

GPU 云服务器

故障处理

【版权声明】

©2013-2025 腾讯云版权所有

本文档(含所有文字、数据、图片等内容)完整的著作权归腾讯云计算(北京)有限责任公司单独所有,未经腾讯云 事先明确书面许可,任何主体不得以任何形式复制、修改、使用、抄袭、传播本文档全部或部分内容。前述行为构成 对腾讯云著作权的侵犯,腾讯云将依法采取措施追究法律责任。

【商标声明】

🕗 腾讯云

及其它腾讯云服务相关的商标均为腾讯云计算(北京)有限责任公司及其关联公司所有。本文档涉及的第三方主体的 商标,依法由权利人所有。未经腾讯云及有关权利人书面许可,任何主体不得以任何方式对前述商标进行使用、复 制、修改、传播、抄录等行为,否则将构成对腾讯云及有关权利人商标权的侵犯,腾讯云将依法采取措施追究法律责 任。

【服务声明】

本文档意在向您介绍腾讯云全部或部分产品、服务的当时的相关概况,部分产品、服务的内容可能不时有所调整。 您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定,除非双方另有约定,否则, 腾讯云对本文档内容不做任何明示或默示的承诺或保证。

【联系我们】

我们致力于为您提供个性化的售前购买咨询服务,及相应的技术售后服务,任何问题请联系 4009100100或 95716。

文档目录

故障处理

GPU 实例异常处理指南 常见 Xid 事件的处理方法 GPU 实例相关日志收集 GPU 使用率显示 100% 控制台的 VNC 不可用

🔗 腾讯云

故障处理 GPU 实例异常处理指南

最近更新时间: 2025-03-07 11:44:14

本文档旨在提供用户有关如何处理 GPU 实例异常的指引,以帮助用户快速诊断和解决 GPU 实例相关的问题。以 下是一些排查和处理建议,可用于处理部分常见的 GPU 实例问题。

系统状态检测

对于 GPU 服务器建议用户维持较新的GPU驱动版本、禁用 nouveau 模块、打开 GPU 驱动内存常驻模式并配置 开机自启动。

对于 GPU 服务器,建议进行以下配置:

- 维持较新的、正确的 GPU 驱动版本。
- 禁用 nouveau 模块。
- 打开 GPU 驱动内存常驻模式并配置开机自启动。
- GPU 故障后,建议在官网控制台重启机器看看是否可以恢复。

检查 GPU 驱动

GPU 驱动下载注意事项:

- •从 NVIDIA 官方文档 官方高级驱动搜索 | NVIDIA 选择正确的 GPU 型号。
- 对于64位 Linux Os 建议直接选择 Linux 64-bit。
- 选择 NVIDIA 推荐/认证的驱动。

禁用 nouveau 模块

nouveau 是 NVIDIA 显卡的开源驱动程序,会与 NVIDIA 官方 GPU 驱动发生冲突,需要在系统下禁用 nouveau 模块。

以下命令没有任何输出表示 nouveau 模块已经禁用:

[root@localhost ~]# lsmod | grep -i nouveau

以下输出表示 nouveau 模块没有禁用:

[root@localhost	~]#	lsmod	grep	p -i nouveau
nouveau		1662531	_ 0	
mxm_wmi		13021	_ 1	nouveau
wmi		19086	52	mxm_wmi,nouvea
i2c_algo_bit		13413	31	nouveau

video	24538	1 nouveau			
drm_kms_helper	176920	2 nouveau,vmwgfx			
ttm	99555	2 nouveau,vmwgfx			
drm	397988	<pre>6 ttm,drm_kms_helper,nouveau,vmwgfx</pre>			
i2c_core	63151	5			
drm,i2c_piix4,drm_kms_helper,i2c_algo_bit,nouveau					

禁用 nouveau 模块的方法参考如下:

```
# CentOS 7
# 编辑或新建 blacklist-nouveau.conf 文件
[root@localhost ~]# vim /usr/lib/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
# 执行如下命令并重启系统使内核生效
[root@localhost ~]# dracut -f
[root@localhost ~]# shutdown -ry 0
```

配置 GPU 驱动内存常驻模式

打开 GPU 驱动内存常驻模式可以减少 GPU 掉卡、GPU 带宽降低、GPU 温度监测不到等诸多问题。建议打开 GPU 驱动内存常驻模式并配置开机自启动。 GPU驱动内存常驻模式检查常用方法:

nvidia-smi 输出中 Persistence-M 状态为 On。

示例:

