setValue:progress]; 
 
// Video duration, in seconds, milliseconds for digits after decimal point 
float duration = [param[EVT_PLAY_DURATION] floatValue]; 
// Used to set duration display, etc. 
} 
} 

Event Listening

Besides PROGRESS information, SDK synchronizes much other information for your applications through

onPlayEvent (event notification) and onNetStatus (status feedback):

1. Playback events

Event ID Value Description

PLAY_EVT_PLAY_BEGIN 2004
Video playing begins. The "loading" icon stops flashing at
this point.

PLAY_EVT_PLAY_PROGRESS 2005
This refers to the progress of video playback, including
current playback progress, loading progress and overall
duration.

PLAY_EVT_PLAY_LOADING 2007
The video is being loaded. If video playback is resumed, this
will be followed by a BEGIN event.

2. Ending events

Event ID Value Description

PLAY_EVT_PLAY_END 2006 Video playback ended



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 52 of 97

Event ID Value Description

PLAY_ERR_NET_DISCONNECT -2301
Network is disconnected. Too many failed reconnection
attempts. Restart the playback for more retries

PLAY_ERR_HLS_KEY -2305 Failed to get the HLS decoding key

3. Warning events

You can ignore the following events. They are only used to tell you the internal SDK events.

Event ID Value Description

PLAY_WARNING_VIDEO_DECODE_FAIL 2101 Failed to decode the current video frame

PLAY_WARNING_AUDIO_DECODE_FAIL 2102 Failed to decode the current audio frame

PLAY_WARNING_RECONNECT 2103

Network disconnected and auto reconnection
has started (the PLAY_ERR_NET_DISCONNECT
event will be thrown after three failed
attempts)

PLAY_WARNING_RECV_DATA_LAG 2104

Unstable inbound packet: This may be caused
by insufficient downstream bandwidth, or
inconsistent outbound stream from the VJ
end.

PLAY_WARNING_VIDEO_PLAY_LAG 2105 Stutter occurred during the video playback

PLAY_WARNING_HW_ACCELERATION_FAIL 2106
Failed to start hard decoding. Soft decoding
is used instead.

PLAY_WARNING_VIDEO_DISCONTINUITY 2107
Discontinuous sequence of video frames.
Some frames may be dropped.

PLAY_WARNING_DNS_FAIL 3001
RTMP-DNS resolution failed (thrown only if
the playback address is RTMP)

PLAY_WARNING_SEVER_CONN_FAIL 3002
Failed to connect to the RTMP server (thrown
only if the playback address is RTMP)

PLAY_WARNING_SHAKE_FAIL 3003
Handshake with the RTMP server failed
(thrown only if the playback address is RTMP)

4. Connection events



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 53 of 97

In addition, there are several server connection events used to measure and calculate the time for server

connections. Also, you don't have to be concerned:

Event ID Value Description

PLAY_EVT_CONNECT_SUCC 2001 Connected to the server

PLAY_EVT_RTMP_STREAM_BEGIN 2002
Connected to the server. Pull started. (thrown only if
the playback address is RTMP)

PLAY_EVT_RCV_FIRST_I_FRAME 2003
The network has received the first renderable video
packet (IDR)

5. Resolution events

The following events are used to obtain image change information. You don't have to be concerned

about them.

Event ID Value Description

PLAY_EVT_CHANGE_RESOLUTION 2009 Video resolution changed

PLAY_EVT_CHANGE_ROATION 2011 MP4 video rotation angle

Video Width and Height

What is the video resolution (in width and height)? 

This question cannot be figured out if SDK only obtains one URL string. To know the width and the height

of a video image in pixels, SDK needs to access the cloud server until enough information is loaded to

analyze the size of the video image. Therefore, SDK can only tell the video information to your application

by notification.

The onNetStatus notification is triggered once per second to provide real-time feedback on the current

status of the pusher. Like a car dashboard, it can offer you a picture about what is happening inside the

SDK, so that you can keep track of current network conditions and video information.

Evaluation parameter Description

NET_STATUS_CPU_USAGE Current (instant) CPU utilization

NET_STATUS_VIDEO_WIDTH Video resolution - width

NET_STATUS_VIDEO_HEIGHT Video resolution - height



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 54 of 97

Evaluation parameter Description

NET_STATUS_NET_SPEED Current speed at which network data is received

NET_STATUS_VIDEO_FPS Video frame rate of the current stream media

NET_STATUS_VIDEO_BITRATE Video bitrate of the current stream media (in Kbps)

NET_STATUS_AUDIO_BITRATE Audio bitrate of the current stream media (in Kbps)

NET_STATUS_CACHE_SIZE
Buffer size (jitterbuffer). A buffer with the length of 0 means that
stutter will occur.

NET_STATUS_SERVER_IP IP of the connected server

You can call  -[TXVodPlayer width]  and  -[TXVodPlayer height]  to obtain the current width and height.

Video information

If the video is played via fileID and the request is successful, SDK will inform the upper layer of the request

information. You need to resolve the information in param after receiving the

 PLAY_EVT_GET_PLAYINFO_SUCC  event.

Video information Description

EVT_PLAY_COVER_URL Video cover URL

EVT_PLAY_URL Video playback URL

EVT_PLAY_DURATION Video duration

Offline Download

Offline VOD playback is a commonly needed feature. Users can download videos where there is network

connection, and replay the videos where no network connection is available. The SDK supports playing

local files, but this is limited to single file formats of mp4 and flv. HLS stream media files cannot be played

locally, because they cannot be saved locally. To play HLS offline, you can download HLS locally using

 TXVodDownloadManager .

Step 1: Preparations



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 55 of 97

 TXVodDownloadManager  is designed as a singleton. Therefore, you cannot create multiple download

objects. The following describes how it is used:

TXVodDownloadManager *downloader = [TXVodDownloadManager shareInstance]; 
[downloader setDownloadPath:"<Specify a download directory>"]; 

Step 2: Start download

Start download by either url or fileID. To download via url, simply pass in the download url.

