
Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 1 of 99

Mobile Live Video Broadcasting

Android-based Integration

Product Introduction

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 2 of 99

Copyright Notice

©2013-2018 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy

or distribute in any way, in whole or in part, the contents of this document without Tencent Cloud's the

prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing

(Beijing) Company Limited and its affiliated companies. Trademarks of third parties referred to in this

document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and

services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products

or services are subject to change. Specific products and services and the standards applicable to them are

exclusively provided for in Tencent Cloud's applicable terms and conditions.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 3 of 99

Contents

Android-based Integration

Basic Features

Getting Started

Push Feature

TXLivePlayer

Gaming Screen Recording

Effect Feature

realtime

LiveRoom

RTCRoom

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 4 of 99

 ## Download SDK

You can download the LVB SDK for mobile devices from Tencent Cloud's official website. Decompress the

downloaded file to acquire the libs directory, which mainly includes "so" and "jar" files. Files are listed

below:

File Description

txrtmpsdk.jar SDK Java layer encapsulation

libtxrtmpsdk.so SDK core components

Supported Platform

Android 4.0 (API 14) systems and above

Development Environment

The SDK development environment is described below. The App development environment does not

need to be consistent with that of SDK, but they must be compatible:

Android NDK: android-ndk-r10e

Android SDK Tools: android-sdk_r21.1.2

minSdkVersion: 14

targetSdkVersion: 21

Android Studio (while Android Studio is recommended, you can also choose to use Eclipse + ADT)

Android Studio Environment Configuration

1. Create Android Project

Android-based Integration
Basic Features
Getting Started
Last updated：2018-08-22 15:16:14

https://cloud.tencent.com/document/product/454/7873

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 5 of 99

2. Copy Files

If your project doesn't have a previously specified jni loading path, we recommend that you put the files

under the /src/main/jniLibs directory, which is the default jni loading directory of Android studio. If you

have specified the jni loading path (through gradle syntax: the sourceSets syntax or android.sources

syntax), please copy the SDK related files mentioned above to this directory.

3. Import jar Package

Find the newly created jniLibs directory in the Android Studio project. Expand the directory, and you will

see txrtmpsdk.jar. Right-click on it and select "Add As Library..."

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 6 of 99

Once the package is imported, you will find that the following line of script is generated automatically in

build.gradle:

4. Configure APP Permissions

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 7 of 99

Configure App permissions in AndroidManifest.xml. Generally, audio and video Apps require the

following permissions:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.CALL_PHONE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.READ_LOGS" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.CAMERA" />
<uses-feature android:name="android.hardware.Camera"/>
<uses-feature android:name="android.hardware.camera.autofocus" />

5. Verify

Call the SDK API in the project to acquire SDK version information and verify if the project settings are

correct.

1. Reference the SDK

Reference the class of SDK in MainActivity.java:

import com.tencent.rtmp.TXLivePusher;

2. Call the getSDKVersion API in onCreate to acquire version number:

int[] sdkver = TXLivePusher.getSDKVersion();
if (sdkver != null && sdkver.length >= 3) {
Log.d("rtmpsdk","rtmp sdk version is:" + sdkver[0] + "." + sdkver[1] + "." + sdkver[2]);
}

3. Compile/Run

The demo project can be compiled successfully if all of the above steps are correctly performed. If you run

the project, you will see the following log information in logcat:

07-13 20:25:05.099 26119-26119/? D/rtmpsdk: rtmp sdk version is:1.5.188

6. Troubleshoot

If the following errors occur when you compile/run the project after importing the SDK into it:

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 8 of 99

Caused by: android.view.InflateException:
Binary XML file #14:Error inflating class com.tencent.rtmp.ui.TXCloudVideoView

Find the problem by following the steps below

1. Check if you have placed the "jar" package and "so" library into the jnilib directory.

2. If you're using the full version, check if the x64 "so" library has been filtered out. This is because the

joint broadcasting feature in full version does not support mobile phones with x64 architecture at the

moment.

buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

ndk {
// filter out armeabi-x64 library
abiFilters "armeabi", "armeabi-v7a"
}
}
}

3. Look at the proguard rules and check if you have obfuscated RTMP SDK related classes too.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 9 of 99

Basics

Push means to collect, encode audio/video data and push the data to your specified cloud video

platform. The process involves a large amount of basic audio/video-related knowledge, you can only

achieve desired results after lots of refining and optimizing.

Tencent Video Cloud SDK mainly helps you push videos on smart phones. The SDK comes with easy-to-

use APIs and can be driven by using a single push URL:

Notes

You can push to non-Tencent Cloud addresses using this SDK.

To solve the inaccurate DNS mapping problem within China, "Closest route selection" has been

introduced starting from SDK 1.5.2. This feature selects the push route nearest to the VJ's location using

Push Feature
Last updated：2018-08-10 16:21:46

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 10 of 99

Tencent Cloud's close route selection server, which significantly improves push quality. However this also

means that the route selection results only include Tencent server addresses. In addition, since a large

number of customers use dedicated push domain names, SDK cannot determine whether the target is

Tencent Cloud simply by using the URL text.

Therefore, if you wish to push videos to addresses of other cloud providers, contact our customer service

for help to disable closest route selection feature for your account. This can be done through cloud

control, thus there is no need to release new client versions.

Preparation

Acquiring SDK

Download SDK and follow the instructions in Project Configuration to add the SDK into your APP

development project.

Acquiring Test URL

After Activating the LVB service, use the "LVB Console" -> "LVB Code Access" -> "Push Generator" to

generate push address. For more information, please see Acquiring Push Playback URL.

Code Interfacing

The guide mainly aims for camera LVB solution, which is mainly used for scenarios such as beauty show

LVB, personal LVB, event LVB.

Step 1: Add Interface Elements

To display the camera preview image, you need to add the following codes to your layout xml file. These

codes will insert a TXCloudVideoView control, which is a specialized control we use to display the camera

image, to your UI.

<com.tencent.rtmp.ui.TXCloudVideoView
android:id="@+id/video_view"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_centerInParent="true"
android:visibility="gone"/>

Step 2: Create a Pusher Object

Create a TXLivePusher object, which will be used later to complete the push task.

https://cloud.tencent.com/document/product/454/7873
https://cloud.tencent.com/document/product/454/7877
https://console.cloud.tencent.com/live
https://console.cloud.tencent.com/live/livecodemanage
https://cloud.tencent.com/document/product/454/7915

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 11 of 99

Before you create a LivePush object, you need to specify a LivePushConfig object to determine the

configuration parameters of various LivePush aspects, such as push resolution, frames per second (FPS)

and GOP (seconds per one I-frame).

The LivePushConfig object has been equipped with some parameters that we have repeatedly tuned

upon creation. If you do not wish to customize these parameters, you can simply assign them to the

LivePush object. If you have experience in the related field and want to adjust the default configuration,

you can read the Advance Guide.

TXLivePusher mLivePusher = new TXLivePusher(getActivity());
mLivePushConfig = new TXLivePushConfig();
mLivePusher.setConfig(mLivePushConfig);

Step 3: Launch Push

After the preparations in Step 1 and Step 2, you can use the following codes to start the push:

String rtmpUrl = "rtmp://2157.livepush.myqcloud.com/live/xxxxxx";
mLivePusher.startPusher(rtmpUrl);

TXCloudVideoView mCaptureView = (TXCloudVideoView) view.findViewById(R.id.video_view);
mLivePusher.startCameraPreview(mCaptureView);

startPusher is used to tell the SDK that which push URL the audio/video streams are being pushed to.

startCameraPreview is used to associate the interface elements with the Pusher object, in order to

render the picture captured by the mobile phone camera onto the screen.

Step 4: Configure Video Definition

Configure video definition by using setVideoQuality, you can also configure by using the video quality

options in TXLivePushConfig. However we still recommend that you use the options below:

Definition Configuration Parameter Resolution Applicable Scenario

High
Definition

VIDEO_QUALITY_HIGH_DEFINITION 540P

This is a recommended
definition which allows
most mainstream mobile
phones to present clear
pictures.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 12 of 99

Definition Configuration Parameter Resolution Applicable Scenario

Standard
Definition

VIDEO_QUALITY_STANDARD_DEFINITION 360P

Choose this definition if
you have consideration
about bandwidth cost.
It brings average video
quality but reduces
bandwidth cost by 60%,
compared to high
definition.

Dynamic VIDEO_QUALITY_QOS_DEFINITION Dynamic

This will automatically
adjust video resolution
among three levels (192 *
336 - 540 * 960) based on
network condition, in order
to cope with network
fluctuations. Suitable for
scenarios with inconsistent
network such as overseas
LVB.
Note: This type of video
streams may be
incompatible with certain
players.

Ultra
High

Definition
VIDEO_QUALITY_SUPER_DEFINITION 720P

Note: This is not
recommended for
scenarios where videos are
mostly viewed in small
screens.
You can consider using this
definition if videos are
viewed in large screens and
the VJ has a great network.

Step 5: Beauty Filter

Beautify

The setBeautyFilter API can be used to configure beautify and whitening levels (0-9). 0 means to

disable beautify feature. The beautify feature has been significantly improved since 1.9.1, now you can

obtain optimal video quality if you use the feature together with 540 * 960 resolution (setVideoQuality -

VIDEO_QUALITY_HIGH_DEFINITION).

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 13 of 99

mLivePusher.setBeautyFilter(7, 3);

Filter

The setFilter API can be used to configure filter effect. The filter is a histogram file, our designer group

provided 8 materials which are packaged inside the Demo by default. You can use them as you like,

without considering about copyright issues.

Bitmap bmp = null;
bmp = decodeResource(getResources(), R.drawable.langman);
if (mLivePusher != null) {
mLivePusher.setFilter(bmp);
}

Be sure to use PNG images if you wish to customize the filters. Do NOT use JPG image.

Exposure

setExposureCompensation is used to adjust exposure value. This option is not available on the iOS end

(where we use the auto-exposure feature of the system). Considering that Android models can be

greatly different from each other and most inexpensive phones may have poor exposure mechanisms,

we recommend that you add an auto-exposure slider on the UI to allow VJs to adjust exposure value on

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 14 of 99

their own.

The parameter of setExposureCompensation is a floating-point value between -1 and 1: 0 means

no adjustment; -1 means lowest exposure and 1 means highest exposure.

Step 6: Camera Control

Switch front or rear camera

The front camera is used by default (this default value can be changed by modifying the configuration

function setFrontCamera in TXLivePushConfig). The camera is switched each time switchCamera is

called. Make sure both TXLivePushConfig and TXLivePusher objects have been initialized before

switching camera.

// The front camera is used by default
mLivePusher.switchCamera();

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 15 of 99

Turn the flashlight on or off

Flashlight is only available for the rear camera. In addition, this API needs to be called after preview is

started.

//Flashlight is turned on if mFlashTurnOn is set to true; otherwise it is turned off
if (!mLivePusher.turnOnFlashLight(mFlashTurnOn)) {
Toast.makeText(getActivity().getApplicationContext(),
"Failed to turn on flashlight: Most mobile phones do not support a front flashlight!", Toast.LENGTH
_SHORT).show();
}

Auto or Manual Camera Focus

In most cases, focusing is only supported for the rear camera. The SDK supports two focusing mode:

Manual Focus and Auto Focus.

Auto Focus is a capability provided by the system, but some models do not support Auto Focus. Manual

Focus and Auto Focus are mutually exclusive. If Auto Focus is enabled, Manual Focus will not work.

The SDK uses Manual Focus by default. You can switch it through the configuration function

setTouchFocus API in TXLivePushConfig:

mLivePushConfig.setTouchFocus(mTouchFocus);
mLivePusher.setConfig(mLivePushConfig);

Step 7: Set Logo Watermark

Recent policies require that LVB videos must be marked with watermarks. With that in mind, we will focus

on this feature that had seemed insignificant before.

Tencent Video Cloud currently supports two watermark settings. One is to set watermark in the push SDK,

where the videos are marked with watermarks in the SDK before being encoded. Another is applying

watermarks in the cloud. That is, the cloud resolves videos and adds Logo watermarks to them.

We suggest that you add watermarks with the SDK, because there are three major problems when

watermarking in the cloud:

(1) This service increases the load on the cloud machine and is not free, which will increase your cost;

(2) It is not ideally compatible with certain situations such as resolution switching during the push

process. This may cause problems like blurred screen.

(3) It may cause an additional 3-second video delay, which is caused by the transcode service.

SDK requires that watermark images are PNG format, because such images contain transparency

information, which helps processes such as anti-aliasing. (Do not just change the extension of a JPG

image to PNG in Windows and put it in. Professional PNG logos need to be processed by professional art

designers)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 16 of 99

//Set video watermark
mLivePushConfig.setWatermark(BitmapFactory.decodeResource(getResources(),R.drawable.watermar
k), 10, 10);
mLivePusher.setConfig(mLivePushConfig);

Step 8: Hardware Encoding

The setHardwareAcceleration configuration API in TXLivePushConfig can be used to enable or disable

hardware encoding.

if (!HWSupportList.isHWVideoEncodeSupport()){
Toast.makeText(getActivity().getApplicationContext(),
"The current mobile phone model is not whitelisted or the API level is too low (the minimum level is
18). Please think carefully before enabling hardware encoding.",
Toast.LENGTH_SHORT).show();
}
mLivePushConfig.setHardwareAcceleration(mHWVideoEncode);
mLivePusher.setConfig(mLivePushConfig);

mHWVideoEncode includes the following options.

Hardware Encoding Option Description

ENCODE_VIDEO_HARDWARE Enable hardware acceleration

ENCODE_VIDEO_SOFTWARE Disable hardware acceleration (default)

ENCODE_VIDEO_AUTO Automatically determines whether to enable hardware acceleration

Compatibility Assessment

Android phones now provide better support for hardware acceleration, compared to previous years.

However, certain models still have incompatibility problems. Currently, RTMP SDK controls the use of

hardware acceleration by using an internal blacklist in order to prevent such problems on models with

incompatibility issues. If you failed to use hardware encoding, the SDK will automatically switch to

software encoding.