NVIDIA-SMI 535.161.08	Driver	Version: 535.161.08	CUDA Version: 12.2
GPU Name Fan Temp Perf 	Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.
0 NVIDIA H800 N/A 27C P0 	<u>On</u> 71W / 700W	- 00000000:23:00.0 Off 0MiB / 81559MiB 	 0 0 Default Disabled
1 NVIDIA H800 N/A 28C P0 	On 72W / 700W	00000000:33:00.0 Off 0MiB / 81559MiB 	0 0% Default Disabled
2 NVIDIA H800 N/A 30C P0 	On 73W / 700W	00000000:43:00.0 Off 0MiB / 81559MiB 	0 0% Default Disabled
3 NVIDIA H800 N/A 30C P0 	On 73W / 700W	00000000:63:00.0 Off 0MiB / 81559MiB 	0 0% Default Disabled
4 NVIDIA H800 N/A 27C P0 	0n 73W / 700W	00000000:83:00.0 Off 0MiB / 81559MiB 	0 0% Default Disabled
5 NVIDIA H800 N/A 27C P0 	0n 72W / 700W	00000000:A3:00.0 Off 0MiB / 81559MiB	0 0% Default Disabled
6 NVIDIA H800 N/A 30C P0 	0n 74W / 700W	00000000:C3:00.0 Off 0MiB / 81559MiB 	0 0 0% Default Disabled
7 NVIDIA H800 N/A 31C P0	0n 72W / 700W	00000000:E3:00.0 Off 0MiB / 81559MiB 	0 0% Default Disabled
· •			
Processes: GPU GI CI P ID ID	ID Type Proce	ss name	GPU Memory Usage

nvidia-bug-report.log 中, Persistence Mode 为 Enabled。

示例:

GPU 驱动内存常驻模式开启方法如下:

- # vim /etc/rc.d/rc.local
- # 在文件中添加一行
- # nvidia-smi -pm 1
- # 赋予/etc/rc.d/rc.local文件可执行权限
- # chmod +x /etc/rc.d/rc.local
- # 重启系统进行验证

获取 GPU 序列号

获取实例所有的 GPU 序列号:

Serial Number	: 0324018045603	
Serial Number	: 0324018044864	
Serial Number	: 0324018027716	
Serial Number	: 0323918059881	

获取指定 id 的 GPU 序列号:

GPU 常见故障

GPU 不识别

GPU 识别状态检测时,首先要确保 lspci 命令识别所有 GPU,其次确保 nvidia-smi 命令识别所有 GPU。

Ispci 检查 GPU 识别情况

输入以下命令确保所有 GPU 识别正常,并且每个 GPU 末尾标识为(rev a1);若输出信息末尾为(rev ff),表示 GPU 异常。

```
lspci | grep -i nvidia
```

示例:

```
#如下命令表示识别到4个GPU,且末尾标识为(rev a1)的GPU状态正常; 41:00.0 GPU末尾标识
为(rev ff),表示该GPU状态异常。
~]# lspci | grep -i nvidia
3e:00.0 3D controller: NVIDIA Corporation Device 1db8 (rev a1)
```


3f:00.0 3D controller: NVIDIA Corporation Device 1db8 (rev a1) 40:00.0 3D controller: NVIDIA Corporation Device 1db8 (rev a1) 41:00.0 3D controller: NVIDIA Corporation Device 1db8 (rev ff)

nvidia-smi 检查 GPU 识别情况

输入以下命令检查 GPU 识别情况:

nvidia-smi

示例:用 nvidia-smi 命令看到的 GPU 卡数量与实际不一致,如下图所示,8 块 GPU 卡的实例用 nvidia-smi 命令看到只有 7 块 GPU 卡。