[downloader startDownloadUrl:@"http://1253131631.vod2.myqcloud.com/26f327f9vodgzp125313163
1/f4bdff799031868222924043041/playlist.m3u8"] 

To download via fileID, you need to pass in appID and fileID at least.

TXPlayerAuthParams *auth = [TXPlayerAuthParams new]; 
auth.appId = 1252463788; 
auth.fileId = @"4564972819220421305"; 
TXVodDownloadDataSource *dataSource = [TXVodDownloadDataSource new]; 
dataSource.auth = auth; 
[downloader startDownload:dataSource]; 

See https://cloud.tencent.com/document/product/454/12147#step-

3.3A-.E5.90.AF.E5.8A.A8.E6.92.AD.E6.94.BE for how to obtain fileID

Step 3: Query task information

You need to configure callback delegate before receiving task information.

downloader.delegate = self; 

Possible task callback results are as follows:

1. -[TXVodDownloadDelegate onDownloadStart:] 

The task is started, indicating that the SDK has started downloading the video.

2. -[TXVodDownloadDelegate onDownloadProgress:] 

Task progress. The SDK calls this API frequently during the download. You can update progress display

here.

3. -[TXVodDownloadDelegate onDownloadStop:] 

The task is stopped. After you call  stopDownload  to stop the download, this message indicates that

https://cloud.tencent.com/document/product/454/12147#step-3.3A-.E5.90.AF.E5.8A.A8.E6.92.AD.E6.94.BE


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 56 of 97

the task has been stopped successfully.

4. -[TXVodDownloadDelegate onDownloadFinish:] 

The download is finished, indicating that the video is downloaded completely. The downloaded file

can be played by TXVodPlayer.

5. -[TXVodDownloadDelegate onDownloadError:errorMsg:] 

Download error. This API is called back when the network is disconnected during the download. The

download is stopped at the same time. See  TXDownloadError  for a full list of error codes.

The callback API contains the  TXVodDownloadMediaInfo  object, because downloader can execute

multiple download tasks simultaneously. You can access url or dataSource to determine the download

source, and to obtain information such as download progress and file size.

Step 4: Stop download

To stop the download, call the  -[TXVodDownloadManager stopDownload:]  method, with the object

returned via  -[TXVodDownloadManager sartDownloadUrl:]  as the parameter.** The SDK supports

resuming download from breakpoint. If the download directory is not changed, you can download the file

again from the point where the download is suspended.

If you do not need to resume the download, call the  -[TXVodDownloadManager deleteDownloadFile:] 

method to delete the file and free the storage.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 57 of 97

Overview

Screencap is a feature newly introduced in iOS 10. Based on the ReplayKit screencap video save feature on

iOS 9, Apple added real-time video stream LVB feature. For official introduction, see Go Live with

ReplayKit.

The screencap process is divided into two sections: Game App and LVB App. When screen capping on iOS,

the system does not directly run the LVB App. Instead, the LVB App provides service for the game App in

the form of an extension. There are two extensions. One is used to display custom interface, which

displays user information and allows the user to enter titles and so on. When the user taps on the OK

button, the system switches to the other extension to send screen data. This extension cannot display UI.

The structure of the entire screencap LVB process is shown below.

As an extension, Broadcast Upload has its own process. To ensure system performance, iOS systems

allocate less resource to extensions, and extensions that occupy too much memory will be killed. Based on

Screen Recording (ReplayKit)
Last updated：2018-08-10 16:21:04

http://devstreaming.apple.com/videos/wwdc/2016/601nsio90cd7ylwimk9/601/601_go_live_with_replaykit.pdf


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 58 of 97

the high quality, low latency of the original LVB feature, Tencent Cloud RTMP SDK further reduced system

resource usage to ensure extension stability.

Try out the Feature

The recording process can only be completed when screencap is supported by both the game and LVB

software. For the LVB software, it is recommended that you use our "Mini LVB". Download link 

As iOS 10 becomes widely used, the number of games that support screencap is increasing as well. If you

have no games that support screencap, you can download the game called "War of Tanks", touch the LVB

option above and select "Mini LVB" to start screencap. 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 59 of 97

Development Environment Preparation

Xcode Preparation

Screencap LVB is a new feature provided by iOS 10, so you'll need Xcode 8 or higher version, and the

mobile phone must be upgraded to iOS 10 or above. Screencap is not supported on a simulator.

Create LVB Extension

In the current project, select "New" -> "Target...", and then "Broadcast Upload Extension", as shown in the

figure

Configure Product Name. Remember to check "Include UI Extension". Click "Finish" and you will see two

more directories and two more targets, LVB extension and UI extension, added to the project.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 60 of 97

The Replay Kit of iOS 10 supports two LVB modes

1. The video and audio are encoded into a short mp4 file and handed over to the LVB extension

2. The original screen and audio data is handed over to the extension

The first mode has high latency and poor flexibility but the extension App doesn't have to be concerned

with encoding issues; while the second mode allows you to customize what you send and has high

configurability. Currently, the SDK only supports the second mode. Since Xcode uses the first mode by

default, you need to modify the Info.plist of the LVB extension as shown in the figure



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 61 of 97

Import RTMP SDK

You need to import TXRTMPSDK.framework for the LVB extension. Importing framework to extension is

the same as importing framework to main App, and dependent system libraries for the SDK are also the

same. For more information, please see "Project Configuration (iOS)" on the official Tencent Cloud

website.

Interfacing Process

Step 1: Write UI Extension

When the game App initializes LVB process, we first enter the UI extension. Here, you can customize the

interface according to your product demand. If you are required to log in to the LVB software, you'd

better first check the login status here, because interfaces cannot be displayed during LVB.