Differences

If you enable hardware acceleration, the phone's battery consumption will significantly decrease, while

maintaining an ideal temperature. But there will be more obvious mosaic when there are large

movements in the image, compared to software encoding. The mosaic will get worse for earlier, low-

end phones. Hardware acceleration is not recommended for users who require high video quality.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 17 of 99

Recommended Design

We recommend that you use software acceleration when setVideoQuality is configured as High

Definition (recommended definition) or Standard Definition. If you're worrying about CPU usage and

high temperature, you can create a simply protection logic:

If the FPS of the push process stays low for a certain period of time (this can be detected through

the NET_STATUS_VIDEO_FPS event of TXLivePushListener), for example, FPS stays below 10

frames/sec in 30 seconds, which means the CPU is overloaded, switch to hardware encoding.

Step 9: Background Push

Usually, once the App switches to background, the camera's capture function will be disabled by the

Android system, which means the SDK can no longer continue to capture and encode audio/video data.

This is what happens if we don't do anything:

Phase 1 (from switching to background -> 10 seconds later) - CDN cannot provide video streams to

viewers because it doesn't have any data, and the viewers will see a frozen display.

Phase 2 (10 seconds -> 70 seconds) - The player at the viewer side exits because it cannot receive LVB

stream in a long time. Everyone leaves the studio.

Phase 3 (after 70 seconds) - The RTMP linkage of the push is disconnected by the server. The VJ needs

to restart LVB to continue.

Even answering a short emergency call will cause all the viewers to leave the studio, with such an

interaction experience. So how can we optimize it?

Actually, we can some irregular approaches, e.g., create a Service, and use a SurfaceView with 1*1 pixel to

collect Camera data continuously. However, if you are a VJ and find that the App can still access your

camera after it is switched to background, are you really going to use it?

We need to achieve a perfect balance between privacy protection and the viewers' experience, thus we

introduced a solution since SDK 1.6.1 version:

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 18 of 99

9.1) Set pauseImg

Before the push, use the setPauseImg API in TXLivePushConfig to set a waiting picture. It is

recommended to use a picture such as: "The VJ will come back soon".

9.2) Set setPauseFlag

Before the push, use the setPauseFlag API in TXLivePushConfig to configure which collections are to be

stopped when the push is paused. The default picture set with pauseImg will be pushed when video

collection is stopped, while mute data will be pushed when audio collection is stopped.

setPauseFlag(PAUSE_FLAG_PAUSE_VIDEO|PAUSE_FLAG_PAUSE_AUDIO);// means to stop both

video collection and audio collection, then push filler audio/video stream;

setPauseFlag(PAUSE_FLAG_PAUSE_VIDEO);// means to stop camera video collection while the

microphone still collects audio as usual. This is used for scenarios such as when VJ is dressing up;

9.3) Switch to background process

If the App is switched to background during the push process and the pausePush API function in

TXLivePusher is called, the SDK will no longer be able to collect camera video but you can still use the

PauseImg you previously set to keep up the push.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 19 of 99

// onStop life cycle function of activity
@Override
public void onStop(){
super.onStop();
mCaptureView.onPause(); // mCaptureView is the image rendering view of the camera
mLivePusher.pausePusher(); // To inform the SDK that "Background Push Mode" has started
}

9.4) Switch to foreground process

After the App is switched back to the foreground and the resumePush API function of TXLivePusher is

called, the SDK will continue to collect camera pictures to push.

// onStop life cycle function of activity
@Override
public void onResume() {
super.onResume();
mCaptureView.onResume(); // mCaptureView is the image rendering view of the camera
mLivePusher.resumePusher(); // Inform the SDK to return to foreground to push
}

Step 10: Remind the VJ "network is poor"

Step 13 will discuss how to handle SDK push events. PUSH_WARNING_NET_BUSY is very useful, it means:

the uplink network of the VJ is poor, and stutters have occurred in the viewer end.

When you receive this WARNING, you can use the UI to remind VJ to change network egress, or get closer

to the WiFi. Or tell her to say something like this: "Hello dear, I'm streaming! Stop reading eBay! What?

Not eBay? Then stop downloading movies!"

Step 11: Push in landscape mode

In most cases, VJs push videos in an LVB by holding the screen in a portrait orientation so that the viewers

can get portrait images. However, sometimes VJs may need to hold the screen in a landscape orientation

to allow the viewers to get landscape images with a wider view. In this case, push in landscape mode is

required. The figures below show the difference between landscape mode and portrait mode in terms of

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 20 of 99

the images at the viewer end.

Note: The aspect ratios of images at viewer end are different between landscape mode and portrait

mode. In portrait mode, the aspect ratio is 9:16, while in landscape mode, 16:9.

Adjust Viewer-end Performance

This is done by configuring the setHomeOrientation option in LivePushConfig. It controls whether the

video aspect ratio seen by the viewers is 16:9 or 6:19, you can check the result by using your player to see

if the aspect ratio is adjusted as expected.

Settings Description

VIDEO_ANGLE_HOME_RIGHT The Home key is on the right

VIDEO_ANGLE_HOME_DOWN The Home key is at the bottom

VIDEO_ANGLE_HOME_LEFT The Home key is on the left

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 21 of 99

Settings Description

VIDEO_ANGLE_HOME_UP The Home key is at the top

Adjust VJ-end Performance

When viewers are able to see expected display, you can then adjust the preview display at the VJ side.

Now, the picture seen by the VJ can be rotated through the setRenderRotation API in TXLivePusher.

This API provides four parameters (0, 90, 180 and 270) for setting the rotation angle.

Activity Auto-rotation

The Activity of Android system can rotate according to the feedback of the phone's gravity sensor

(configure android:configChanges). How can we make the push switch between landscape mode and

portrait mode based on gravity sensor feedback as shown below?

@Override
public void onConfigurationChanged(Configuration newConfig) {
// When auto-rotation is enabled, as Activity rotates with the mobile phone, you simply need to ch
ange the push direction
int mobileRotation = this.getActivity().getWindowManager().getDefaultDisplay().getRotation();
int pushRotation = TXLiveConstants.VIDEO_ANGLE_HOME_DOWN;
switch (mobileRotation) {
case Surface.ROTATION_0:
pushRotation = TXLiveConstants.VIDEO_ANGLE_HOME_DOWN;
break;
case Surface.ROTATION_90:
pushRotation = TXLiveConstants.VIDEO_ANGLE_HOME_RIGHT;

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 22 of 99

break;
case Surface.ROTATION_270:
pushRotation = TXLiveConstants.VIDEO_ANGLE_HOME_LEFT;
break;
default:
break;
}

//Make the configuration effective by setting "config" (there is no need to restart the push process
because Tencent Cloud is one of the few cloud providers that support resolution hot-switch during
LVB)
mLivePusher.setRenderRotation(0);
mLivePushConfig.setHomeOrientation(pushRotation);
mLivePusher.setConfig(mLivePushConfig);
}

Step 12: Background Music Mix

Background music mixing is supported starting from SDK 1.6.1. The VJ can choose headset mode or no-

headset mode. You can achieve background music mixing feature by using the following APIs in

TXLivePusher:

API Description

playBGM
Send a song via path. In Mini LVB Demo, we obtain music files from the iOS local
media library

stopBGM Stop background music

pauseBGM Pause background music

resumeBGM Resume background music

setMicVolume
Set the microphone volume when mixing music. It is recommended to add a slider
in the UI to allow VJs to set volume on their own

setBGMVolume
Set the background music volume when mixing music. It is recommended to add
a slider in the UI to allow VJs to set volume on their own

Step 13: End Push

It is simple to end a push process, but proper cleaning work is required. Since only one TXLivePusher

object (used for pushing) and only one TXCloudVideoView object (used for displaying image) can run at a

time, improper cleaning work may adversely affect the next LVB.

https://cloud.tencent.com/doc/api/258/6164

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 23 of 99

//End the push with proper cleanup work
public void stopRtmpPublish() {
mLivePusher.stopCameraPreview(true); //End camera preview
mLivePusher.stopPusher(); //End push
mLivePusher.setPushListener(null); //Unbind listener
}

Event Handling

1. Event Listening

SDK listens to push related events using the TXLivePushListener proxy. Note that the TXLivePushListener

only listens to push events with prefix PUSH_.

2. Normal Events

Events that are always prompted during a successful push. For example, receiving 1003 means that the

system will start rendering the camera pictures

Event ID Value Description

PUSH_EVT_CONNECT_SUCC 1001 Successfully connected to Tencent Cloud push server

PUSH_EVT_PUSH_BEGIN 1002
Handshake with the server completed, everything is
OK, ready to start push

PUSH_EVT_OPEN_CAMERA_SUCC 1003
The pusher has successfully started the camera (this
will take 1-2 seconds on some Android phones)

3. Error Notification

The push cannot continue as the SDK detected critical problems. For example, the user disabled camera

permission for the APP so the camera cannot be started.

Event ID Value Description

PUSH_ERR_OPEN_CAMERA_FAIL -1301 Failed to start the camera

PUSH_ERR_OPEN_MIC_FAIL -1302 Failed to start the microphone

PUSH_ERR_VIDEO_ENCODE_FAIL -1303 Video encoding failed

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 24 of 99

Event ID Value Description

PUSH_ERR_AUDIO_ENCODE_FAIL -1304
Audio
encoding
failed

PUSH_ERR_UNSUPPORTED_RESOLUTION -1305 Unsupported video resolution

PUSH_ERR_UNSUPPORTED_SAMPLERATE -1306 Unsupported audio sampling rate

PUSH_ERR_NET_DISCONNECT -1307

Network disconnected. Reconnection
attempts have failed for three times, thus
no more retries will be performed. Please
restart the push manually

4. Warning Events

SDK detected some reparable problems. Most warning events will trigger protection logics or recovery

logics that involve retrying, and in most of the cases the problems can be recovered. Don't make a fuss.

WARNING_NET_BUSY

The VJ's network is poor. If you need UI prompts, this warning is relatively more useful (Step 10).

WARNING_SERVER_DISCONNECT

The push request is rejected by backend. This is usually caused by miscalculated txSecret in the push

address, or because the push address is occupied by others (a push URL can only have one pushing end

at a time).

Event ID Value Description

PUSH_WARNING_NET_BUSY 1101
Bad network condition: data upload is
blocked because uplink bandwidth is too
small

PUSH_WARNING_RECONNECT 1102
Network disconnected, automatic
reconnection has started (auto reconnection
will be stopped if it fails for three times)

PUSH_WARNING_HW_ACCELERATION_FAIL 1103
Failed to start hardware encoding. Software
encoding is used

PUSH_WARNING_DNS_FAIL 3001
RTMP - DNS resolution failed (this will
trigger retry process)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 25 of 99

Event ID Value Description

PUSH_WARNING_SEVER_CONN_FAIL 3002
Failed to connect to the RTMP server (this
will trigger retry process)

PUSH_WARNING_SHAKE_FAIL 3003
RTMP server handshake failed (this will
trigger retry process)

PUSH_WARNING_SERVER_DISCONNECT 3004
The RTMP server actively disconnected (this
will trigger retry process)

For the definition of all events, please see the header file "TXLiveConstants.java"

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 26 of 99

Basics

This document describes the LVB playback feature of Tencent Video Cloud SDK. The following are the

basics you must learn before getting started.

LVB and VOD

The video source of LVB (LIVE) is pushed by VJ in real time. When the VJ stops broadcasting, the video

image on the playback device stops. In addition, the video is broadcasted in real time, no progress bar

is displayed when the player is playing the LVB URL.

The video source of Video On-demand (VOD) is a video file on cloud, which can be played at any time

as long as it has not been deleted from the cloud. You can control the playback progress using the

progress bar. The video playbacks on Tencent Video and Youku Tudou are typical VOD scenarios.

Supported Protocols

Commonly used LVB protocols are as follows. It is recommended to use an LVB URL based on the FLV

protocol (starting with "http" and ending with ".flv") on Apps:

Notes

Is there any restriction?

Tencent Cloud SDK does not impose any restrictions on the source of playback URLs, which means you

can use the SDK to play videos from both Tencent Cloud and non-Tencent Cloud addresses. But the

player in Tencent Video Cloud SDK only supports three LVB video address formats (FLV, RTMP and HLS

(m3u8)) and three VOD address formats (MP4, HLS (m3u8) and FLV).

TXLivePlayer
Last updated：2018-09-26 10:26:14

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 27 of 99

Historical factors

In earlier versions of the SDK, TXLivePlayer works as the only Class carrying both LVB and VOD features.

With the expansion of the VOD features, we have made VOD a separate set of features carried by

TXVodPlayer starting from SDK 3.5. For the compilation to be successful, VOD features such as seek are

still visible in TXLivePlayer.

Interfacing

Step 1: Add a view

To display the video views in a player, you first need to add the following code into the layout xml file:

<com.tencent.rtmp.ui.TXCloudVideoView
android:id="@+id/video_view"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_centerInParent="true"
android:visibility="gone"/>

Step 2: Create a player

The TXLivePlayer module in Tencent Video Cloud SDK carries the LVB playback feature. Use API

setPlayerView to associate it with the video_view control we just added to the interface.

//mPlayerView is the view added in step 1.
TXCloudVideoView mView = (TXCloudVideoView) view.findViewById(R.id.video_view);

//Create a player object
TXLivePlayer mLivePlayer = new TXLivePlayer(getActivity());

//Key player object and interface view
mLivePlayer.setPlayerView(mView);

Step 3: Start playback

String flvUrl = "http://2157.liveplay.myqcloud.com/live/2157_xxxx.flv";
mLivePlayer.startPlay(flvUrl, TXLivePlayer.PLAY_TYPE_LIVE_FLV); //FLV is recommended

Option
Enumerated
Value

Description

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 28 of 99

Option
Enumerated
Value

Description

PLAY_TYPE_LIVE_RTMP 0 The URL passed in is an RTMP-based LVB URL

PLAY_TYPE_LIVE_FLV 1 The URL passed in is an FLV-based LVB URL

PLAY_TYPE_LIVE_RTMP_ACC 5
Low-latency URL (only for joint broadcasting
scenarios)

PLAY_TYPE_VOD_HLS 3
The URL passed in is an HLS (m3u8)-based
playback URL

About HLS (m3u8)

Considering its high latency, HLS is not recommended as the playback protocol for playing LVB

videos on your App (although it is suitable for playing VOD videos). Recommended playback

protocols include LIVE_FLV and LIVE_RTMP.