NVID	IA-SMI	470.8	82.01	Driver	Version: 470.82.01	CUDA Version:	11.4
GPU Fan	Name Temp	Perf	Persis Pwr:Us	tence-Ml age/Capl	Bus-Id Disp.A Memory-Usage	↓ Volatile Ur GPU-Util (ncorr. ECC Compute M. MIG M.
0 N⁄A	Tesla 41C	V100 P0	-SXM2 41W	0n / 300W	00000000:1A:00.0 Off 0MiB / 32510MiB	 0% 	0 Default N/A
1 N⁄A	Tesla 36C	V100- P0	-SXM2 42W	0n / 300W 	00000000:1B:00.0 Off 0MiB / 32510MiB	+ 0%	0 Default N/A
2 N/A	Tesla 38C	V100 P0	-SXM2 44W	0n / 300W	 00000000:3D:00.0 Off 0MiB / 32510MiB	-+ 0% 	0 Default N/A
3 N/A	Tesla 37C	V100 P0	-SXM2 42W	0n / 300W 	00000000:3E:00.0 Off 0MiB / 32510MiB	 0% 	0 Default N/A
4 N/A	Tesla 37C	V100 P0	-SXM2 41W	0n / 300W	00000000:88:00.0 Off 0MiB / 32510MiB	-+ 0% 	0 Default N/A
5 N⁄A	Tesla 38C	V100 P0	-SXM2 40W	0n / 300W	00000000:89:00.0 Off 0MiB / 32510MiB	-+ 0% 	0 Default N/A
6 N/A	Tesla 35C	V100 P0	-SXM2 40W	0n / 300W 	00000000:B1:00.0 Off 0MiB / 32510MiB	-+ 0% 	0 Default N/A
· · · · · · · · · · · · · · · · · · ·							
Proc GPU	esses: GI ID	CI ID	P	ID Typ	pe Process name	(L	FPU Memory Isage
No	runnin	g pro	cesses f	ound			

() 说明:

建议重启实例尝试是否可以恢复;若重启后无法恢复,仍出现 GPU 状态异常,请联系平台为您排查处理。

GPU 带宽异常

需要确保 GPU 当前带宽与额定带宽一致且为 x16。可以使用 lspci 命令或 nvidia-smi 命令进行 GPU 带宽检 查。

lspci 命令

查询额定带宽:

lspci -vvd 10de: | grep -i Lnkcap:

查询当前带宽:

lspci -vvd 10de: | grep -i Lnksta:

nvidia-smi 命令检查

方法一 方法一						
nvidia-smi -q grep -i -A 2 'Link width'						
#输出示例:						
[root@localhost ~]# nvidia-smi -q	grep -i -A 2 'Link width'					
Link Width						
Max	: 16x					
Current	: 16x					
Link Width						
Max	: 16x					
Current	: 16x					
方法二						

力法—

nvidia-smi --format=csv --querygpu=index,name,serial,gpu_bus_id,pcie.link.width.current

#输出示例:

```
[root@localhost ~]# nvidia-smi --format=csv --query-
gpu=index,name,serial,gpu_bus_id,pcie.link.width.current
```

index, name, serial, pci.bus_id, pcie.link.width.current
0, Tesla P40, 1321020022261, 00000000:04:00.0, 16

1,	Tesla	P40,	1320220073456,	0000000:05:00.0,	16
2,	Tesla	P40,	1320220073723,	0000000:08:00.0,	16
3,	Tesla	P40,	1320220073383,	00000000:09:00.0,	16
4,	Tesla	P40,	1320220073482,	0000000:85:00.0,	16
5,	Tesla	P40,	1320220073313,	0000000:86:00.0,	16
6,	Tesla	P40,	1320220073379,	0000000:89:00.0,	16
7,	Tesla	P40,	1320220073579,	00000000:8A:00.0,	16

! 说明:

通常为硬件问题,请联系平台为您排查处理。

GPU retired pages 计数检查

NVIDIA GPU ECC RMA 标准

NVIDIA GPU ECC RMA 标准详情可参见 NVIDIA 官网文档 NVIDIA GPU ECC RMA 标准。

! 说明:

对于 GPU retired pages 计数,满足以下任一条件或 nvidia fieldiag 检测 fail 均可联系平台进行 GPU 更换。

Retired Pages参数中:

- 30天内产生的 double bit ecc ≥5。
- 质保期内 double bit ecc ≥10。
- 质保期内double bit ecc+single bit ecc≥60。

retired pages 查询方法

# 如输出Pending 的标志为No表示所有H 被软件程序调用,不会再影响程序运行; # Yes 表示有需要被屏蔽的ECC报错地址	ECC 报错地址空间已经被屏蔽,报错地址空间后续不会再 , 需要重启系统或重置 GPU 使其变为 No。
方法二	
# 该方法只能查看 retired pages 计数, # 查询某一块 GPU 的 ECC 计数: [root@localhost ~]# nvidia-smi	无法查看 retired pages 是否已经被屏蔽 -g -i 0 grep -i 'bit ecc'
Single Bit ECC	: 0
Double Bit ECC	: 0
# 查看所有GPU的retired pages计数: [root@inspur ~]# nvidia-smi -q Single Bit ECC Double Bit ECC Single Bit ECC Double Bit ECC	grep -i 'bit ecc' : 0 : 0 : 1 : 0