When the user confirms to initialize LVB, the UI extension can launch the LVB extension and attach certain

custom parameters. Sample code for launching LVB extension is provided below

// Called when the user has finished interacting with the view controller and a broadcast stream can s
tart 
- (void)userDidFinishSetup { 
 
// Broadcast url that will be returned to the application 
NSURL *broadcastURL = [NSURL URLWithString:@"http://broadcastURL_example/stream1"]; 
 
// Service specific broadcast data example which will be supplied to the process extension during bro
adcast 
NSString *userID = @"user1"; 

https://cloud.tencent.com/document/product/454/7876


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 62 of 97

NSString *endpointURL = @"rtmp://2157.livepush.myqcloud.com/live/xxxxxx"; 
NSDictionary *setupInfo = @{ @"userID" : userID, @"endpointURL" : endpointURL }; 
 
// Set broadcast settings 
RPBroadcastConfiguration *broadcastConfig = [[RPBroadcastConfiguration alloc] init]; 
broadcastConfig.clipDuration = 5.0; // deliver movie clips every 5 seconds 
 
// Tell ReplayKit that the extension is finished setting up and can begin broadcasting 
[self.extensionContext completeRequestWithBroadcastURL:broadcastURL 
broadcastConfiguration:broadcastConfig setupInfo:setupInfo]; 
} 

Step 2: Create Push Object

The project template has already provided a basic framework for the LVB extension. You simply need to

add the follow code before SampleHandler.m

#import "SampleHandler.h" 
#import "TXRTMPSDK/TXLiveSDKTypeDef.h" 
#import "TXRTMPSDK/TXLivePush.h" 
#import "TXRTMPSDK/TXLiveBase.h" 
static TXLivePush *s_txLivePublisher; 

s_txLivePublisher is the object we use for the push. The best location for instantiating s_txLivePublisher is

in the  -[SampleHandler broadcastStartedWithSetupInfo:]  method. After starting the pusher, the UI

extension will call back this function and start LVB process.

- (void)broadcastStartedWithSetupInfo:(NSDictionary<NSString *,NSObject *> *)setupInfo { 
if (s_txLivePublisher) { 
[s_txLivePublisher stopPush]; // End the previous push before starting the next one 
} 
 
TXLivePushConfig* config = [[TXLivePushConfig alloc] init]; 
config.customModeType |= CUSTOM_MODE_VIDEO_CAPTURE; 
config.autoSampleBufferSize = YES; 
 
config.customModeType |= CUSTOM_MODE_AUDIO_CAPTURE; 
config.audioSampleRate = 44100; 
config.audioChannels = 1; 
 
s_txLivePublisher = [[TXLivePush alloc] initWithConfig:config]; 
NSString *pushUrl = setupInfo[@"endpointURL"]; // setupInfo is from the UI extension 
[s_txLivePublisher startPush:pushUrl];  
} 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 63 of 97

You cannot use default configuration for the "config" of s_txLivePublisher. You need to customize video

and audio capture configuration. For more information on how to set custom capture and how it works,

please see the "RTMP Push - Advanced Operation" section in Tencent Cloud documentation.

Enable autoSampleBufferSize for videos. Once this option is enabled, you will not need to worry about

the resolution of the push, and the SDK will set the encoder automatically based on the input resolution.

If you disable this option, you will need to customize the resolution

It is recommended to enable autoSampleBufferSize to achieve optimal performance. This also

eliminates your need to select landscape or portrait mode.

Step 3: Customize Resolution

You can specify any resolution if you don't want to use the output resolution of the screen. The SDK will

adjust the video size based on the resolution you specified

// Specify 640*360 
config.autoSampleBufferSize = NO; 
config.sampleBufferSize = CGSizeMake(640, 360); 

Step 4: Send Video

Replay Kit transfers both the audio and video to  -[SampleHandler processSampleBuffer:withType] 

though callback

- (void)processSampleBuffer:(CMSampleBufferRef)sampleBuffer withType:(RPSampleBufferType)sam
pleBufferType { 
switch (sampleBufferType) { 
case RPSampleBufferTypeVideo: 
// Handle audio sample buffer 
{ 
[s_txLivePublisher sendVideoSampleBuffer:sampleBuffer]; 
return; 
} 
} 

Video sampleBuffer can be sent simply by calling the  -[TXLivePush sendVideoSampleBuffer:] .

The distribution frequency of sampleBuffer by the system is not fixed. If the screen remains static, it will

probably take a long time before a frame of data is sent. Given this situation, the SDK implements the

frame interpolation logic internally to reach the frame rate (20 fps by default) set in config.

https://cloud.tencent.com/document/product/454/7884


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 64 of 97

Step 5: Send Audio

Audio is also sent to LVB extension through  -[SampleHandler processSampleBuffer:withType] . The

difference is that there are two channels of data for audio. One channel comes from inside the App, and

the other comes from the microphone.

switch (sampleBufferType) { 
case RPSampleBufferTypeAudioApp: 
// Audio from inside the App 
 
break; 
case RPSampleBufferTypeAudioMic: 
// Audio from Mic. 
{ 
// Send the audio data from Mic 
[s_txLivePublisher sendAudioSampleBuffer:sampleBuffer]; 
} 
break; 
} 

Sending two channels of data at the same time is not supported by the SDK. You need to select which

audio to use as needed.

Step 6: Pause and Resume

The current LVB can be paused in game Apps, which will prevent Samples buffer from being distributed to

the LVB extension, till the user resumes the LVB. In custom capture mode, the SDK requires continuous

external data source; otherwise the server will disconnect the LVB due to not receiving data for a long

time.

The frame interpolation logic for video is provided in the SDK. The last frame of data will be resent when

there is no video. However, no frame interpolation logic is provided for audio, video and audio will go out

of sync if no data is provided for SDK. You can use the following simple code to send mute data to the

SDK during a pause.

static dispatch_source_t s_audioTimer; 
 
- (void)pause { 
if (s_audioTimer) { 
return; 
} 
 
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
s_audioTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue); 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 65 of 97

dispatch_source_set_timer(s_audioTimer,DISPATCH_TIME_NOW,20*NSEC_PER_MSEC, 0); 
dispatch_source_set_event_handler(s_audioTimer, ^{ 
static uint8_t _audioData[2048] = {0}; 
[s_txLivePublisher sendCustomPCMData:_audioData len:sizeof(_audioData)]; 
}); 
dispatch_resume(s_audioTimer); 
} 
 
- (void)resume { 
if (s_audioTimer) { 
dispatch_cancel(s_audioTimer); 
s_audioTimer = 0; 
} 
} 
 
- (void)broadcastPaused { 
// User has requested to pause the broadcast. Samples will stop being delivered. 
[self pause]; 
} 
 
- (void)broadcastResumed { 
// User has requested to resume the broadcast. Samples delivery will resume. 
[self resume]; 
} 

Step 7: SDK Event Handling

Event Listening

You need to configure the "delegate" attribute of  TXLivePush  for SDK event listening. This delegate

follows  TXLivePushListener  protocol. Underlying events will be called back through the  -(void)

onPushEvent:(int)EvtID withParam:(NSDictionary*)param  API.