Step 4: Adjust the view

View: Size and Position

You can modify the size and position of the view by adjusting the size and position of the "video_view"

control added in step 1.

setRenderMode: Full Screen or Self-Adaption

Option Description

RENDER_MODE_FULL_FILL_SCREEN

The full screen is filled with the image that is spread
proportionally, with the excess parts cut out. In this
mode, black edges will not appear in the screen, but
the image may not be displayed completely because
some areas are cut out.

RENDER_MODE_ADJUST_RESOLUTION

The image is scaled proportionally to adapt to the
longest edge. Both the width and the height of the
scaled image will not extend beyond the display area
and the image is centered. In this mode, black edges
maybe appear in the screen.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 29 of 99

setRenderRotation: Screen rotation

Option Description

RENDER_ROTATION_PORTRAIT
Normal playback (The Home button is located directly below the
image)

RENDER_ROTATION_LANDSCAPE
The image rotates 270° clockwise (the Home button is directly to
the left of the image)

// Set the filling mode
mLivePlayer.setRenderMode(TXLiveConstants.RENDER_MODE_ADJUST_RESOLUTION);
// Set image rendering orientation
mLivePlayer.setRenderRotation(TXLiveConstants.RENDER_ROTATION_LANDSCAPE);

Step 5: Pauses playback.

Strictly speaking, you cannot pause LVB playback. The so-called pausing LVB playback means freezing

the image and turning off the sound, but the video source keeps updating on the cloud. When you call

resume, the video is resumed from the latest time, which works quite differently from VOD videos that are

paused and resumed in the same way as local video files).

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 30 of 99

// Pause
mLivePlayer.pause();
// Resume
mLivePlayer.resume();

Step 6: End playback

At the end of the playback, be sure to terminate the View control, especially before the next startPlay.

Otherwise a number of memory leak and splash screen issues will occur.

At the same time, when exiting the playback interface, be sure to call the onDestroy() function of the

rendering View, otherwise memory leak and the warning message "Receiver not registered" may occur.

@Override
public void onDestroy() {
super.onDestroy();
mLivePlayer.stopPlay(true); // "true" means to clear the last frame
mView.onDestroy();
}

The boolean parameter of stopPlay means whether to clear the last frame. The LVB players in the earlier

versions of RTMP SDK did not have the concept of Pause, so the boolean value is used to control whether

to clear the last frame.

If you want to stop the video at the last frame after the VOD playback ends, do nothing after receiving the

playback end event, and it defaults to stop at the last frame.

Step 7: Receive messages

This feature is used to deliver certain custom messages from the pusher end to the viewer end via

audio/video lines. It is applicable to the following scenarios:

(1) Online quiz: The pusher end delivers the questions to the viewer end. Perfect "sound-image-question"

synchronization can be achieved.

(2) Live show: The pusher end delivers lyrics to the viewer end. The lyric effect can be displayed on the

viewer end in real time and its image quality is not affected by video encoding.

(3) Online education: The pusher end delivers the operations of Laser pointer and Doodle pen to the

viewer end. The drawing can be performed at the viewer end in real time.

You can use this feature as follows:

Switch the setEnableMessage toggle button in TXLivePlayConfig to YES.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 31 of 99

TXLivePlayer listens into messages by TXLivePlayListener, message No.: PLAY_EVT_GET_MESSAGE

(2012).

//Android sample code
mTXLivePlayer.setPlayListener(new ITXLivePlayListener() {
@Override
public void onPlayEvent(int event, Bundle param) {
if (event == TXLiveConstants.PLAY_ERR_NET_DISCONNECT) {
roomListenerCallback.onDebugLog("[AnswerRoom] Pull failed: network disconnected");
roomListenerCallback.onError(-1, "Network disconnected, pull failed");
}
else if (event == TXLiveConstants.PLAY_EVT_GET_MESSAGE) {
String msg = null;
try {
msg = new String(param.getByteArray(TXLiveConstants.EVT_GET_MSG), "UTF-8");
roomListenerCallback.onRecvAnswerMsg(msg);
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
}
}
@Override
public void onNetStatus(Bundle status) {
}
});

Step 8: Screencap

You can capture the current image as a frame by calling snapshot. This feature can only capture the

frames from the current live stream. To capture the entire UI, call the API of iOS system.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 32 of 99

mLivePlayer.snapshot(new ITXSnapshotListener() {
@Override
public void onSnapshot(Bitmap bmp) {
if (null != bmp) {
//Acquire screenshot bitmap
}
}
});

Step 9: Recode the captured stream

As an extension in LVB playback scenarios, Recording Captured Stream means that during the LVB, the

viewer can capture and record a segment of video by clicking the "Record" button and publish the

recorded content via the video delivery platform (e.g. Tencent Cloud's VOD system) so that the content

can be shared through UGC message on social platforms such as the "Moment" of WeChat.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 33 of 99

//Specify an ITXVideoRecordListener to synchronize the progress and results of the recording
mLivePlayer.setVideoRecordListener(recordListener);
//Start the recording. It can be placed in the response function of the "Record" button. You can only
record the video source, but not the other contents such as the on-screen comments.
mLivePlayer.startRecord(int recordType);
// ...
// ...
//End the recording. It can be placed in the response function of the "End" button
mLivePlayer.stopRecord();

The progress of recording is indicated as a time value by ITXVideoRecordListener's onRecordProgress.

The recorded file is in the format of MP4, and is indicated by ITXVideoRecordListener's

onRecordComplete.

TXUGCPublish is used to upload and publish videos. For more information on how to use

TXUGCPublish, please see Short Video - Publish Files.

Adjusting delay

The LVB feature of Tencent Cloud SDK, equipped with the self-developed playback engine, is not

developed based on ffmped. Compared with open source players, it performs better in terms of LVB delay

https://cloud.tencent.com/document/product/584/9367#6.-.E6.96.87.E4.BB.B6.E5.8F.91.E5.B8.8310

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 34 of 99

control. We provide three delay adjusting modes, suitable for Live show, game LVB, and combined

scenarios.

Performance comparison among the three modes

Control
mode

Stutter rate
Average
delay

Applicable
scenarios

Principle description

Speedy
mode

High
(relatively
smooth)

2s - 3s
Live show
(online quiz)

It has the upper hand in delay control and
is suitable for delay-sensitive scenarios.

Smooth
mode

Lowest >= 5s
Game LVB
(Penguin e-
Sports)

It is suitable for the LVB of ultra-high-
bitrate games (such as battle royale games)

Auto
mode

Network
adaption

2s - 8s
Combined
scenarios

The better the viewers' network condition,
the lower the latency, and vice versa.

Interface codes of the three modes

TXLivePlayConfig mPlayConfig = new TXLivePlayConfig();
//
//Auto mode
mPlayConfig.setAutoAdjustCacheTime(true);
mPlayConfig.setMinAutoAdjustCacheTime(1);
mPlayConfig.setMaxAutoAdjustCacheTime(5);
//
//Speedy mode
mPlayConfig.setAutoAdjustCacheTime(true);
mPlayConfig.setMinAutoAdjustCacheTime(1);
mPlayConfig.setMaxAutoAdjustCacheTime(1);
//
//Smooth mode
mPlayConfig.setAutoAdjustCacheTime(false);
mPlayConfig.setCacheTime(5);
//
mLivePlayer.setConfig(mPlayConfig);
//Launch the playback after the configuration

For more technical information on how to deal with stutter and delay problems, please see How to

Deal with Stutter

https://cloud.tencent.com/document/product/454/7946

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 35 of 99

Ultra-low latency playback

Tencent Cloud LVB player supports ultra-low delay playback with a delay of about 400ms, which can be

used in scenarios that have high requirement for delay, such as remote prize claw and joint

broadcasting. Notes about this feature:

You don't need to activate this feature

This feature does not need to be enabled in advance, but it requires that LVB streams reside in Tencent

Cloud. Implementing low-delay linkage across cloud providers is difficult, in more than just technical

terms.

Hotlink protection must be included in the URL

The playback URL cannot be a normal CDN URL. It must have a hotlink protection signature. For more

information on how to calculate the hotlink protection signature, please see txTime&txSecret.

Specify the playback type as ACC

Specify the type as PLAY_TYPE_LIVE_RTMP_ACC when calling the startPlay function. The SDK pulls LVB

streams using the RTMP-UDP protocol.

This feature has restrictions on concurrent playback

It supports 10 channels of concurrent playback at most. Instead of being set due to limited technical

capabilities, this restriction is intended to encourage you to use this feature in interaction scenarios

only (for example, for VJs only in joint broadcasting and for players only in prize claw scenarios), so that

you do not incur any unnecessary costs in the mere pursuit of low delay (The price of low latency lines

is higher than that of CDN lines).

The delay performance of OBS is unsatisfactory

If the push end is TXLivePusher, set quality to MAIN_PUBLISHER or VIDEO_CHAT using

setVideoQuality. If the push end is Windows, use Windows SDK. Pushing with OBS leads to

unsatisfactory delay due to the excessive accumulated data at the pusher end.

Listening to SDK Events

https://cloud.tencent.com/document/product/454/9875
https://cloud.tencent.com/document/product/454/7885
https://cloud.tencent.com/document/product/454/7885#step-4.3A-.E8.AE.BE.E5.AE.9A.E6.B8.85.E6.99.B0.E5.BA.A6
https://cloud.tencent.com/document/product/454/7873#Windows

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 36 of 99

You can bind a TXLivePlayListener to the TXLivePlayer object to receive notifications about the internal

status of SDK through onPlayEvent (Event Notification) and onNetStatus (Quality Feedback).

1. Playback events

Event ID Value Description

PLAY_EVT_CONNECT_SUCC 2001 Connected to the server

PLAY_EVT_RTMP_STREAM_BEGIN 2002
Connected to the server and started to pull stream
(thrown only if the playback URL is RTMP)

PLAY_EVT_RCV_FIRST_I_FRAME 2003
The network has received the first renderable video
packet (IDR)

PLAY_EVT_PLAY_BEGIN 2004
Video playback begins. The "loading" icon stops
flashing at this point

PLAY_EVT_PLAY_LOADING 2007
Video playback is being loaded. If video playback is
resumed, this will be followed by a BEGIN event

PLAY_EVT_GET_MESSAGE 2012
Used to receive messages inserted into the audio/video
stream. For details, please see Message Reception

Do not hide the playback view after receiving PLAY_LOADING

Because the time length between PLAY_LOADING and PLAY_BEGIN can be different (sometimes 5

seconds, sometimes 5 milliseconds). Some customers consider hiding the view upon LOADING and

displaying the view upon BEGIN, which will cause serious flickering (especially in LVB scenarios). It is

recommended to place a translucent Loading animation on top of the video view.

2. Ending events

Event ID Value Description

PLAY_EVT_PLAY_END 2006 Video playback ends

PUSH_ERR_NET_DISCONNECT -2301
Network is disconnected. Too many failed reconnection
attempts. Restart the playback for more retries

How do I tell whether the LVB is over?

Because of the varying implementation principles of different standards, many LVB streams usually

don't throw end events (2006) and it is expected that when the VJ stops pushing stream, the SDK will

soon find that data stream pull fails (WARNING_RECONNECT) and attempt to retry until the

PLAY_ERR_NET_DISCONNECT event is thrown after three failed attempts.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 37 of 99

Therefore, you need to listen to both 2006 and -2301 and use the result as the events to determine the

end of LVB.

3. Warning events

You don't need to consider the following events. We listed the information of these events for

synchronization purposes, according to the SDK white-box design concept

Event ID Value Description

PLAY_WARNING_VIDEO_DECODE_FAIL 2101 Failed to decode the current video frame

PLAY_WARNING_AUDIO_DECODE_FAIL 2102 Failed to decode the current audio frame

PLAY_WARNING_RECONNECT 2103

Network disconnected, automatic
reconnection has started (the
PLAY_ERR_NET_DISCONNECT event will be
thrown after three failed attempts)

PLAY_WARNING_RECV_DATA_LAG 2104

Unstable incoming packet from network: This
may be caused by insufficient downstream
bandwidth, or unstable outgoing stream at
the VJ end

PLAY_WARNING_VIDEO_PLAY_LAG 2105
Stutter occurred during the current video
playback

PUSH_WARNING_HW_ACCELERATION_FAIL 2106
Failed to start hard-decoding; Soft-decoding
is used

PLAY_WARNING_VIDEO_DISCONTINUITY 2107
Current video frames are discontinuous and
frame loss may occur

PLAY_WARNING_DNS_FAIL 3001
RTMP-DNS resolution failed (thrown only if
the playback address is RTMP)

PLAY_WARNING_SEVER_CONN_FAIL 3002
Failed to connect to RTMP server (thrown
only if the playback address is RTMP)

PLAY_WARNING_SHAKE_FAIL 3003
RTMP server handshaking failed (thrown
only if the playback address is RTMP)

Video Width and Height

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 38 of 99

What is the video resolution (in width and height)?

This question cannot be figured out if SDK only obtains one URL string. To know the width and the height

of a video image in pixels, SDK needs to access the cloud server until enough information is loaded to

analyze the size of the video image. Therefore, SDK can only tell the video information to your application

by notification.

The onNetStatus notification is triggered once per second to provide real-time feedback on the current

status of the pusher. Like a car dashboard, it can offer you a picture about what is happening inside the

SDK, so that you can keep track of current network conditions and video information.

Evaluation Parameter Description

NET_STATUS_CPU_USAGE Current CPU utilization (instantaneous)

NET_STATUS_VIDEO_WIDTH Video resolution - Width

NET_STATUS_VIDEO_HEIGHT Video resolution - Height

NET_STATUS_NET_SPEED Current speed at which network data is received

NET_STATUS_NET_JITTER
Network jitter status. A bigger jitter means a more unstable
network

NET_STATUS_VIDEO_FPS The video frame rate of the current stream media

NET_STATUS_VIDEO_BITRATE Video bitrate of the current stream media (in Kbps)

NET_STATUS_AUDIO_BITRATE Audio bitrate of the current stream media (in Kbps)

NET_STATUS_CACHE_SIZE
Buffer size (jitterbuffer). A buffer length of 0 means that stutter will
occur in all probability

NET_STATUS_SERVER_IP IP of the connected server

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 39 of 99

Mobile Phone Screencap

RTMP SDK 1.6.1 has begun to support screencap LVB on mobile phones, that is, the VJ's mobile phone

screen can be used as the LVB source. Meanwhile, camera preview can be overlaid and used for scenarios

that require mobile phone screens such as game LVB and mobile APP demo.