方法三

该方法可以查看所有retired pages的产生时间,便于判断是否满足nvidia RMA标准。

该方法需要较新的GPU驱动版本支持,否则无法查看retired pages产生时间。

[root@localhost ~]# nvidia-smi -i <target gpu> --query-retiredpages=gpu_name,gpu_bus_id,gpu_serial,retired_pages.cause,retired_pages.t imestamp --format=csv

处理建议

- 若 GPU retired pages 计数满足 NVIDIA RMA 标准则联系平台进行硬件更换。
- 若 GPU retired pages 计数不满足 NVIDIA RMA 标准,需要检查当前报错的地址空间是否被屏蔽,即
 Pending: No,否则可重启系统或重置 GPU 屏蔽报错地址后再次测试程序运行情况;屏蔽报错地址后程序仍
 受 ECC 报错影响,进行 fieldiag 检测,测试 FAIL 则联系平台进行 GPU 更换。
- 对于 Volatile 和 Aggregate 条目下出现的 GPU ECC 报错,可使用 nvidia-smi -p 0/1 进行清除。

GPU ERR! 报错检查

GPU 运行过程中会出现风扇、功率等 ERR! 报错,可以通过检查 nvidia-smi 输出中是否包含 ERR! 报错判断。 **功率 ERR! 报错示例:**

NVID	IA-SMI	450.1	.02.04 Driver	Version: 450.102.04	CUDA Version: 11.0	
GPU Fan	Name Temp	Perf	Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage 	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.	
0 N/A	Tesla 66C	T4 P0	ERR! On 70W	00000000:00:09.0 Off 11721MiB / 15109MiB 		
Proc GPU 	esses: GI ID	CI ID	PID Ty	pe Process name	GPU Memory Usage	

风扇 ERR! 报错示例:

	/	۱		 t-
GPU Name Fan Temp Per [.] 	Persistence–M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage 	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.	
	0n 58W / 150W	00000000:00:09.0 Off 13195MiB / 22731MiB 	(0% Default N/#	
1 NVIDIA A10 ERR! 58C P0	On 65W / 150W	00000000:00:0A.0 Off 13195MiB / 22731MiB 	81 0% Default N/#	+ - - -
2 NVIDIA A10 0% 57C P0	On 61W / 150W	00000000:00:0B.0 Off 7405MiB / 22731MiB 	0% Default N/#	+) : .
3 NVIDIA A10 0% 61C P0	0n 66W / 150W	00000000:00:0C.0 Off 16409MiB / 22731MiB 	0% Default N/#	

也可以通过 nvidia-bug-report 日志中的 Fan Speed 或 Power Draw 字段是否为 Unknown Error 来判断。

() 说明:

升级 GPU 驱动至较新版本后,重启系统进行观察。若重启后问题仍存在请联系平台为您排查处理。

Xid 错误

Xid 消息是 NVIDIA 驱动程序向操作系统的内核日志或事件日志打印的错误报告。Xid 消息表示发生了 GPU 错误,通常是由于驱动程序对 GPU 编程不正确或发送到 GPU 的命令被损坏。常见Xid事件及处理建议可以参见 常见 Xid 事件的处理方法。

若以上状态检测和常见故障无法解决问题,请联系平台工程师协助排查处理。

🔗 腾讯云

常见 Xid 事件的处理方法

最近更新时间: 2025-06-25 10:19:42

本文档介绍了 Xid 消息是什么,为用户提供常见 Xid 事件的含义解释与处理方法。

什么是 Xid 消息

Xid 消息是 NVIDIA 驱动程序向操作系统的内核日志或事件日志打印的错误报告。Xid 消息表示发生了 GPU 错误,通常是由于驱动程序对 GPU 编程不正确或发送到 GPU 的命令被损坏。GPU 硬件、NVIDIA 软件问题或者 用户应用程序出现问题时都有可能产生 Xid 消息。这些消息提供的诊断信息可供用户和 NVIDIA 使用,以帮助调试 报告的问题。