Due to system restrictions, LVB extension cannot trigger interface action, and thus cannot actively inform

the user of a push exception. Usually, the following events will be received during screencap.

Normal Events

Event ID Value Description

PUSH_EVT_CONNECT_SUCC 1001 Successfully connected to Tencent Cloud push server

PUSH_EVT_PUSH_BEGIN 1002
Handshake with the server completed, everything is OK,
ready to start push



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 66 of 97

Usually no action is needed for normal events.

Error Events

Event ID Value Description

PUSH_ERR_VIDEO_ENCODE_FAIL -1303 Video encoding failed

PUSH_ERR_AUDIO_ENCODE_FAIL -1304 Audio encoding failed

PUSH_ERR_UNSUPPORTED_RESOLUTION -1305 Unsupported video resolution

PUSH_ERR_UNSUPPORTED_SAMPLERATE -1306 Unsupported audio sampling rate

PUSH_ERR_NET_DISCONNECT -1307

Network disconnected. Reconnection attempts
have failed for three times, thus no more
retries will be performed. Please restart the
push manually

Video encoding failure does not affect push process directly. The SDK will handle it to ensure success of

the subsequent video encoding.

Warning Events

Event ID Value Description

PUSH_WARNING_NET_BUSY 1101
Bad network condition: data upload is
blocked because uplink bandwidth is too
small

PUSH_WARNING_RECONNECT 1102
Network disconnected, automatic
reconnection has started (auto reconnection
will be stopped if it fails for three times)

PUSH_WARNING_HW_ACCELERATION_FAIL 1103
Failed to start hardware encoding. Software
encoding is used

PUSH_WARNING_DNS_FAIL 3001
RTMP - DNS resolution failed (this will
trigger retry process)

PUSH_WARNING_SEVER_CONN_FAIL 3002
Failed to connect to the RTMP server (this
will trigger retry process)

PUSH_WARNING_SHAKE_FAIL 3003
RTMP server handshake failed (this will
trigger retry process)



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 67 of 97

Event ID Value Description

PUSH_WARNING_SERVER_DISCONNECT 3004
The RTMP server actively disconnected (this
will trigger retry process)

A warning event indicates that the server has encountered some internal problems, but they will not affect

the push.

For the definition of all events, see the header file: "TXLiveSDKEventDef.h"

Step 8: End Push

To end the push, Replay Kit will call the  -[SampleHandler broadcastFinished] . Sample code is provided

below

- (void)broadcastFinished { 
// User has requested to finish the broadcast. 
if (s_txLivePublisher) { 
[s_txLivePublisher stopPush]; 
s_txLivePublisher = nil; 
} 
} 

The LVB extension process may be recovered by the system after a push, make sure to perform proper

cleanup work.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 68 of 97

Special Effects (Eye Enlarging, Face Slimming,
Dynamic Effect, Green Screen)

Feature Description

Eye enlarging, face slimming, dynamic sticker, green screen and other special effects are licensed features

developed based on the face recognizing technology of YouTu Lab and the beautifying technology of

Pitu. By working with YouTu Lab and Pitu, Tencent Cloud Mini LVB integrates these special effect features

into the image processing process of RTMP SDK to achieve better video effects.

Integration Procedure

Application procedure:

1. Submit a ticket or contact one of our customer service representatives by calling 400-9100-100.

2. Download the sample form, fill in the information, and send it to jerryqian@tencent.com and copy it to

your customer service representative (important).

3. Ask your customer service representative to confirm the e-mail by replying to it. Otherwise, the e-mail

may be treated as a harassing e-mail.

4. As soon as the e-mail is confirmed, we will apply for a trial License from Youtu Lab and send the License

along with the package decompression password to you.

Two types of License:

Trial License: It is valid for one month, and used to debug and test the dynamic effects SDK. If your

App is published with a trial License, the dynamic effects will not work normally after the License

expires.

Effect Feature
Last updated：2018-08-10 16:21:08

https://mc.qcloudimg.com/static/archive/766c9092424d0440a31c56c81f34a629/archive.xlsx


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 69 of 97

Official License: The validity period (usually one year) is subject to the contract.

Version Download

You can download the compressed SDK package (VIP version) at the bottom of the RTMP SDK package.

The compressed SDK package is encrypted, and you can obtain the decompression password & License in

the integration procedure. After the package is decompressed successfully, you will get  Demo  and  SDK .

Resources related to special effects are placed in SDK/Resource.

You can distinguish the VIP version and non-VIP version by viewing the SDK's bundler id. > - The

bundler id of the non-VIP version is com.tencent.TXRTMPSDK, and that of the VIP version

com.tencent.TXRTMPSDK.pitu.

VIP and non-VIP SDKs can also be intuitively distinguished by size, because VIP SDK is much greater

than non-VIP SDK.

Xcode Project Settings

For more information, please see Project Configuration

1. Add frameworks

The VIP edition requires to link with additional system frameworks.

1. AssetsLibrary.framwork

2. CoreMedia.framework

3. Accelerate.framework

4. Metal.framework

2. Add link parameters

Under Build Setting -> Other Link Flags, add the  -ObjC  option.