Implementation solutions to screencap are distinctly different on iOS and Android:

Android Platform

The feature is supported by Android 5.0 and later versions. The VJ only needs to install and start the LVB

App before broadcasting, and then press the Home key to switch the App to the background. After

that, all the contents on the VJ's screen can be used as LVB contents. This is how it works internally: The

screencap API provided in the Android system is used to capture the screen, and the RTMP SDK

underlying module performs encoding and RTMP push.

Gaming Screen Recording
Last updated：2018-08-10 16:21:58

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 40 of 99

iOS platform

The feature is supported by iOS 10.0 and later versions, and is implemented based on the extension

mode of iOS, that is, when a game LVB starts, the iOS will evoke the system extension (installed by the

LVB App) which supports Screencap LVB, and transmit the screen images to this system extension which

will in turn perform encoding and LVB push.

Try out the Feature

In the Mini LVB Demo, we provide screencap on both mobile phone platforms based on Tencent Cloud

RTMP SDK. You can scan the QR code below to install and try it out.

Interfacing Guide

Step 1: Add Activity

Paste an activity as follows to the manifest file

<activity
android:name="com.tencent.rtmp.video.TXScreenCapture$TXScreenCaptureAssistantActivity"
android:theme="@android:style/Theme.Translucent"/>

Step 2: Create a Pusher Object

Create a TXLivePusher object, which will be used later to complete the push task.

Before you create a LivePush object, you need to specify a LivePushConfig object to determine the

configuration parameters of various LivePush aspects, such as push resolution, frames per second (FPS)

and GOP (seconds per one I-frame).

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 41 of 99

The LivePushConfig object has been equipped with some parameters that we have repeatedly tuned

upon creation. If you do not wish to customize these parameters, you can simply assign them to the

LivePush object. If you have experience in the related field and want to adjust the default configuration,

you can read the Advance Guide.

TXLivePusher mLivePusher = new TXLivePusher(getActivity());
mLivePushConfig = new TXLivePushConfig();
mLivePusher.setConfig(mLivePushConfig);

Step 3: Launch Push

After the preparations in Step 1 and Step 2, you can use the following codes to start the push:

String rtmpUrl = "rtmp://2157.livepush.myqcloud.com/live/xxxxxx";
mLivePusher.startPusher(rtmpUrl);
mLivePusher.startScreenCapture();

startPusher is used to tell the RTMP SDK that which push URL the audio/video streams are being

pushed to.

startScreenCapture is used to start screencap. Since screencap is implemented based on the native

capabilities of the Android system, for security reasons, Android will warn the user before the screencap

is initiated by displaying a prompt: "an App will capture all the contents on your screen".

Step 4: Privacy Mode

The privacy mode is a basic feature of screencap LVB: During the screencap LVB, if the VJ does not want

certain operations (e.g., entering game account and password) to be seen by the audience, he/she can

enable the Privacy Mode. While in privacy mode, the VJ's push stays available, and the screen keeps

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 42 of 99

being visible to the audience, only showing a waiting screen with prompt indicating that "the VJ is busy".

To realize such a feature, you can complete the interfacing process as follows:

4.1) Set pauseImg

Before the push, use the setPauseImg API of TXLivePushConfig to set a waiting image, e.g., "The VJ will

switch back the screen soon...".

4.2) Privacy mode switch

On the floating window serving as the toolbar, add a button to enable/disable the privacy mode. The

response logic of enabling the privacy mode is calling the TXLivePusher##pausePush API function; and

the response logic of disabling the privacy mode is calling the TXLivePusher##resumePush API

function.

public void triggerPrivateMode() {
if (mInPrivacy) {
Toast.makeText(getApplicationContext(), "Privacy mode enabled", Toast.LENGTH_SHORT).show();
mTVPrivateMode.setText(getString(R.string.private_mode_off));
mTVPrivateMode.setCompoundDrawables(mDrawableLockOn,null,null,null);
mPrivateBtn.setImageResource(R.mipmap.lock_off);
mTXLivePusher.resumePusher();
} else {

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 43 of 99

Toast.makeText(getApplicationContext(), "Privacy mode disabled", Toast.LENGTH_SHORT).show();
mTXLivePusher.pausePusher();
mPrivateBtn.setImageResource(R.mipmap.lock_on);
mTVPrivateMode.setText(getString(R.string.private_mode_on));
mTVPrivateMode.setCompoundDrawables(mDrawableLockOff,null,null,null);
}
mInPrivacy = !mInPrivacy;
}

Step 5: Set Logo Watermark

Recent policies require that LVB videos must be marked with watermarks. With that in mind, we will focus

on this feature that had seemed insignificant before.

Tencent Video Cloud currently supports two watermark settings. One is to set watermark in the push SDK,

where the videos are marked with watermarks in the SDK before being encoded. Another is applying

watermarks in the cloud. That is, the cloud resolves videos and adds Logo watermarks to them.

We suggest that you add watermarks with the SDK, because there are three major problems when

watermarking in the cloud:

(1) This service increases the load on the cloud machine and is not free, which will increase your cost;

(2) It is not ideally compatible with certain situations such as resolution switching during the push

process. This may cause problems like blurred screen.

(3) It may cause an additional 3-second video delay, which is caused by the transcode service.

SDK requires that watermark images are PNG format, because such images contain transparency

information, which helps processes such as anti-aliasing. (Do not just change the extension of a JPG

image to PNG in Windows and put it in. Professional PNG logos need to be processed by professional art

designers)

//Set video watermark
mLivePushConfig.setWatermark(BitmapFactory.decodeResource(getResources(),R.drawable.watermar
k), 10, 10);
mLivePusher.setConfig(mLivePushConfig);

Step 6: Recommended Definition

Three major factors affect video quality: resolution, frame rate and bit rate.

Resolution

Screencap LVB on mobile phones provides resolutions at three levels: 360*640, 540*960, and 720*1280.

The API for relevant settings is setVideoResolution in TXLivePushConfig.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 44 of 99

Frame Rate

You will feel significant stutter if FPS <=10. It is recommended to set the frame rate to 20 - 25 FPS for

screencap LVB on mobile phones. API for this configuration is setVideoFPS in TXLivePushConfig.

Bit Rate

It refers to the size of data encoded by the encoder in each second (in kbps). For example, 800 kbps

indicates that the encoder produces 800 kb (or 100 KB) of data per second. The API for this

configuration is setVideoBitrate in TXLivePushConfig.

Compared to camera LVB, screencap LVB has many more uncertainties, the most significant one of which

is the screencap scenario.

(1) At one extreme, the mobile phone screen remains unchanged, e.g., the desktop. In this case, the

encoder can complete the task with very low bit rate output.

(2) At the other extreme, the mobile phone screen changes dramatically at all times, e.g., when the VJ is

playing Temple Run. In this case, the bit rate must be at least 2 Mbps to ensure that there is no mosaic

even for a resolution as ordinary as 540 * 960.

Level Resolution FPS
Bit Rate-Game
Screencap (Fishing
Joy)

Bit Rate-Game
Screencap (Temple
Run)

SD VIDEO_RESOLUTION_TYPE_360_640 20 800kbps 1200kbps

HD VIDEO_RESOLUTION_TYPE_540_960 20 1200kbps 2000kbps

UHD VIDEO_RESOLUTION_TYPE_720_1280 20 1600kbps 3000kbps

Step 7: Remind the VJ "network is poor"

Step 9 will discuss how to handle RTMP SDK push events. PUSH_WARNING_NET_BUSY is very useful, it

means: the uplink network of the VJ is poor, and stutters have occurred in the viewer end.

When you receive this WARNING, you can use the UI to remind VJ to change network egress, or get closer

to the WiFi. Or tell him to say something like this: "Hello dear, I'm streaming! Stop reading eBay! What?

Not eBay? Then stop downloading movies!"

Step 8: Landscape/portrait screen adaption

Dynamic video switching logic between landscape/portrait screen has been realized in Tencent Cloud

RTMP SDK, so there is no need to worry about this issue when using screencap LVB. When the VJ's mobile

phone switches between landscape mode and portrait mode, the images seen at the viewer end stay

consistent with the VJ end.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 45 of 99

Step 9: Add Custom Audio Data to SDK

If you wish to replace audio capture with your own logic, you need to add

CUSTOM_MODE_AUDIO_CAPTURE to the CustomMode settings. Meanwhile, you also need to specify key

information such as audio sampling rate and number of channels.

// (1) Set CustomMode as follows: Capture audio data by yourself; the SDK is responsible for encodi
ng and sending data only
_config.customModeType |= CUSTOM_MODE_AUDIO_CAPTURE;
//
// (2) Set audio encoding parameters: Audio sampling rate and number of channels
_config.audioSampleRate = 44100;
_config.audioChannels = 1;

Next, call sendCustomPCMData to insert your own PCM data to the SDK.

Step 10: Event Handling

Event Listening

RTMP SDK listens to push related events using the TXLivePushListener proxy. Note that the

TXLivePushListener only listens to push events with prefix PUSH_.

Normal Events

Events that are always prompted during a successful push. For example, receiving 1003 means that the

system will start rendering the camera pictures

Event ID Value Description

PUSH_EVT_CONNECT_SUCC 1001 Successfully connected to Tencent Cloud push server

PUSH_EVT_PUSH_BEGIN 1002
Handshake with the server completed, everything is
OK, ready to start push

PUSH_EVT_OPEN_CAMERA_SUCC 1003
The pusher has successfully started the camera (this
will take 1-2 seconds on some Android phones)

Error Notification

The push cannot continue as the SDK detected critical problems. For example, the user disabled camera

permission for the APP so the camera cannot be started.

Event ID Value Description

PUSH_ERR_OPEN_CAMERA_FAIL -1301 Failed to start the camera

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 46 of 99

Event ID Value Description

PUSH_ERR_OPEN_MIC_FAIL -1302 Failed to start the microphone

PUSH_ERR_VIDEO_ENCODE_FAIL -1303 Video encoding failed

PUSH_ERR_AUDIO_ENCODE_FAIL -1304
Audio
encoding
failed

PUSH_ERR_UNSUPPORTED_RESOLUTION -1305 Unsupported video resolution

PUSH_ERR_UNSUPPORTED_SAMPLERATE -1306 Unsupported audio sampling rate

PUSH_ERR_NET_DISCONNECT -1307

Network disconnected. Reconnection
attempts have failed for three times, thus
no more retries will be performed. Please
restart the push manually

Warning Events

SDK detected some reparable problems. Most warning events will trigger protection logics or recovery

logics that involve retrying, and in most of the cases the problems can be recovered. Don't make a fuss.

PUSH_WARNING_NET_BUSY

The VJ's network is busy. If you need UI prompts, this warning is relatively more useful (Step 10).

PUSH_WARNING_SERVER_DISCONNECT

The push request is rejected by the backend. This will trigger retry logic for a limited number of times

and the push may succeed in a certain attempt. But in most cases, it is because the txSecret in the push

address is miscalculated, or because the test address is occupied by others. Therefore, this warning is

more conducive to your debugging.

Event ID Value Description

PUSH_WARNING_NET_BUSY 1101
Bad network condition: data upload is
blocked because uplink bandwidth is too
small

PUSH_WARNING_RECONNECT 1102
Network disconnected, automatic
reconnection has started (auto reconnection
will be stopped if it fails for three times)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 47 of 99

Event ID Value Description

PUSH_WARNING_HW_ACCELERATION_FAIL 1103
Failed to start hardware encoding. Software
encoding is used

PUSH_WARNING_DNS_FAIL 3001
RTMP - DNS resolution failed (this will
trigger retry process)

PUSH_WARNING_SEVER_CONN_FAIL 3002
Failed to connect to the RTMP server (this
will trigger retry process)

PUSH_WARNING_SHAKE_FAIL 3003
RTMP server handshake failed (this will
trigger retry process)

PUSH_WARNING_SERVER_DISCONNECT 3004
The RTMP server actively disconnected (this
will trigger retry process)

For the definition of all events, please see the header file "TXLiveConstants.java"

Step 11: End Push

It is simple to end a push process, but proper cleaning work is required. Since only one TXLivePusher

object can run at a time, improper cleaning work may adversely affect the next LVB.

//End the screencap LVB and perform proper cleanup work
public void stopPublish() {
mTXLivePusher.stopScreenCapture();
mTXLivePusher.setPushListener(null);
mTXLivePusher.stopPusher();
}

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 48 of 99

Special Effects (Eye Enlarging, Face Slimming,
Dynamic Effect and Green Screen)

Feature Description

Special effects such as eye enlarging, face slimming, dynamic sticker and green screen, are privileged

features developed based on face recognition technology of Tencent YouTu Lab team and makeup

technology of Tencent Pitu team. By cooperating with the two teams, Tencent Cloud's Mini LVB team

deeply integrates these special effects into the image processing process of RTMP SDK to achieve better

video effects.

Charges

The special effects use patented technology of Tencent YouTu Lab, with annual licensing fees being

about 0.5 million CNY(currently, the fees of similar image processing products in China are millions of

CNY). If you need the feature, submit a ticket or call our customer service at 400-9100-100. Staff of the

business department will provide a password for decoding the SDK package and apply to Tencent YouTu

Lab for a trial license for you.

Version Downloading

You can download the privileged SDK package at the bottom of the RTMP SDK page. The package is

encrypted and you can get the password and the license file from our staff of the business department.

After decompressing the package, you need to replace the non-privileged jar and so files in your project

with the decompressed txrtmpsdk.jar , libtxrtmpsdk.so and other so files.