如何查询 Xid 报错信息

使用 GPU 实例时,可以通过执行以下命令,查看是否存在 Xid 相关报错,保存回显结果。

dmesg | grep -i xid

- 若检查项 GPU 节点上的 Xid 异常为空,说明无 Xid 消息。
- 若检查项 GPU 节点上的 Xid 异常不为空,您可按照以下不同 Xid 消息对应建议方法进行处理或者联系 平台进行支持。

常见 Xid 事件的处理方法

不同 Xid 事件的含义不同,下文以**用户是否可能自行解决**为标准,将常见的 Xid 错误及对应的处理建议分成两类进 行介绍,完整的 Xid 说明详见 NVIDIA XID 官网说明 。

尝试自行解决

当遇到以下 Xid 事件时,可通过以下处理建议尝试自行解决;若仍无法解决,您可以通过 在线支持 – 腾讯云 进行 反馈,腾讯云工程师 7 × 24 小时在线为您提供服务。

XID 48 错误

XID 48: Double Bit ECC Error

当 GPU 发生不可纠正的错误时,会上报 Xid 48 事件。该错误也会同时反馈给用户的应用程序。通常需要重置 GPU 或重启CVM实例来清除这个错误。

处理建议:建议重启实例恢复;若重启后问题仍存在请联系平台为您排查处理。**若业务对 xid48的异常比较敏感,** 可以直接要求换卡。

XID 79 错误

XID 79: GPU has fallen off the bus

此错误一般是 GPU 驱动或硬件问题,用户感知 GPU 实例存在掉卡现象。 **处理建议:**建议重启实例恢复;若重启后问题仍存在请联系平台为您排查处理。

XID 94 错误

XID 94: Contained ECC error

此错误表示 GPU 发生了包含的 ECC 错误, 涉及 GPU 卡的应用会停止。

处理建议:建议重新启动应用验证业务是否正常,若重新启动应用后异常建议重启实例恢复;若重启后问题仍存在请 联系平台为您排查处理。

XID 95 错误

XID 95: Uncontained ECC error

此错误表示 GPU 发生了未包含的 ECC 错误,涉及 GPU 卡的应用会停止。 **处理建议:**建议重启实例恢复;若重启后问题仍存在请联系平台为您排查处理。

XID 119 错误

XID 119: GSP RPC Timeout

此错误一般是 GPU 驱动触发 GPU 系统处理器(GSP)bug 导致异常。

处理建议:

1. 关闭 GSP。在新代次实例中,NVIDIA GPU 包含了 GSP 固件功能。GSP 旨在卸载 GPU 初始化以及其他管理任务。您可以参考以下步骤关闭 GSP: (更多相关详细信息,请参阅 NVIDIA 网站上的关闭GSP)

```
echo "options nvidia NVreg_EnableGpuFirmware=0" >
/etc/modprobe.d/nvidia-gsp.conf
cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
```

○ 如果是 centos/tlinux/redhat 系统:

dracut -f --kver \$(uname -r)

○ 如果是 ubuntu/debian 系统:

sudo update-initramfs -u

- 重启机器验证
- 检查是否禁用成功:查看相关值是否为 0,若为 0 则已禁用 GSP。

grep EnableGpuFirmware /proc/driver/nvidia/params

- 2. 若您不希望关闭 GSP, 您可以尝试通过切换驱动版本解决:
- 更新驱动至 535.129.03 及以上版本,新版本驱动对 GPU GSP 引发的 XID 119 错误问题进行了修复。
- 降级驱动版本至 470 的最新稳定版本 470.223.02,该版本驱动默认不会开启 GSP,不会触发 XID 119 错误。

联系平台处理

当遇到以下 Xid 错误时,建议您可以直接通过 在线支持 – 腾讯云 进行反馈,腾讯云工程师 7 × 24 小时在线为您 提供服务。

处理建议: 可参见 GPU实例相关日志收集 收集 GPU 日志,联系平台为您排查处理。

XID 74 错误

XID 74: NVLink ERROR

此错误表示 GPU 检测到从 GPU 到另一个 GPU 或通过 NVLink 的 NVSwitch 的连接出现问题, 可能是 GPU 本身异常或互连的 GPU 卡异常。

XID 92 错误

XID 92: High single-bit ECC error rate

此错误表示高的单比特 ECC Error,可能是硬件或驱动故障。

GPU 实例相关日志收集

最近更新时间: 2024-06-04 15:48:31

本文档旨在提供有关如何收集 GPU 实例相关日志的指导,以帮助用户技术支持人员及平台分析和解决与 GPU 实 例相关的问题。以下是相关日志的收集指引,可用于有效地收集 GPU 实例日志。 收集到的日志可尝试自行进行分析处理,或提供给腾讯云工程师进行排查处理。