3. Add Dynamic Effect Resources

Add the following files in SDK/Resource to the project

https://cloud.tencent.com/document/product/454/7873
https://cloud.tencent.com/document/product/454/7876


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 70 of 97

1. 3DFace

2. detector.bundle

3. FilterEngine.bundle

4. model

5. PE.dat

6. poseest.bundle

7. RPNSegmenter.bundle

8. ufa.bundle

Add the SegmentationShader.metal file under Demo/TXLiteAVDemo/Resource/Beauty/pitu/data/ to the

project

1. SegmentationShader.metal

4. Add dynamic effect resources

Add the resources under the Resource of the zip package to the project as groups reference. Note:

handdetect, handtrack, and res18_3M are to be added as folder reference. You can directly add

SegmentationShader.metal under Demo/TXLiteAVDemo/Resource/Beauty/pitu/data/. Specific operations

are shown below: 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 71 of 97



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 72 of 97

These resources must be added correctly. Otherwise, a crash may occur when the material is switched to

the face-transforming type.

5. Import license files

The license of the VIP version needs to be verified to enable some of the features. You can contact one of

our customer service representatives to apply for a 30-day free license for debugging. 

After you obtain a license, name the license as YTFaceSDK.licence and place it in the project as shown in

the figure above.

Each license is bound with a specific Bundle Identifier. Modifying the Bundle Identifier of the App

will result in verification failure.

YTFaceSDK.licence cannot be renamed or modified.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 73 of 97

You do not need to apply for licenses for iOS and Android separately. One license can be used to

authorize the bundleid in iOS and the packageName in Android simultaneously.

Feature Calling

1. Dynamic sticker

Example:



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 74 of 97

A dynamic effect template is a directory, which contains a lot of resource files. The directory number and

file size of each dynamic effect template vary depending on the complexity of the dynamic effect.

The sample code in Mini LVB downloads the dynamic effect resources from the backend, and then the

resources are decompressed to the Resource directory. You can find the download addresses of the

dynamic effect resources and thumbnails in the Mini LVB code in the following format:

 https://st1.xiangji.qq.com/yunmaterials/{Dynamic Effect Name}.zip 

 https://st1.xiangji.qq.com/yunmaterials/{Motion Effect Name}.png 

You are strongly recommended to put the dynamic effect resources on your own servers to avoid being

affected by Mini LVB changes.

When the decompression is completed, you can enable the dynamic effect via the following API.

/** 
* Select the dynamic effect 
* 
* @param tmplName: Dynamic effect name 
* @param tmplDir: The directory in which the dynamic effect locates 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 75 of 97

*/ 
- (void)selectMotionTmpl:(NSString *)tmplName inDir:(NSString *)tmplDir; 

2. AI background keying-out

Example:



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 76 of 97

The resources for AI background keying-out need to be downloaded, and the API is the same as that of

dynamic effects.

/** 
* Select background keying-out 
* 
* @param tmplName: Dynamic effect name 
* @param tmplDir: The directory in which the dynamic effect locates 
*/ 
- (void)selectMotionTmpl:(NSString *)tmplName inDir:(NSString *)tmplDir; 

3. Beautifying

/* setEyeScaleLevel Set eye enlargement level. This parameter is valid only for value-added version. 
* Parameter: 
* eyeScaleLevel : Available value range for eye enlargement level: 0-9. 0 means disabling eye enlarge
ment. A higher value means a stronger effect. 
*/ 
-(void) setEyeScaleLevel:(float)eyeScaleLevel; 
 
/* setFaceScaleLevel Set face slimming level. This parameter is valid only for value-added version. 
* Parameter: 
* faceScaleLevel :Available value range for face slimming level: 0-9. 0 means disabling face slimming.
A higher value means a stronger effect. 
*/ 
-(void) setFaceScaleLevel:(float)faceScaleLevel; 
 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 77 of 97

/* setFaceVLevel Set V-shaped face level. This parameter is valid only for value-added version. 
* Parameter: 
* faceVLevel : Available value range for V-shaped face level: 0-9. 0 means disabling V-shaped face. A
higher value means a stronger effect. 
*/ 
- (void) setFaceVLevel:(float)faceVLevel; 
 
/* setChinLevel Set chin stretching or contracting level. This parameter is valid only for value-added v
ersion. 
* Parameter: 
* chinLevel : Available value range for chin stretching or contracting level: -9-9. 0 means disabling chi
n stretching or contracting. -9 means stretching the chin to the maximum extent. 9 means contractin
g the chin to the maximum extent. 
*/ 
- (void) setChinLevel:(float)chinLevel; 
 
/* setFaceShortLevel Set short face level. This parameter is valid only for value-added version. 
* Parameter: 
* faceShortlevel :Available value range for short face level: 0-9. 0 means disabling short face. A higher
value means a stronger effect. 
*/ 
- (void) setFaceShortLevel:(float)faceShortlevel; 
 
/* setNoseSlimLevel Set nose narrowing level. This parameter is valid only for value-added version. 
* Parameter: 
* noseSlimLevel : Available value range for nose narrowing level: 0-9. 0 means disabling nose narrowi
ng. A higher value means a stronger effect. 
*/ 
- (void) setNoseSlimLevel:(float)noseSlimLevel; 

4. Green screen

You need to prepare an mp4 file in advance and call the following API to enable the green screen effect.

/** 
* Set green screen file 
*  
* @param file: Path to the green screen mp4 is supported. nil means disabling green screen. 
*/ 
-(void)setGreenScreenFile:(NSURL *)file; 

Troubleshooting



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 78 of 97

1. Why does the project failed to be compiled?

1. Check whether dependent libraries AssetsLibrary.framwork, CoreMedia.framework,

Accelerate.framework, and Metal.framework have been added.

2. What should I do if crash occurs during project operation?

1. Check whether -ObjC is configured in the project.

2. Check whether Metal API Validation is set to Disabled.

3. Why don't the dynamic effects take effect?

1. Check if YTFaceSDK.licence is named correctly.

2. Check if the license expired (download Query Tool or contact our developers).

3. Check whether the Pitu resources are added correctly. Note that handdetect, handtrack, and

res18_3M must be added as folder reference. The easiest way is to compare the dynamic effect

files added in your project with those in our demo.

4. If you update the license, make sure to use the latest license. If you are not sure, check the

validity period of the license (download Query Tool or contact our developers). If the license in

the project is changed, clean the project and delete the local installation package for

compilation.