Project Settings

Effect Feature
Last updated：2018-08-10 16:22:02

https://cloud.tencent.com/document/product/454/7873

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 49 of 99

1. Add the SDK

Copy txrtmpsdk.jar, libtxrtmpsdk.so and other so files in the SDK to the corresponding location in the

project, such as in the libs folder

Note: Privileged version only supports so files with armeabi architecture. Therefore, you should

delete so files with other architectures in the App to avoid loading failure of so files.

2. Add resources

Copy the camera folder in the zip package to the assets directory of the project

Note: The camera directory includes files such as resources for switching dynamic effects, and must

be placed correctly under the assets directory, otherwise an error will occur

3. Import the license file

The features of the privileged version take effect only after the license verification is successful. You can

apply to our staff of the business department for a 30-day free license for debugging.

After getting the license, you need to name it YTFaceSDK.licence and place it under the assets directory

in the project.

Each license is bound to a specific package name. Therefore, modifying the package name in the

App can cause verification failure.

The name of YTFaceSDK.license file is fixed, cannot be modified, and must be placed under the

assets directory.

For IOS and Android systems, you need to apply for only one license because one license can

authorize the bundleid of an iOS system and the packageName of an Android system at the same

time.

Feature Calling

1. Dynamic effects

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 50 of 99

One dynamic effect template is included in one directory, which contains many resource files. Depending

on the complexity of each dynamic effect, the number of directories and file sizes are different.

Download resources for dynamic effects from the background and decompress them to the Resource

directory, and then you can get sample codes in the Mini LVB. In the codes, you can find download

addresses of resources and thumbnails for dynamic effects. The format is as follows

https://st1.xiangji.qq.com/yunmaterials/{ID of the dynamic effect}Android.zip

https://st1.xiangji.qq.com/yunmaterials/{ID of the dynamic effect}.png

It is strongly recommended that you put the resources for dynamic effects on your own servers to prevent

unnecessary impact caused by modifications of the Mini LVB.

After decompression, you can enable dynamic effects through the following API

/**
* setMotionTmpl is used to set the location of dynamic sticker files
* @param tmplPath
*/
public void setMotionTmpl(String tmplPath);

2. Green screen

Prepare a mp4 file for playback, and then you can enable the green screen effect by calling the following

API

/**
* Set the green screen file: Currently, the supported pictures are in jpg/png format, and the supported
videos are in mp4, 3gp and other Android-supported format
* API requirement 18
* @param path : Location of the green screen file. It supports two ways:
* 1. The resource file is put under the assets directory, and path is the file name
* 2. path is the absolute path of the file
*/
@TargetApi(18)
public void setGreenScreenFile(String path);

3. Eye enlarging and face slimming

https://st1.xiangji.qq.com/yunmaterials/%7BID
https://st1.xiangji.qq.com/yunmaterials/%7BID

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 51 of 99

Eye enlarging and face slimming features for SDK 2.0.0 are still under tense development and will

be released as soon as possible.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 52 of 99

Feature Description

LVB+Joint Broadcasting is an LVB mode commonly used in the Live Show and Online Education

scenarios. With a good applicability to many scenarios, it supports online live broadcasting featuring both

high concurrency and low cost, but also enables video chats between VJs and viewers via joint

broadcasting.

Tencent Cloud provides "LVB+Joint Broadcasting" by using LiveRoom, a component consisting of Client

and Server (both open source). For more information on how to interface with it, please see DOC. This

document displays the API list for Client:

LiveRoom

realtime
LiveRoom
Last updated：2018-07-23 10:53:27

https://cloud.tencent.com/document/product/454/14606
https://cloud.tencent.com/document/product/454/14606

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 53 of 99

Name Description

setLiveRoomListener(ILiveRoomListener listener) Sets liveroom callback

login(serverDomain, loginInfo, loginCallback)
Logs in to the

RoomService backend

logout()
Logs out of the

RoomService backend

getRoomList(int index, int count, GetRoomListCallback callback)
Gets the room list

(optional, you can select
your room list.)

getAudienceList(String roomID, final GetAudienceListCallback
callback)

Gets a list of viewers in a
room (a maximum of the

last 30 viewers who
entered the room are

returned.)

createRoom(String roomID, String roomInfo, CreateRoomCallback
cb)

VJ: Creates a room
(roomID can be left

blank.)

enterRoom(String roomID, TXCloudVideoView videoView,
EnterRoomCallback cb)

Viewer: Enters a room

exitRoom(ExitRoomCallback callback) VJ or viewer: Exits a room

startLocalPreview(TXCloudVideoView videoView)
VJ or joint broadcasting
viewer: Enables camera

preview

stopLocalPreview() Disables camera preview

requestJoinPusher(int timeout, RequestJoinPusherCallback
callback)

Viewer: Sends a joint
broadcasting request

``

joinPusher(final JoinPusherCallback cb)
Viewer: Joins joint

broadcasting

quitPusher(final QuitPusherCallback cb)
Viewer: Quits joint

broadcasting

acceptJoinPusher(String userID)
VJ: Accepts a joint

broadcasting request
from the viewer

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 54 of 99

Name Description

rejectJoinPusher(String userID, String reason)
VJ: Rejects a joint

broadcasting request
from the viewer

kickoutSubPusher(String userID)
VJ: Kicks a viewer out of

joint broadcasting

getOnlinePusherList(final GetOnlinePusherListCallback callback)
VJ PK: Gets a list of online

VJs

startPlayPKStream(final String playUrl, TXCloudVideoView
videoView, final PKStreamPlayCallback callback)

VJ PK: Starts playing back
each other's video

streams

stopPlayPKStream()
VJ PK: Stops playing back

each other's video
streams

sendPKRequest(String userID, int timeout, final RequestPKCallback
callback)

VJ PK: Sends a PK request

sendPKFinishRequest(String userID)
VJ PK: Sends a request to

finish PK

acceptPKRequest(String userID)
VJ PK: Accepts a PK

request

rejectPKRequest(String userID, String reason)
VJ PK: Rejects a PK

request

addRemoteView(TXCloudVideoView videoView, PusherInfo
pusherInfo, RemoteViewPlayCallback callback)

VJ: Plays back the remote
video images of the joint

broadcasting viewer

deleteRemoteView(PusherInfo pusherInfo)
VJ: Removes the remote
video images of the joint

broadcasting viewer

sendRoomTextMsg(String message, SendTextMessageCallback
callback)

Sends a text (on-screen
comment) message

sendRoomCustomMsg(String cmd, String message,
SendCustomMessageCallback callback)

Sends a custom message
(gives a "Like" or flower)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 55 of 99

Name Description

startScreenCapture()
Starts screen capturing

(only for Android)

stopScreenCapture()
Stops screen capturing

(only for Android)

switchToBackground()
App switches from

foreground to
background

switchToForeground()
App switches from

background to
foreground

setBeautyFilter(style, beautyLevel, whiteningLevel, ruddyLevel) Sets beauty filter effects

switchCamera()

Switches between front
and rear cameras.

Dynamic switching is
supported during push

setMute(mute) Enables Mute

setMirror(enable)

Sets mirroring for images
(this API works on the

effect at the viewer end
only; the VJ end always
has the mirroring effect

available)

playBGM(String path)
Starts background music
("path" indicates the path

to the music file)

stopBGM() Stops background music

pauseBGM()
Pauses background

music

resumeBGM()
Resumes background

music

setMicVolume(x)
Sets microphone volume

for audio mixing

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 56 of 99

Name Description

setBGMVolume(x)
Sets background music

volume for audio mixing

getMusicDuration(fileName)
Gets background music

duration

startRecord(recordType) Starts video recording

stopRecord() Stops video recording

setVideoRecordListener(TXRecordCommon.ITXVideoRecordListener
listener)

Sets video recording
callback

incCustomInfo(fieldName, count)
Increases the custom

value (fieldName) of a
room

decCustomInfo(fieldName, count)
Decreases the custom
value (fieldName) of a

room

updateSelfUserInfo(userName, userAvatar)
Updates user's

information of liveroom

setPauseImage(bitmap)
Sets the images to be

pushed when switching
to the background

ILiveRoomListener

Name Description

onGetPusherList(pusherList)
Notification: The list of existing pushers in the
room (the number of remote video streams)

onPusherJoin(pusherInfo)
Notification: A new pusher joined the room
(notifies you of addition of a remote video stream)

onPusherQuit(pusherInfo)
Notification: A pusher left the room (notifies you of
subtraction of a remote video stream)

onRecvJoinPusherRequest(userID, userName,
userAvatar)

Notification: VJ receives a joint broadcasting
request from a viewer

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 57 of 99

Name Description

onKickOut()
Viewer: Viewer gets notified of being kicked out by
the primary VJ

onRecvPKRequest(String userID, String
userName, String userAvatar, String streamUrl)

Receives a PK request

onRecvPKFinishRequest(String userID) Receives a request to finish PK

onRecvRoomTextMsg(roomID, userID,
userName, userAvatar, message)

Chat room: Receives a text message

onRecvRoomCustomMsg(roomID, userID,
userName, userAvatar, cmd, message)

Chat room: Receives a custom message

onRoomClosed(roomID) Notification: Notifies you of the room being closed

onDebugLog(log) LOG: Log callback

onError(errorCode, errorMessage) ERROR: Error callback

Details of LiveRoom APIs

1. setLiveRoomListener

API definition: void setLiveRoomListener(ILiveRoomListener listener)

API description: Sets the ILiveRoomListener callback. For the callback function, please see the

ILiveRoomListener API description.

Parameter description:

Parameter Type Description

listener ILiveRoomListener A liveroom callback API

Sample code:

mLiveRoom.setLiveRoomListener(new ILiveRoomListener() {
@Override
void onPusherJoin(PusherInfo pusherInfo) {
// ...
}

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 58 of 99

@Override
void onPusherQuit(PusherInfo pusherInfo) {
// ...
}

......
});

2. login

API definition: void login(String serverDomain, final LoginInfo loginInfo, final LoginCallback callback)

API description: Logs in to the RoomService backend. You can specify whether to use the Tencent

Cloud RoomService or the user-deployed RoomService.

Parameter description:

Parameter Type Description

serverDomain String
Server address of RoomService. For more information, please see
DOC.

loginInfo LoginInfo The login parameter. For more information, please see DOC.

callback LoginCallback Callback to verify whether the login is successful

Sample code:

final String DOMAIN = "https://room.qcloud.com/weapp/live_room ";
LoginInfo loginInfo = new LoginInfo();
loginInfo.sdkAppID = sdkAppID;
loginInfo.userID = userID;
loginInfo.userSig = userSig;
loginInfo.accType = accType;
loginInfo.userName = userName;
loginInfo.userAvatar = userAvatar;
mLiveRoom.login(DOMAIN, loginInfo, new LiveRoom.LoginCallback() {
@Override
public void onError(int errCode, String errInfo) {
//
}

@Override
public void onSuccess(String userId) {

https://cloud.tencent.com/document/product/454/14606#ClientFLOW
https://cloud.tencent.com/document/product/454/14606#ClientFLOW

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 59 of 99

//The userId is returned upon successful login.
}
});

3. logout

API definition: void logout();

API description: Logs out of the RoomService backend

Sample code:

mLiveRoom.logout();

4. getRoomList

API definition: void getRoomList(int index, int count, GetRoomListCallback callback)

API description: Pulls the room list. The parameters index and count are used to handle paging, which

means you can pull "count" rooms from the room numbered "index". This API is not required to be

called, and you can continue using it if you already have your own room list service modules.

Parameter description:

Parameter Type Description

index int The index of the room from which pull starts

count int Number of rooms to be returned via RoomService

callback GetRoomListCallback Callback of pulling a room list

Sample code:

//The pulling begins from the number 0, and ends when 20 rooms are pulled.
mLiveRoom.getRoomList(0, 20, new LiveRoom.GetRoomListCallback() {
@Override
public void onSuccess(ArrayList<RoomInfo> data) {
//For information on each room, please see the definition of RoomInfo.
}

@Override
public void onError(int errCode, String e) {

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 60 of 99

}
});

5. getAudienceList

API definition: void getAudienceList(String roomID, final GetAudienceListCallback callback)

API description: Gets the list of viewers in a room and returns only the last 30 viewers who entered the

room.

6. createRoom

API definition: void createRoom(final String roomID, final String roomInfo, final CreateRoomCallback

cb)

API description: Creates a room at RoomService backend.

Parameter description:

Parameter Type Description

roomID String

You can specify an ID for a new room with the parameter
roomID, or leave it unspecified. If you do not specify an ID for
the room, RoomService will automatically create a new roomID
and return it to you through CreateRoomCallback.

roomInfo String
To be customized by the creator. This information is returned
via getRoomList

cb CreateRoomCallback Creates room creation result callback

Sample code:

String roomInfo = mTitle;
try {
roomInfo = new JSONObject()
.put("title", mTitle)
.put("frontcover", mCoverPicUrl)
.put("location", mLocation)
.toString();
} catch (JSONException e) {
roomInfo = mTitle;
}
mLiveRoom.createRoom("", roomInfo, new LiveRoom.CreateRoomCallback() {
@Override
public void onSuccess(String roomId) {

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 61 of 99

Log.w(TAG,String.format("Room %s created successfully", roomId));
}

@Override
public void onError(int errCode, String e) {
Log.w(TAG,String.format("Error while creating the room, code=%s,error=%s", errCode, e));
}
});

7. enterRoom

API definition: void enterRoom(String roomID, TXCloudVideoView videoView, EnterRoomCallback cb)

API description: (Viewer) enters a room.

Sample code:

mLiveRoom.enterRoom(mGroupId, mTXCloudVideoView, new LiveRoom.EnterRoomCallback() {
@Override
public void onError(int errCode, String errInfo) {
TXLog.w(TAG, "enter room error : "+errInfo);
}

@Override
public void onSuccess() {
TXCLog.d(TAG, "enter room success ");
}
});

8. exitRoom

API definition: void exitRoom(final ExitRoomCallback callback)

API description: VJ (or viewer) exits the room.

Sample code:

mLiveRoom.exitRoom(new LiveRoom.ExitRoomCallback() {
@Override
public void onError(int errCode, String errInfo) {

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 62 of 99

TXLog.w(TAG, "exit room error : "+errInfo);
}

@Override
public void onSuccess() {
TXCLog.d(TAG, "exit room success ");
}
});

9. startLocalPreview

API definition: void startLocalPreview(TXCloudVideoView view)

API description: VJ (or joint broadcasting viewer) enables camera preview. The front camera is used by

default, and switchCamera is used to switch between front and rear cameras.

Sample code:

TXCloudVideoView mCaptureView = (TXCloudVideoView) view.findViewById(R.id.video_view);
mLiveRoom.startLocalPreview(mCaptureView);

10. stopLocalPreview

API definition: void stopLocalPreview()

API description: VJ (or viewer) disables camera preview.

Sample code:

mLiveRoom.stopLocalPreview();

11. requestJoinPusher

API definition: void requestJoinPusher(int timeout, RequestJoinPusherCallback callback)

API description: This API is called when (viewer) sends a request for joint broadcasting with the VJ.

Sample code:

mLiveRoom.requestJoinPusher(10, new LiveRoom.RequestJoinPusherCallback() {
@Override
public void onAccept() {
mLiveRoom.startLocalPreview(videoView);
mLiveRoom.setPauseImage(BitmapFactory.decodeResource(getResources(), R.drawable.pause_publis
h));
mLiveRoom.setBeautyFilter(mBeautyStyle, mBeautyLevel, mWhiteningLevel, mRuddyLevel);

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 63 of 99

mLiveRoom.joinPusher(new LiveRoom.JoinPusherCallback() {
@Override
public void onError(int errCode, String errInfo) {
mLiveRoom.startLocalPreview(videoView);
Toast.makeText(LivePlayActivity.this, "joint broadcasting failed:" + errInfo, Toast.LENGTH_SHORT).sho
w();
}

@Override
public void onSuccess() {

}
});
}

@Override
public void onReject(String reason) {
Toast.makeText(LivePlayActivity.this, "VJ rejected your joint broadcasting request", Toast.LENGTH_SH
ORT).show();
}

@Override
public void onTimeOut() {
Toast.makeText(LivePlayActivity.this, "Joint broadcasting request timed out, and the VJ made no resp
onse", Toast.LENGTH_SHORT).show();
}

@Override
public void onError(int code, String errInfo) {
Toast.makeText(LivePlayActivity.this, "Joint broadcasting request failed:" + errInfo, Toast.LENGTH_SH
ORT).show();
}
});

12. joinPusher

API definition: void joinPusher(final JoinPusherCallback cb)

API description: (Viewer) begins pushing, and joins joint broadcasting, but whether the joint

broadcasting can be successful depends on the callback result of JoinPusherCallback.

Sample code:

mLiveRoom.joinPusher(new LiveRoom.JoinPusherCallback() {
@Override
public void onError(int errCode, String errInfo) {

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 64 of 99

mLiveRoom.startLocalPreview(videoView);
Toast.makeText(LivePlayActivity.this, "Joint broadcasting failed:" + errInfo, Toast.LENGTH_SHORT).sho
w();
}

@Override
public void onSuccess() {

}
});

13. quitPusher

API definition: void quitPusher(final QuitPusherCallback cb)

API description: (Viewer) quits joint broadcasting.

Sample code:

mLiveRoom.quitPusher(new LiveRoom.QuitPusherCallback() {
@Override
public void onError(int errCode, String errInfo) {

}

@Override
public void onSuccess() {

}
});

14. acceptJoinPusher

API definition: void acceptJoinPusher(String userID)

API description: (VJ) accepts viewer's request for joint broadcasting.

Sample code:

mLiveRoom.acceptJoinPusher(userId);

15. rejectJoinPusher

API definition: void rejectJoinPusher(String userID, String reason)

API description: (VJ) rejects viewer's request for joint broadcasting.

Sample code:

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 65 of 99

mLiveRoom.rejectJoinPusher(userId, "");

16. kickoutSubPusher

API definition: void kickoutSubPusher(String userID)

API description: VJ kicks a viewer out of joint broadcasting.

Sample code:

mLiveRoom.kickoutSubPusher(userId);

17. getOnlinePusherList

API definition: void getOnlinePusherList(final GetOnlinePusherListCallback callback)

API description: VJ PK: Gets a list of online VJs.

Sample code:

mLiveRoom.getOnlinePusherList(new LiveRoom.GetOnlinePusherListCallback() {
@Override
public void onError(int errCode, String errInfo) {

}

@Override
public void onSuccess(final ArrayList<PusherInfo> pusherList) {

}
});

18. startPlayPKStream

API definition: void startPlayPKStream(final String playUrl, TXCloudVideoView videoView, final

PKStreamPlayCallback callback)

API description: VJ PK: Starts playing each other's streams

Sample code:

mLiveRoom.startPlayPKStream(streamUrl, videoView, new LiveRoom.PKStreamPlayCallback() {
@Override
public void onPlayBegin() {

}

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 66 of 99

@Override
public void onPlayError() {

}
});

19. stopPlayPKStream

API definition: void stopPlayPKStream()

API description: VJ PK: Stops playing each other's streams

Sample code:

mLiveRoom.stopPlayPKStream()

20. sendPKRequest

API definition: void sendPKRequest(String userID, int timeout, final RequestPKCallback callback)

API description: VJ PK: Sends a PK request

Sample code:

mLiveRoom.sendPKRequest(userID, 10, new LiveRoom.RequestPKCallback() {
@Override
public void onAccept(String streamUrl) {

}

@Override
public void onReject(String reason) {

}

@Override
public void onTimeOut() {

}

@Override
public void onError(int code, String errInfo) {

}
});

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 67 of 99

21. sendPKFinishRequest

API definition: void sendPKFinishRequest(String userID)

API description: VJ PK: Sends a request to end PK

Sample code:

mLiveRoom.sendPKFinishRequest(userID)

22. acceptPKRequest

API definition: void acceptPKRequest(String userID)

API description: VJ PK: Accepts a PK request

Sample code:

mLiveRoom.acceptPKRequest(userID);

23. rejectPKRequest

API definition: void rejectPKRequest(String userID, String reason)

API description: VJ PK: Rejects a PK request

Sample code:

mLiveRoom.rejectPKRequest(userID, "");

24. addRemoteView

API definition: void addRemoteView(TXCloudVideoView videoView, PusherInfo pusherInfo,

RemoteViewPlayCallback callback)

API description: (VJ) plays the remote video image of a viewer in joint broadcasting. This API is called

when onPusherJoin (notification of new viewer joining joint broadcasting) is received.

Sample code:

public void onPusherJoin(PusherInfo pusherInfo) {
......
mLiveRoom.addRemoteView(videoView, pusherInfo, new LiveRoom.RemoteViewPlayCallback() {
@Override
public void onPlayBegin() {
}

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 68 of 99

@Override
public void onPlayError() {
}
});
......
}

25. deleteRemoteView

API definition: void deleteRemoteView(final PusherInfo pusherInfo)

API description: Stops pushing the video stream of a viewer in joint broadcasting. This API is called

when onPusherQuit (a viewer quits the joint broadcasting) is received.

Sample code:

public void onPusherQuit(PusherInfo pusherInfo) {
......
mLiveRoom.deleteRemoteView(pusherInfo);
......
}

26. sendRoomTextMsg

API definition: void sendRoomTextMsg(@NonNull String message, final SendTextMessageCallback

callback)

API description: Sends a text message. Other members in the room will receive a notification via

onRecvRoomTextMsg.

Sample code:

mLiveRoom.sendRoomTextMsg("hello", new LiveRoom.SendTextMessageCallback() {
@Override
public void onError(int errCode, String errInfo) {
Log.d(TAG, "sendRoomTextMsg error:");
}

@Override
public void onSuccess() {
Log.d(TAG, "sendRoomTextMsg success:");
}
});

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 69 of 99

27. sendRoomCustomMsg

API definition: void sendRoomCustomMsg(@NonNull String cmd, @NonNull String message, final

SendCustomMessageCallback callback)

API description: Sends a custom message. Other members in the room will receive a notification via

onRecvRoomCustomMsg.

Sample code:

mLiveRoom.sendRoomCustomMsg(String.valueOf(TCConstants.IMCMD_DANMU),
"hello ", new LiveRoom.SendCustomMessageCallback() {
@Override
public void onError(int errCode, String errInfo) {
Log.w(TAG, "sendRoomDanmuMsg error: "+errInfo);
}

@Override
public void onSuccess() {
Log.d(TAG, "sendRoomDanmuMsg success");
}
});

28. startScreenCapture

API definition: void startScreenCapture()

API description: Enables screen capturing. Since screencap is implemented based on the native

capabilities of the Android system, for security reasons, Android will warn the user before the screencap

is initiated by displaying a prompt: "an App will capture all the contents on your screen".

Note: This API takes effect just on Android API 21. Screencap and camera preview are mutually

exclusive, which means only one of them can be effective at a time.

29. stopScreenCapture

API definition: void stopScreenCapture()

API description: Stops screen capturing.

30. switchToBackground

API definition: void switchToBackground()

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 70 of 99

API description: Switches from foreground to background, stops collecting camera data, and pushes

default pictures.

31. switchToForeground

API definition: void switchToForeground()

API description: Switches from background to foreground, and starts collecting camera data.

32. setBeautyFilter

API definition: boolean setBeautyFilter(int style, int beautyLevel, int whiteningLevel, int ruddyLevel)

API description: Sets beauty filter style, dermabrasion level, whitening level, and blushing level.

Parameter description:

Parameter Type Description

style int Dermabrasion style: 0: Smooth 1: Natural 2: Hazy

beautyLevel int
Dermabrasion level: Value range: 0-9. 0 means disabling beauty filter.
Default is 0, i.e., disabling beauty filter

whiteningLevel int
Whitening level: Value range: 0-9. 0 means disabling whitening. Default is
0, i.e., disabling whitening

ruddyLevel int
Blushing level: Value range: 0-9. 0 means disabling blushing. Default is 0,
i.e., disabling blushing

Sample code:

mLiveRoom.setBeautyFilter(mBeautyStyle, mBeautyLevel, mWhiteningLevel, mRuddyLevel);

33. switchCamera

API definition: void switchCamera()

API description: Switches between cameras. When the front camera is in use, calling this API enables a

switch from the front camera to the rear camera, and vice versa. This API takes effect only if it is called

after camera preview (startCameraPreview(TXCloudVideoView)) is enabled. The front camera is used by

default when the SDK enables camera preview.

34. setMute

API definition: void setMute(mute)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 71 of 99

API description: Enables Mute Once Mute is enabled, the SDK shifts from pushing microphone-

collected sounds to pushing mute.

Parameter description:

Parameter Type Description

mute boolean Whether to enable Mute

35. setMirror

API definition: void setMirror(boolean enable)

API description: Sets horizontal mirroring at the viewer end. Note that this API only works on the viewer

end, not the VJ (pusher) end. The mirroring effect is always seen from the pusher end. The image is

seen as mirrored from the pusher end when the front camera is in use, and non-mirrored when the rear

camera is in use.

Parameter description:

Parameter Type Description

enable boolean
"true" indicates the image is seen as mirrored, and "false" indicates the
image is seen as non-mirrored.

Sample code:

//The image is seen as mirrored at the viewer end
mLiveRoom.setMirror(true);

36. playBGM

API definition: boolean playBGM(String path)

API description: Starts background music. This API is used for audio mixing, for example, mixing

background music with sounds collected from the microphone for playback. If the playback is

successful, a value of "true" is returned. If the playback fails, a value of "false" is returned.

Parameter description:

Parameter Type Description

path String The background music file is located in the absolute path in the phone

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 72 of 99

37. stopBGM

API definition: boolean stopBGM()

API description: Stops background music. If the playback ends successfully, a value of "true" is returned.

If the playback fails to end, a value of "false" is returned.

38. pauseBGM

API definition: boolean pauseBGM()

API description: Pauses background music. If the playback pauses successfully, a value of "true" is

returned. If the playback fails to pause, a value of "false" is returned.

39. resumeBGM

API definition: boolean resumeBGM()

API description: Resumes background music. If the playback resumes successfully, a value of "true" is

returned. If the playback fails to resume, a value of "false" is returned.

40. setMicVolume

API definition: boolean setMicVolume(float x)

API description: Sets microphone volume for audio mixing. If the microphone volume is set successfully,

a value of "true" is returned. If the microphone volume fails to be set, a value of "false" is returned.

Parameter description:

Parameter Type Description

x float
Volume: Normal volume is 1. The recommended value is 0-2. If you need to
turn up the volume, you can set it to a larger value. It is recommended to add
a slider in the UI to allow VJs to set volume on their own

41. setBGMVolume

API definition: boolean setBGMVolume(float x)

API description: Sets background music volume for audio mixing. If the background music volume is

set successfully, a value of "true" is returned. If the background music volume fails to be set, a value of

"false" is returned.

Parameter description:

Parameter Type Description

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 73 of 99

Parameter Type Description

x float
Volume: Normal volume is 1. The recommended value is 0-2. If you need to
turn up the volume, you can set it to a larger value. It is recommended to add
a slider in the UI to allow VJs to set volume on their own

42. getMusicDuration

API definition: int getMusicDuration(String path)

API description: Gets background music duration. The returned value is in seconds.

Parameter description:

Parameter Type Description

path String
Gets the duration of the current music if path == null and the duration of
music under the path if path != null

43. startRecord

API definition: int startRecord(int recordType)

API description: Starts recording video. This API is used at the viewer end to save the videos the viewers

are watching as a local file in real time.

Note: This API can be called only after the enterRoom operation is successful. Additionally, the

generated video files are managed by your application layer code, and the SDK does not clean them.

If the recording starts successfully, "0" is returned. If the recording is in progress, "-1" is returned. If the

pushing has not started and the recording fails to start, "-2" is returned.

Parameter description:

Parameter Type Description

recordType int
Recording type, only video-only recording is supported
TXRecordCommon.RECORD_TYPE_STREAM_SOURCE

Sample code:

mLiveRoom.startRecord(TXRecordCommon.RECORD_TYPE_STREAM_SOURCE);

44. stopRecord

API definition: int stopRecord()

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 74 of 99

API description: Stops recording video. The recording result is asynchronously notified by means of

recording callback.

45. setVideoRecordListener

API definition: void setVideoRecordListener(TXRecordCommon.ITXVideoRecordListener listener)

API description: Sets video recording callback to receive the video recording progress and result.