Query Tool is an xcode project, which is only supported on Mac. Other query methods will be available soon.

https://mc.qcloudimg.com/static/archive/9c0f8c02466d08e5ac14c396fad21005/PituDateSearch.zip
https://mc.qcloudimg.com/static/archive/9c0f8c02466d08e5ac14c396fad21005/PituDateSearch.zip
https://mc.qcloudimg.com/static/archive/9c0f8c02466d08e5ac14c396fad21005/PituDateSearch.zip


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 79 of 97

TXLivePusher

TXLivePlayer

Advanced Feature
SDK Internal Principles
Last updated：2018-07-23 15:22:47



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 80 of 97



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 81 of 97

TXLivePushListener

1. How to obtain push status?

The onNetStatus callback of TXLivePushListener synchronizes the status metrics inside SDK at an interval

of 1-2 seconds. The major metrics are as follows:

Push Status Description

NET_STATUS_CPU_USAGE
CPU usage of the current process and overall CPU usage of the
device

NET_STATUS_VIDEO_WIDTH Width of the current video (in pixels)

NET_STATUS_VIDEO_HEIGHT Height of the current video (in pixels)

NET_STATUS_NET_SPEED Current transmission speed (in Kbps)

NET_STATUS_VIDEO_BITRATE
The output bitrate of the current video encoder, i.e., the amount
of video data produced by the encoder per second (in Kbps)

SDK Metric Monitoring
Last updated：2018-07-23 15:47:21



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 82 of 97

Push Status Description

NET_STATUS_AUDIO_BITRATE
The output bitrate of the current audio encoder, i.e., the amount
of video data produced by the encoder per second (in Kbps)

NET_STATUS_VIDEO_FPS
Current video frame rate, i.e., the number of frames produced by
the video encoder per second

NET_STATUS_CACHE_SIZE
Accumulated audio/video data size. A value ≥ 10 indicates the
current upstream bandwidth is not enough to consume the
audio/video data produced.

NET_STATUS_CODEC_DROP_CNT

The number of global packet drops. To avoid a vicious
accumulation of delays, the SDK actively drops packets when the
accumulated data exceeds the threshold. A higher number of
packet drops means a more severe network problem.

NET_STATUS_SERVER_IP The IP address of the connected push server

2. Which status metrics can be used for reference?

BITRATE vs NET_SPEED

BITRATE( = VIDEO_BITRATE + AUDIO_BITRATE ) refers to the number of audio/video data bits produced

by the encoder for push per second; NET_SPEED refers to the number of data bits pushed actually per

second.

If BITRATE == NET_SPEED in most cases, the push quality is very good;

If BITRATE >= NET_SPEED for a long time, audio and video data will accumulate on VJ's mobile phone

and make CACHE_SIZE increase to such a point that the data is dropped by SDK to generate

DROP_CNT.

CACHE_SIZE & DROP_CNT

In case of a slow upload speed at VJ end, it is likely that BITRATE >= NET_SPEED. In this case, the

audio/video data build up on VJ's phone, with the severity indicated by the CACHE_SIZE value. When the

CACHE_SIZE value exceeds the threshold, SDK drops some audio/video data, thus triggering an increment

of DROP_CNT.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 83 of 97

CPU_USAGE

If CPU utilization of system exceeds 80%, the stability of audio/video encoding is affected, leading to

random stutters in video image and sound.

If CPU utilization of system reaches 100% frequently, the audio/video encoding frame rate will

become insufficient, leading to serious stutters in video image and sound.

It is very common that in the practical use of an App that performs well in per-launch test, the

scrolling and refreshing of interactive messages of front rooms consume a significant amount of

CPU and thus lead to serious stutters in LVB video image.

SERVER_IP

If the Ping value from VJ to the IP given by SERVER_IP is very high (for example, exceeding 500ms), the

push quality will be unsatisfactory. Tencent Cloud has been providing services on an Access to the

Closest basis. In case of the above situation, please contact us. Our OPS team will optimize the service.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 84 of 97

3. How to comprehend Tencent Cloud push chart?

In LVB Console - Quality Control, you can get a picture of the live rooms under your account and the push

quality of each room:

VJ end - expected bit rate - Actual bit rate curve 

The blue curve is the statistical curve of BITRATE, i.e. the audio and video data bits produced by the

SDK. The green curve indicates the data bits actually pushed via the network. A higher fit between the

two curves means a better push quality.

VJ end - Accumulation of audio/video data

The consistent fit between the curve and 0 scale means the entire push is very smooth and no data is

accumulated.

The points where the curve > 0 indicate accumulated data caused by network fluctuations, which

may lead to slight stutters and asynchronization between video and audio at the viewer end;

If the accumulated data exceeds the red warning level, it means that some packets has been

dropped, which will inevitably result in stutters and asynchronization between video and audio at

the viewer end.

https://console.cloud.tencent.com/live/livesdk


IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 85 of 97

Cloud end - expected video duration - actual video duration curve 

This is the statistics curve for Tencent Cloud server end, and is the only chart visible to you if you do not

use Tencent Cloud SDK for push (the first two charts are invisible to you because the data is provided

by SDK). A higher fit between the blue and green curves indicates a better push quality.

TXLivePlayListener

1. How to obtain the playback status data?

The onNetStatus callback of TXLivePlayListener synchronizes the status metrics inside SDK at an interval of

1-2 seconds. The major metrics are as follows:

Playback Status Description



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 86 of 97

Playback Status Description

NET_STATUS_CPU_USAGE
Current (instant) CPU
utilization

NET_STATUS_VIDEO_WIDTH Video resolution - width

NET_STATUS_VIDEO_HEIGHT Video resolution - height

NET_STATUS_NET_SPEED Current download speed

NET_STATUS_VIDEO_FPS
Video frame rate of the
current stream media

NET_STATUS_VIDEO_BITRATE
Video bitrate of the current
stream media (in Kbps)

NET_STATUS_AUDIO_BITRATE
Audio bitrate of the current
stream media (in Kbps)

NET_STATUS_CACHE_SIZE Playback buffer (jitterbuffer) size. A smaller
buffer size means a lower resistance against stutters.