Parameter description:

Parameter Type Description

listener TXRecordCommon.ITXVideoRecordListener Video recording callback

Sample code:

mLiveRoom.setVideoRecordListener(new TXRecordCommon.ITXVideoRecordListener(){
@Override
public void onRecordEvent(int event, Bundle param) {
}

@Override
public void onRecordProgress(long milliSecond) {
Log.d(TAG, "record progress:" + milliSecond);
}

@Override
public void onRecordComplete(TXRecordCommon.TXRecordResult result) {
if (result.retCode == TXRecordCommon.RECORD_RESULT_OK) {
String videoFile = result.videoPath;
String videoCoverPic = result.coverPath;
} else {
Log.d(TAG, "record error:" + result.retCode + ", error msg:" + result.descMsg);
}
}
});

46. incCustomInfo

API definition: void incCustomInfo(String fieldName, int count)

API description: Increases the custom fieldName count. This API is used to count the number of "likes",

gifts, and others of a room. The cumulative values can be obtained from the "custom" field of the

"roominfo" parameter.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 75 of 99

Parameter description:

Parameter Type Description

fieldName String Field name that requires counting

count int Increment value for each count, which is typically 1

Sample code:

mLiveRoom.incCustomInfo("praise",1);

47. decCustomInfo

API definition: void decCustomInfo(String fieldName, int count)

API description: Decreases the custom fieldName count. This API is used to count the number of "likes",

gifts, and others of a room. The cumulative values can be obtained from the "custom" field of the

"roominfo" parameter.

Parameter description:

Parameter Type Description

fieldName String Field name that requires counting

count int Decrement value for each count, which is typically 1

48. updateSelfUserInfo

API definition: void updateSelfUserInfo(String userName, String userAvatar)

API description: Updates the nickname and profile photo of a new user. This API is used to update the

liveroom information in real time after the nickname and profile photo of a user are modified

49. setPauseImage

API definition: void setPauseImage(Bitmap bitmap)

API description: Sets the images to be pushed when switching from foreground to background.

Parameter description:

Parameter Type Description

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 76 of 99

Parameter Type Description

bitmap Bitmap Background image bitmap

Details of ILiveRoomListener APIs

1. onGetPusherList

API definition: void onGetPusherList(List pusherList)

API description: The list of existing pushers in the room (the number of remote video streams). New

viewers will receive this notification when they enter the room. In the callback, you can call

addRemoteView to playback the video of an existing viewer in the room.

Sample code:

public void onGetPusherList(List<PusherInfo> pusherList) {
......
for (PusherInfo pusherInfo : pusherInfoList) {
mLiveRoom.addRemoteView(videoView, pusherInfo, new LiveRoom.RemoteViewPlayCallback() {
@Override
public void onPlayBegin() {
//
}

@Override
public void onPlayError() {

}
});
}
......
}

2. onPusherJoin

API definition: void onPusherJoin(PusherInfo pusherInfo)

API description: When a new viewer enters a room, the primary VJ and other viewers will receive this

notification. In the callback, you can call addRemoteView to playback the video of this new viewer.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 77 of 99

Sample code:

public void onPusherJoin(final PusherInfo pusherInfo) {
......
mLiveRoom.addRemoteView(videoView, pusherInfo, new LiveRoom.RemoteViewPlayCallback() {
@Override
public void onPlayBegin() {
//
}

@Override
public void onPlayError() {

}
});
......
}

3. onPusherQuit

API definition: void onPusherQuit(PusherInfo pusherInfo)

API description: The primary VJ and other viewers will receive this notification when a viewer exits the

room. In the callback, you can call deleteRemoteView to stop playing back the video of this viewer.

Sample code:

public void onPusherQuit(PusherInfo pusherInfo) {
......
mLiveRoom.deleteRemoteView(pusherInfo);
......
}

4. onRecvJoinPusherRequest

API definition: void onRecvJoinPusherRequest(String userID, String userName, String userAvatar)

API description: The VJ receives this notification when a viewer requests joint broadcasting with this VJ.

The VJ can either accept (acceptJoinPusher) or reject (rejectJoinPusher) the request in the callback.

Sample code:

public void onRecvJoinPusherRequest(final String userId, String userName, String userAvatar) {
final AlertDialog.Builder builder = new AlertDialog.Builder(mActivity)
.setCancelable(true)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 78 of 99

.setTitle("Prompt")

.setMessage(userName + "initiated a joint broadcasting request with you")

.setPositiveButton("Accept", new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {
mLiveRoom.acceptJoinPusher(userId);
dialog.dismiss();
}
})
.setNegativeButton("Reject", new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {
mLiveRoom.rejectJoinPusher(userId, "VJ rejected your joint broadcasting request");
dialog.dismiss();
}
});
}

5. onKickOut

API definition: void onKickOut()

API description: The viewer will receive this notification when he/she is kicked out of joint broadcasting

by the VJ. In the callback, you can stop local preview and exit the live room.

Sample code:

public void onKickOut() {
......
mLiveRoom.stopLocalPreview();
mLiveRoom.quitPusher(new LiveRoom.QuitPusherCallback() {
@Override
public void onError(int errCode, String errInfo) {

}

@Override
public void onSuccess() {

}
});
......
}

6. onRecvPKRequest

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 79 of 99

API definition: void onRecvPKRequest(String userID, String userName, String userAvatar, String

streamUrl)

API description: When a VJ calls sendPKRequest to send a PK request to another VJ, the another VJ will

receive this callback notification. In this callback, you can display a pop-up window indicating the

reception of a PK request and asking the user whether he/she will accept or reject it.

Sample code:

@Override
public void onRecvPKRequest(final String userID, final String userName, final String userAvatar, fina
l String streamUrl){
final AlertDialog.Builder builder = new AlertDialog.Builder(mActivity)
.setCancelable(true)
.setTitle("Prompt")
.setMessage(userName + "initiated a PK request with you")
.setPositiveButton("Accept", new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {
mLiveRoom.acceptPKRequest(userID);
mLiveRoom.startPlayPKStream(streamUrl, videoView, new LiveRoom.PKStreamPlayCallback() {
@Override
public void onPlayBegin() {

}

@Override
public void onPlayError() {

}
});
dialog.dismiss();
}
})
.setNegativeButton("Reject", new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {
mLiveRoom.rejectPKRequest(userID, "VJ rejected your PK request");
dialog.dismiss();
}
});

final AlertDialog alertDialog = builder.create();
alertDialog.setCancelable(false);
alertDialog.setCanceledOnTouchOutside(false);

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 80 of 99

alertDialog.show();
}

7. onRecvPKFinishRequest

API definition: void onRecvPKFinishRequest(String userID)

API description: When a VJ calls sendPKFinishRequest to notify another VJ that the PK has ended, the

another VJ will receive this callback notification. In this callback, call stopPlayPKStream to end the PK

and perform clean-up.

Sample code:

@Override
public void onRecvPKFinishRequest(final String userID){
mLiveRoom.stopPlayPKStream();
}

8. onRecvRoomTextMsg

API definition: void onRecvRoomTextMsg(String roomID, String userID, String userName, String

userAvatar, String message)

API description: When sendRoomTextMsg is called at the VJ or viewer end, the VJ or viewers in the

room will receive this notification.

Sample code:

public void onRecvRoomTextMsg(String roomid, String userid, String userName, String userAvatar, St
ring message) {
//do nothing
}

9. onRecvRoomCustomMsg

API definition: void onRecvRoomCustomMsg(String roomID, String userID, String userName, String

userAvatar, String cmd, String message)

API description: When sendRoomCustomMsg is called at the VJ or viewer end, the VJ or viewers in the

room will receive this notification.

10. onRoomClosed

API definition: void onRoomClosed(String roomID)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 81 of 99

API description: When a room is terminated, viewers in the room will receive this notification. Exit the

room in the callback.

Sample code:

public void onRoomClosed(String roomId) {
......
mLiveRoom.exitRoom(new LiveRoom.ExitRoomCallback() {
@Override
public void onSuccess() {
Log.i(TAG, "exitRoom Success");
}

@Override
public void onError(int errCode, String e) {
Log.e(TAG, "exitRoom failed, errorCode = " + errCode + " errMessage = " + e);
}
});
......
}

11. onDebugLog

API definition: void onDebugLog(String log)

API description: Live room log callback. You can save the logs as a file in the callback, so as to make it

easy to analyze problems.

Sample code:

public void onDebugLog(String line) {
Log.i(TAG,line);
}

12. onError

API definition: void onError(int errorCode, String errorMessage)

API description: Live room error callback

Sample code:

public void onError(final int errorCode, final String errorMessage) {
mLiveRoom.exitRoom(null);
new AlertDialog.Builder(mActivity)
.setTitle("Live room error")

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 82 of 99

.setMessage(errorMessage + "[" + errorCode + "]")

.setNegativeButton("OK", new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {

}
}).show();
}

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 83 of 99

RTCRoom

Name Description

setRTCRoomListener(IRTCRoomListener
listener)

Sets rtcroom callback

login(serverDomain, loginInfo,
loginCallback)

Logs in to the RoomService backend

logout() Logs out of the RoomService backend

getRoomList(int index, int count,
GetRoomListCallback callback)

Gets the room list (optional, you can select your room
list.)

createRoom(String roomID, String
roomInfo, CreateRoomCallback cb)

Meeting initiator: Creates a room (roomID can be left
blank.)

enterRoom(String roomID,
EnterRoomCallback cb)

Meeting participant: Enters a room

exitRoom(ExitRoomCallback callback) Meeting initiator or meeting participant: Exits a room

startLocalPreview(TXCloudVideoView
videoView)

Meeting initiator or meeting participant: Enables
camera preview

stopLocalPreview() Disables camera preview

addRemoteView(TXCloudVideoView
videoView, PusherInfo pusherInfo,
RemoteViewPlayCallback callback)

Plays back the remote video images of the meeting
participant

deleteRemoteView(PusherInfo pusherInfo)
Stops playing back the remote video images of the

meeting participant

sendRoomTextMsg(String message,
SendTextMessageCallback callback)

Sends a text (on-screen comment) message

sendRoomCustomMsg(String cmd, String
message, SendCustomMessageCallback

callback)
Sends a custom message (gives a "Like" or flower)

RTCRoom
Last updated：2018-07-23 10:57:25

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 84 of 99

Name Description

switchToBackground() App switches from foreground to background

switchToForeground() App switches from background to foreground

setBeautyFilter(style, beautyLevel,
whiteningLevel, ruddyLevel)

Sets beauty filter effects

switchCamera()
Switches between front and rear cameras. Dynamic

switching is supported during push

setMute(mute) Enables Mute

setMirror(enable)
Sets mirroring for images (this API works on the effect
at the viewer end only; the pusher end always has the

mirroring effect available)

playBGM(String path)
Starts background music ("path" indicates the path to

the music file)

stopBGM() Stops background music

pauseBGM() Pauses background music

resumeBGM() Resumes background music

setMicVolume(x) Sets microphone volume for audio mixing

setBGMVolume(x) Sets background music volume for audio mixing

getMusicDuration(fileName) Gets background music duration

setBitrateRange(minBitrate, maxBitrate) Sets video bitrate range

setPauseImage(bitmap)
Sets the images to be pushed when switching to the

background

IRTCRoomListener

Name Description

onGetPusherList(pusherList)
Notification: The list of existing pushers in the room
(the number of remote video streams)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 85 of 99

Name Description

onPusherJoin(pusherInfo)
Notification: A new pusher joined the room (notifies
you of addition of a remote video stream)

onPusherQuit(pusherInfo)
Notification: A pusher left the room (notifies you of
subtraction of a remote video stream)

onRecvRoomTextMsg(roomID, userID,
userName, userAvatar, message)

Chat room: Receives a text message

onRecvRoomCustomMsg(roomID, userID,
userName, userAvatar, cmd, message)

Chat room: Receives a custom message

onRoomClosed(roomID) Notification: Notifies you of the room being closed

onDebugLog(log) LOG: Log callback

onError(errorCode, errorMessage) ERROR: Error callback

Details of RTCRoom APIs

1. setRTCRoomListener

API definition: void setRTCRoomListener(IRTCRoomListener listener)

API description: Sets IRTCRoomListener callback. For the callback function, please see the

IRTCRoomListener API description.

Parameter description:

Parameter Type Description

listener IRTCRoomListener An rtcroom callback API

Sample code:

mRTCRoom.setRTCRoomListener(new IRTCRoomListener() {
@Override
void onPusherJoin(PusherInfo pusherInfo) {
// ...
}

@Override

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 86 of 99

void onPusherQuit(PusherInfo pusherInfo) {
// ...
}

......
});

2. login

API definition: void login(String serverDomain, final LoginInfo loginInfo, final LoginCallback callback)

API description: Logs in to the RoomService backend. You can specify whether to use the Tencent

Cloud RoomService or the user-deployed RoomService.

Parameter description:

Parameter Type Description

serverDomain String
Server address of RoomService. For more information, please see
DOC.

loginInfo LoginInfo The login parameter. For more information, please see DOC.

callback LoginCallback Callback to verify whether the login is successful

Sample code:

final String DOMAIN = "https://room.qcloud.com/weapp/rtc_room ";
LoginInfo loginInfo = new LoginInfo();
loginInfo.sdkAppID = sdkAppID;
loginInfo.userID = userID;
loginInfo.userSig = userSig;
loginInfo.accType = accType;
loginInfo.userName = userName;
loginInfo.userAvatar = userAvatar;
mRTCRoom.login(DOMAIN, loginInfo, new RTCRoom.LoginCallback() {
@Override
public void onError(int errCode, String errInfo) {
//
}

@Override
public void onSuccess(String userId) {
//The userId is returned upon successful login.

https://cloud.tencent.com/document/product/454/14606#ClientFLOW
https://cloud.tencent.com/document/product/454/14606#ClientFLOW

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 87 of 99

}
});

3. logout

API definition: void logout();

API description: Logs out of the RoomService backend

Sample code:

mRTCRoom.logout();

4. getRoomList

API definition: void getRoomList(int index, int count, GetRoomListCallback callback)

API description: Pulls the room list. The parameters index and count are used to handle paging, which

means you can pull "count" rooms from the room numbered "index". This API is not required to be

called, and you can continue using it if you already have your own room list service modules.