NET_STATUS_SERVER_IP IP of the connected server

2. Which status metrics can be used for reference?

NET_STATUS_CACHE_SIZE

This metric reflects the size of the playback buffer (jitterbuffer):

The larger the CACHE_SIZE, the higher the delay, and the less likelihood of stutters in case of network

fluctuations.

The smaller the CACHE_SIZE, the lower the delay, and the more likelihood of stutters in case of network

fluctuations.

TXLivePlayer comes with three modes for controlling the playback buffer size. For more information,

please see [Basic Features - Playback] document: 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 87 of 97



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 88 of 97

Background

RTMP push quality is crucial to the viewing experience. A poor push quality at VJ end will cause the

stutter at all the viewer ends. According to the statistics, over 80% of LVB stutters among Video Cloud

customers are caused by a poor RTMP push quality.

Among the push quality issues, the biggest issue is caused by unsatisfactory uplink network at VJ end.

Insufficient uplink bandwidth can make audio/video data build up and then be dropped at VJ end, thus

leading to the stutter or even long freezing of video images at viewer end.

Therefore, dealing with the stutter of uplink network at VJ end can effectively improve the push quality,

thus delivering a better viewing experience, especially in the domestic environment where uplink

bandwidth is restricted widely by ISPs.

QoS Traffic Control
Last updated：2018-07-23 12:03:25



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 89 of 97

But network condition does not hinge on our will. If a VJ uses a 4-Mbps broadband package at home, it is

not impossible to change it to 8Mbps just because the VJ installs a new App. Therefore, we can choose

toactively adapt to the uplink network.

Quick integrating

You can enable the Qos traffic control with the parameters of the setVideoQuality API of TXLivePusher.

The SDK will then decide the video definition according to VJ's uplink network condition.

quality 

The SDK provides six basic options which are developed and configured based on our rich experience

with our huge customer base. Among them, STANDARD, HIGH, and SUPER are intended for LVB mode,

MAIN_PUBLISHER and SUB_PUBLISHER are intended for primary and secondary screens of joint

broadcasting, and VIDEOCHAT is used for real-time audio/video.

adjustBitrate 

Specifies whether to enable Qos traffic control. If enabled, the SDK decides the video definition

according to VJ's uplink network condition. The disadvantage is that blurry screens and many mosaics

may occur in case of poor network condition on the VJ end.

adjustResolution 

Specifies whether to support dynamic resolution. If enabled, the SDK selects a appropriate resolution

based on the current video bitrate for better definition. The disadvantage is that files generated by

recording live streaming with dynamic resolutions may have compatibility issue with many players.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 90 of 97

Fine Adjustment

If the default parameters in setVideoQuality are not enough, you can customize more parameters via

TXLivePushConfig:

enableAutoBitrate 

Specifies whether to enable the adaptive bitrate, i.e. Qos traffic control. If enabled, the SDK decides the

video definition according to VJ's uplink network condition.

autoAdjustStrategy 

Available only when the adaptive bitrate is enabled, otherwise the setting is invalid. The

autoAdjustStrategy supports the following four strategies:

Strategy Name Description

AUTO_ADJUST_BITRATE_STRATEGY_1
Constantly detects and adjusts the network
speed throughout the LVB process. It is
intended for scenarios such as live shows.

AUTO_ADJUST_BITRATE_RESOLUTION_STRATEGY_1
Adjusts the bitrate while adjusting the
resolution accordingly to keep a balance
between bitrate and resolution.

AUTO_ADJUST_BITRATE_STRATEGY_2

Quickly detects and adjusts the network speed
in the first half minutes of LVB accordingly,
and then minimize the adjustment. It is
intended for mobile game scenarios.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 91 of 97

Strategy Name Description

AUTO_ADJUST_BITRATE_RESOLUTION_STRATEGY_2
Adjusts the bitrate while adjusting the
resolution accordingly to keep a balance
between bitrate and resolution.

videoBitrateMin: Represents the minimum bitrate, which is available only when the adaptive bitrate is

enabled, otherwise the setting is invalid.

videoBitrateMax: Represents the maximum bitrate, which is available only when the adaptive bitrate is

enabled, otherwise the setting is invalid.

videoBitratePIN: Represents the original bitrate, videoBitrateMin <= videoBitratePIN <=

videoBitrateMax.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 92 of 97

Customizing Parameter

You can customize video/audio encoding parameters by setting the Config object. Now, the following

setting APIs are supported:

Parameter Name Description Default Value

audioSampleRate
Audio sampling rate: The number of samples
per second are taken from an audio signal by a
recording device

44100

enableNAS

Noise suppression: When this is enabled,
background noises can be filtered out
(applicable when the sampling rate is below
32,000)

Off

enableHWAcceleration
Video hard-coding: When this is enabled, video
capture up to 720 p, 30 fps is supported.

On

videoFPS

Video frame rate: The number of frames
produced by the video encoder per second.
Most of the phones don't support encoding
above 30 FPS, so setting FPS to 20 is
recommended.

20

videoResolution
Video resolution: Four types of 16:9 resolutions
are available

640 * 360

videoBitratePIN
Video bitrate: The amount of data produced by
the video encoder per second (in Kbps)

800

enableAutoBitrate
Bitrate adaptation: Adjust the video bitrate
automatically based on the network condition

Off

videoBitrateMax
Maximum output bitrate: This option takes
effect only when bitrate adaption is enabled.

1,200

videoBitrateMin
Minimum output bitrate: This option takes
effect only when bitrate adaption is enabled.

800

Coding Parameter Adjustment
Last updated：2018-07-23 16:04:08



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 93 of 97

Parameter Name Description Default Value

videoEncodeGop
Keyframe interval (in second): The interval at
which one I frame is output

3 seconds

homeOrientation
Set the rotation angle of video image, e.g.,
whether to push in landscape mode

0: home is on the right;
1: home is at the

bottom; 2: home is on
the left; 3: home is at

the top

beautyFilterDepth
Beauty filter level: levels 1 to 9 are supported;
the higher the level, the more obvious the
effect. 0 means Off

Off

frontCamera Front or rear camera by default Front

watermark Watermark image (UIImage object)
Tencent Cloud Logo

(demo)

watermarkPos
The position of the watermark image relative to
the coordinate in the upper-left corner

(0, 0)

Setting Method

You are recommended to set these parameters before enabling push, since most of them only take effect

when the push is restarted. The reference codes are as follows:

//Declare _config and _pusher in member variables 
.... 
//Initialize _config 
_config = [[TXLivePushConfig alloc] init]; 
 
//Modify the audio sampling rate to 44100 and fixed video bitrate to 800 
_config.audioSampleRate = 44100; 
_config.enableAutoBitrate = NO; 
_config.videoBitratePIN = 800; 
 
//Initialize _pusher 
_pusher = [[TXLivePush alloc] initWithConfig: _config]; 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 94 of 97

Customizing Push Images

Solution 1: Modify OpenGL texture

Some customers with a strong R&D capability want to customize images (e.g., adding captions) while

reusing the overall process of RTMP SDK. In this case, follow the steps below.

Set callback for video processing 

You can customize video images by setting videoProcessDelegate proxy for TXLivePush.

@protocol TXVideoCustomProcessDelegate <NSObject> 
 
/** 
* Perform a callback in the OpenGL thread, where you can conduct the secondary processing of capt
ured images. 
* @param textureId Texture ID 
* @param width Width of texture 
* @param height Height of texture 
* @return Texture returned to SDK 
* Note: The texture type called back from the SDK is GL_TEXTURE_2D, and the one returned by the AP
I to the SDK must also be GL_TEXTURE_2D. 
*/ 
-(GLuint)onPreProcessTexture:(GLuint)texture width:(CGFloat)width height:(CGFloat)height; 
 
/** 
* Perform a callback in the OpenGL thread, where you can release the OpenGL resources created. 
*/ 
-(void)onTextureDestoryed; 
 
@end 

Process the video data in the callback function 

Implement onPreProcessTexture function of TXVideoCustomProcessDelegate to achieve the

customized processing of video images. The texture specified by textureId is a texture of type

GLES20.GL_TEXTURE_2D.

Video Data Customization
Last updated：2018-07-23 16:01:48



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 95 of 97

To work with texture data, you need to have some basic knowledge about OpenGL. In addition, a huge

calculation amount is not recommended. This is because onPreProcessTexture has the same call

frequency as FPS, and too heavy processing is likely to cause the GPU overheating.

Solution 2: Capture data by yourself

If you only want to use SDK for encoding and push (for example, you have interfaced with SenseTime and

other products), bring the audio and video capture and preprocessing (such as beauty filter, filter) under

the control of your own code by following the steps below:

Step1. Do not call TXLivePusher's startPreview API any longer 

In this way, SDK itself does not capture video and audio data any more, but only conducts

preprocessing, encoding, traffic control, data delivery and other push-related operations.

Step2. Set customModeType via TXLivePushConfig

#define CUSTOM_MODE_AUDIO_CAPTURE 0X001 //Customer captures their own audios. 
#define CUSTOM_MODE_VIDEO_CAPTURE 0X002 //Customer captures their own videos. 
 
//If both audios and videos need to be captured by customer, the customModeType can be set to 3. 
@interface TXLivePushConfig : NSObject 
@property(nonatomic, assign) int customModeType; 
@end 

Step3. Use sendVideoSampleBuffer to populate SDK with Video data 

SendVideoSampleBuffer is used to populate the SDK with the captured and processed video data.

RGBA and NV12 formats are supported currently.

TXLivePushConfig* config = [[TXLivePushConfig alloc] init]; 
config.customModeType = CUSTOM_MODE_VIDEO_CAPTURE; // Customize data capturing 
TXLivePush pusher = [[TXLivePush alloc] initWithConfig:config]; 
 
//You can populate the RGBA or NV12 data you captured and processed. 
[pusher sendVideoSampleBuffer:sampleBuffer]; 

Step4. Use sendAudioSampleBuffer to populate SDK with Audio data 

SendAudioSampleBuffer is used to populate the SDK with the captured and processed audio data.

Please use 16-bit, 48000-Hz PCM mono audio data.



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 96 of 97

This function supports two RPSampleBufferTypes: RPSampleBufferTypeAudioApp and

RPSampleBufferTypeAudioMic. The former is used for replaykit, and the latter for both general

microphone capturing and replaykit.

TXLivePushConfig* config = [[TXLivePushConfig alloc] init]; 
config.customModeType = CUSTOM_MODE_AUDIO_CAPTURE; // Customize data capturing 
TXLivePush pusher = [[TXLivePush alloc] initWithConfig:config]; 
 
//You can populate the audio data you captured and processed. 
[s_txLivePublisher sendAudioSampleBuffer:sampleBuffer withType:RPSampleBufferTypeAudioMic]; 

Customize Playback Data

Configure the TXVideoCustomProcessDelegate attribute of TXLivePlayConfig

@interface TXLivePlayer : NSObject 
// After configuration, each frame of Player goes through onPlayerPixelBuffer.  
@property(nonatomic, weak) id <TXVideoCustomProcessDelegate> videoProcessDelegate; 

Capture image data of Player with the onPlayerPixelBuffer callback.

The image format of pixelBuffer is NV12 if Player is in hardware decoding mode, and i420 if Player is

in software decoding mode.

If onPlayerPixelBuffer returns YES, the SDK stops image rendering, which can solve the OpenGL thread

conflict.

@protocol TXVideoCustomProcessDelegate <NSObject> 
@optional 
 
/** 
* Video rendering object callback 
* @prarm pixelBuffer Render the image 
* @return If YES is returned, the SDK stops rendering; if NO is returned, the SDK rendering module
keeps working. 
* Note: the data type of the rendered image is renderPixelFormatType set in config. 
*/ 
-(BOOL)onPlayerPixelBuffer:(CVPixelBufferRef)pixelBuffer; 
@end 



IOS-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 97 of 97