Parameter description:

Parameter Type Description

index int The index of the room from which pull starts

count int Number of rooms to be returned via RoomService

callback GetRoomListCallback Callback of pulling a room list

Sample code:

//The pulling begins from the number 0, and ends when 20 rooms are pulled.
mRTCRoom.getRoomList(0, 20, new RTCRoom.GetRoomListCallback() {
@Override
public void onSuccess(ArrayList<RoomInfo> data) {
//For information on each room, please see the definition of RoomInfo.
}

@Override
public void onError(int errCode, String e) {

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 88 of 99

}
});

5. createRoom

API definition: void createRoom(final String roomID, final String roomInfo, final CreateRoomCallback

cb)

API description: Creates a room at RoomService backend.

Parameter description:

Parameter Type Description

roomID String

You can specify an ID for a new room with the parameter
roomID, or leave it unspecified. If you do not specify an ID for
the room, RoomService will automatically create a new roomID
and return it to you through CreateRoomCallback.

roomInfo String
To be customized by the creator. This information is returned
via getRoomList

cb CreateRoomCallback Creates room creation result callback

Sample code:

String roomInfo = mTitle;
try {
roomInfo = new JSONObject()
.put("title", mTitle)
.put("frontcover", mCoverPicUrl)
.put("location", mLocation)
.toString();
} catch (JSONException e) {
roomInfo = mTitle;
}
mRTCRoom.createRoom("", roomInfo, new RTCRoom.CreateRoomCallback() {
@Override
public void onSuccess(String roomId) {
Log.w(TAG,String.format("Room %s created successfully", roomId));
}

@Override
public void onError(int errCode, String e) {
Log.w(TAG,String.format("Error while creating the room, code=%s,error=%s", errCode, e));

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 89 of 99

}
});

6. enterRoom

API definition: void enterRoom(String roomID, EnterRoomCallback cb)

API description: (Meeting participant) enters a room.

Sample code:

mRTCRoom.enterRoom(mRoomId, new RTCRoom.EnterRoomCallback() {
@Override
public void onError(int errCode, String errInfo) {
TXLog.w(TAG, "enter room error : "+errInfo);
}

@Override
public void onSuccess() {
TXCLog.d(TAG, "enter room success ");
}
});

7. exitRoom

API definition: void exitRoom(final ExitRoomCallback cb))

API description: (Meeting initiator or meeting participant) exits a room.

Sample code:

mRTCRoom.exitRoom(new RTCRoom.ExitRoomCallback() {
@Override
public void onError(int errCode, String errInfo) {
TXLog.w(TAG, "exit room error : "+errInfo);
}

@Override
public void onSuccess() {
TXCLog.d(TAG, "exit room success ");

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 90 of 99

}
});

8. startLocalPreview

API definition: void startLocalPreview(TXCloudVideoView view)

API description: (A meeting initiator or meeting participant) enables camera preview. The front camera

is used by default, and switchCamera is used to switch between front and rear cameras.

Sample code:

TXCloudVideoView mCaptureView = (TXCloudVideoView) view.findViewById(R.id.video_view);
mRTCRoom.startLocalPreview(mCaptureView);

9. stopLocalPreview

API definition: void stopLocalPreview(boolean isNeedClearLastImg)

API description: (Meeting initiator or meeting participant) disables camera preview.

Sample code:

mRTCRoom.stopLocalPreview();

10. addRemoteView

API definition: void addRemoteView(TXCloudVideoView videoView, PusherInfo pusherInfo,

RemoteViewPlayCallback callback)

API description: (A meeting initiator or meeting participant) plays the remote video image of a meeting

participant. This API is called when onPusherJoin (notification of new meeting participant entering the

room) is received.

Sample code:

public void onPusherJoin(PusherInfo pusherInfo) {
......
mRTCRoom.addRemoteView(videoView, pusherInfo, new RTCRoom.RemoteViewPlayCallback() {
@Override
public void onPlayBegin() {
}

@Override
public void onPlayError() {
}

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 91 of 99

});
......
}

11. deleteRemoteView

API definition: void deleteRemoteView(final PusherInfo pusherInfo)

API description: Stops playing the video of a meeting participant. This API is called when onPusherQuit

(a meeting participant leaves) is received.

Sample code:

public void onPusherQuit(PusherInfo pusherInfo) {
......
mRTCRoom.deleteRemoteView(pusherInfo);
......
}

12. sendRoomTextMsg

API definition: void sendRoomTextMsg(@NonNull String message, final SendTextMessageCallback

callback)

API description: Sends a text message. Other members in the room will receive a notification via

onRecvRoomTextMsg.

Sample code:

mRTCRoom.sendRoomTextMsg("hello", new RTCRoom.SendTextMessageCallback() {
@Override
public void onError(int errCode, String errInfo) {
Log.d(TAG, "sendRoomTextMsg error:");
}

@Override
public void onSuccess() {
Log.d(TAG, "sendRoomTextMsg success:");
}
});

13. sendRoomCustomMsg

API definition: void sendRoomCustomMsg(@NonNull String cmd, @NonNull String message, final

SendCustomMessageCallback callback)

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 92 of 99

API description: Sends a custom message. Other members in the room will receive a notification via

onRecvRoomCustomMsg.

Sample code:

mRTCRoom.sendRoomCustomMsg(String.valueOf(TCConstants.IMCMD_DANMU),
"hello ", new RTCRoom.SendCustomMessageCallback() {
@Override
public void onError(int errCode, String errInfo) {
Log.w(TAG, "sendRoomDanmuMsg error: "+errInfo);
}

@Override
public void onSuccess() {
Log.d(TAG, "sendRoomDanmuMsg success");
}
});

14. switchToBackground

API definition: void switchToBackground()

API description: Switches from foreground to background, stops collecting camera data, and pushes

default pictures.

15. switchToForeground

API definition: void switchToForeground()

API description: Switches from background to foreground, and starts collecting camera data.

16. setBeautyFilter

API definition: boolean setBeautyFilter(int style, int beautyLevel, int whiteningLevel, int ruddyLevel)

API description: Sets beauty filter style, dermabrasion level, whitening level, and blushing level.

Parameter description:

Parameter Type Description

style int Dermabrasion style: 0: Smooth 1: Natural 2: Hazy

beautyLevel int
Dermabrasion level: Value range: 0-9. 0 means disabling beauty filter.
Default is 0, i.e., disabling beauty filter

whiteningLevel int
Whitening level: Value range: 0-9. 0 means disabling whitening. Default is
0, i.e., disabling whitening

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 93 of 99

Parameter Type Description

ruddyLevel int
Blushing level: Value range: 0-9. 0 means disabling blushing. Default is 0,
i.e., disabling blushing

Sample code:

mRTCRoom.setBeautyFilter(mBeautyStyle, mBeautyLevel, mWhiteningLevel, mRuddyLevel);

17. switchCamera

API definition: void switchCamera()

API description: Switches between cameras. When the front camera is in use, calling this API enables a

switch from the front camera to the rear camera, and vice versa. This API takes effect only if it is called

after camera preview (startCameraPreview(TXCloudVideoView)) is enabled. The front camera is used by

default when the SDK enables camera preview.

18. setMute

API definition: void setMute(mute)

API description: Enables Mute Once Mute is enabled, the SDK shifts from pushing microphone-

collected sounds to pushing mute.

Parameter description:

Parameter Type Description

mute boolean Whether to enable Mute

19. setMirror

API definition: void setMirror(boolean enable)

API description: Sets horizontal mirroring at the viewer end. Note that this API only works on the viewer

end, not the pusher end. The mirroring effect is always seen from the pusher end. The image is seen as

mirrored from the pusher end when the front camera is in use, and non-mirrored when the rear camera

is in use.

Parameter description:

Parameter Type Description

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 94 of 99

Parameter Type Description

enable boolean
"true" indicates the image is seen as mirrored, and "false" indicates the
image is seen as non-mirrored.

Sample code:

//The image is seen as mirrored at the viewer end
mRTCRoom.setMirror(true);

20. playBGM

API definition: boolean playBGM(String path)

API description: Starts background music. This API is used for audio mixing, for example, mixing

background music with sounds collected from the microphone for playback. If the playback is

successful, a value of "true" is returned. If the playback fails, a value of "false" is returned.

Parameter description:

Parameter Type Description

path String The background music file is located in the absolute path in the phone

21. stopBGM

API definition: boolean stopBGM()

API description: Stops background music. If the playback ends successfully, a value of "true" is returned.

If the playback fails to end, a value of "false" is returned.

22. pauseBGM

API definition: boolean pauseBGM()

API description: Pauses background music. If the playback pauses successfully, a value of "true" is

returned. If the playback fails to pause, a value of "false" is returned.

23. resumeBGM

API definition: boolean resumeBGM()

API description: Resumes background music. If the playback resumes successfully, a value of "true" is

returned. If the playback fails to resume, a value of "false" is returned.

24. setMicVolume

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 95 of 99

API definition: boolean setMicVolume(float x)

API description: Sets microphone volume for audio mixing. If the microphone volume is set successfully,

a value of "true" is returned. If the microphone volume fails to be set, a value of "false" is returned.

Parameter description:

Parameter Type Description

x float
Volume: Normal volume is 1. The recommended value is 0-2. If you need to
turn up the volume, you can set it to a larger value. It is recommended to add
a slider in the UI to allow VJs to set volume on their own

25. setBGMVolume

API definition: boolean setBGMVolume(float x)

API description: Sets background music volume for audio mixing. If the background music volume is

set successfully, a value of "true" is returned. If the background music volume fails to be set, a value of

"false" is returned.

Parameter description:

Parameter Type Description

x float
Volume: Normal volume is 1. The recommended value is 0-2. If you need to
turn up the volume, you can set it to a larger value. It is recommended to add
a slider in the UI to allow VJs to set volume on their own

26. getMusicDuration

API definition: int getMusicDuration(String path)

API description: Gets background music duration. The returned value is in seconds.

Parameter description:

Parameter Type Description

path String
Gets the duration of the current music if path == null and the duration of
music under the path if path != null

27. setBitrateRange

API definition: void setBitrateRange(int minBitrate, int maxBitrate)

API description: Sets video bitrate range, which is 400-800 for two persons, and 200-400 for more than

two persons.

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 96 of 99

Parameter description:

Parameter Type Description

minBitrate int The minimum video bitrate

maxBitrate int The maximum video bitrate

28. setPauseImage

API definition: void setPauseImage(Bitmap bitmap)

API description: Sets the images to be pushed when switching from foreground to background.

Parameter description:

Parameter Type Description

bitmap Bitmap Background image bitmap

Details of IRTCRoomListener APIs

1. onGetPusherList

API definition: void onGetPusherList(List\ pusherList)

API description: A new meeting participant will receive the current list of meeting participants when

entering a room. In the callback, you can call addRemoteView to playback the video of other meeting

participants.

Sample code:

public void onGetPusherList(List<PusherInfo> pusherInfoList) {
for (PusherInfo pusherInfo : pusherInfoList) {
......
mRTCRoom.addRemoteView(videoView, pusherInfo, new RTCRoom.RemoteViewPlayCallback() {
@Override
public void onPlayBegin() {
//
}

@Override

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 97 of 99

public void onPlayError() {

}
});
}
}

2. onPusherJoin

API definition: void onPusherJoin(PusherInfo pusherInfo)

API description: When a new meeting participant enters a room, the other meeting participants in the

room will receive this notification. In the callback, you can call addRemoteView to playback the video

of this new meeting participant.

Sample code:

public void onPusherJoin(final PusherInfo pusherInfo) {
......
mRTCRoom.addRemoteView(videoView, pusherInfo, new RTCRoom.RemoteViewPlayCallback() {
@Override
public void onPlayBegin() {
//
}

@Override
public void onPlayError() {

}
});
......
}

3. onPusherQuit

API definition: void onPusherQuit(PusherInfo pusherInfo)

API description: The other meeting participants in the room will receive this notification when a

meeting participant leaves a room. In the callback, you can call deleteRemoteView to stop the video of

this meeting participant.

Sample code:

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 98 of 99

public void onPusherQuit(PusherInfo pusherInfo) {
......
mRTCRoom.deleteRemoteView(pusherInfo);
......
}

4. onRecvRoomTextMsg

API definition: void onRecvRoomTextMsg(String roomID, String userID, String userName, String

userAvatar, String message)

API description: When a meeting participant calls sendRoomTextMsg, the other meeting participants in

the room will receive this notification.

Sample code:

public void onRecvRoomTextMsg(String roomid, String userid, String userName, String userAvatar, St
ring message) {
//do nothing
}

5. onRecvRoomCustomMsg

API definition: void onRecvRoomCustomMsg(String roomID, String userID, String userName, String

userAvatar, String cmd, String message)

API description: When a meeting participant calls sendRoomCustomMsg, the other meeting

participants in the room will receive this notification.

6. onRoomClosed

API definition: void onRoomClosed(String roomID)

API description: When a room is terminated, meeting participants in the room will receive this

notification. Exit the room in the callback.

Sample code:

public void onRoomClosed(String roomId) {
......
mRTCRoom.exitRoom(new RTCRoom.ExitRoomCallback() {
@Override
public void onSuccess() {
Log.i(TAG, "exitRoom Success");
}

Android-based Integration Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 99 of 99

@Override
public void onError(int errCode, String e) {
Log.e(TAG, "exitRoom failed, errorCode = " + errCode + " errMessage = " + e);
}
});
......
}

7. onDebugLog

API definition: void onDebugLog(String log)

API description: Live room log callback. You can save the logs as a file in the callback, so as to make it

easy to analyze problems.

Sample code:

public void onDebugLog(String line) {
Log.i(TAG,line);
}

8. onError

API definition: void onError(int errorCode, String errorMessage)

API description: Live room error callback

Sample code:

public void onError(final int errorCode, final String errorMessage) {
mRTCRoom.exitRoom(null);
new AlertDialog.Builder(mActivity)
.setTitle("Live room error")
.setMessage(errorMessage + "[" + errorCode + "]")
.setNegativeButton("OK", new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {

}
}).show();
}