获取子机 dmesg、串口日志

用户子机内执行命令:

dmesg | grep -i nv

获取 NVIDIA GPU 日志

安装 GPU 驱动的系统下,root 用户任意目录下执行命令:

nvidia-bug-report.sh

执行命令后,当前目录下会生成日志压缩包:nvidia-bug-report.log.gz。

GPU 使用率显示 100%

最近更新时间: 2024-10-28 14:52:53

现象描述

使用 GPU 计算型实例的过程中,在系统内部使用 nvidia-smi 查看 GPU 状态时,可能遇到没有运行任何使用 GPU 的应用,但 GPU 使用率显示100%的情况。如下图所示:

NVIDIA-SMI 375.51 Driver Version: 375.51	!
GPU Name Persistence-M Bus-Id Disp.A Volatile Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util	Uncorr. ECC Compute M.
0 Tesla M40 24GB 0ff 0000:00:06.0 0ff N/A 53C P0 68W / 250W 0MiB / 22939MiB 0%	θ Default
1 Tesla M40 24GB 0ff 0000:00:07.0 0ff N/A 47C P0 65W / 250W 0MiB / 22939MiB 100%	0 Default
* * * * * * * * * * * * * * * * * * * *	
Processes: GPU PID Type Process name ====================================	GPU Memory Usage
No running processes found	

可能原因

实例加载 NVIDIA 驱动时, ECC Memory Scrubbing 机制造成。

解决思路

在实例系统内执行 nvidia-smi -pm 1 命令,让 GPU Driver 进入 Persistence 模式。

处理步骤

1. 登录 GPU 计算型实例,执行以下命令:

nvidia-smi -pm 1

NVIDIA-SMI 375.51 Driver Version: 375.51 -----+-GPUNamePersistence-MBus-IdDisp.AVolatile Uncorr. ECCFanTempPerfPwr:Usage/CapMemory-UsageGPU-UtilCompute M. ____ 4-----0 Tesla M40 24GB 0ff | 0000:00:06.0 0ff | Θ N/A 53C P0 68W / 250W | 0MiB / 22939MiB | <u>0%</u> Default -----1 Tesla M40 24GB 0ff | 0000:00:07.0 0ff | Θ N/A 47C P0 65W / 250W | 0MiB / 22939MiB | 100% Default | Processes: GPU Memory GPU PID Type Process name Usage No running processes found

2. 执行以下命令,检查 GPU 使用率:

nvidia-smi

腾讯云

GPU 使用率正常,如下图所示:

[rootQVM_18_107_centos data]# nvidia-smi Tue Aug 29 15:31:39 2017											
I NVIDI	ia-smi	384.6			Drive	r Vei	rsion: 384	.66			:
l GPU l Fan	Name Temp	Perf	Persisto Pwr:Usao	ence-Mi ge/Capi	Bus-Id	Mem	Disp.A pry-Usage	¦ Volat ¦ GPU-U	ile til	Uncorr. ECC Compute M.	
¦ ¦ Ø ¦N∕A	Tesla 22C	P40 P8	10W /	0n 250W	0000000 0M	0:00 iB /	:03.0 Off 22912MiB	+	0%	0 Default	
¦ 1 ¦N∕A ⁺	Tesla 23C	P40 P8	9W /	0n 250W	0000000 0M	0:00 iB /	:06.0 Off 22912MiB	 	0% 	0 Default	+
+ Proce GPU ====== No r +	esses:	PID ===== 1 proc	Type Pro	 ocess r ======= und	name					GPU Memory Usage	+ +

控制台的 VNC 不可用

最近更新时间: 2025-06-04 16:37:02

现象描述

使用 VNC 登录 Windows 实例 或 使用 VNC 登录 Linux 实例 时,登录界面无法显示登录提示信息,例如 黑屏 或 仅显示 Windows Logo 或 Guest has not initialized the display。如下图所示:

可能原因

1. GPU 实例安装了图形驱动。

VNC 方式登录 GPU 实例时,默认访问 QEMU 模拟的 VGA 设备,获取操作系统的 Framebuffer,实现访问操作系统。安装了 GPU 图形驱动之后,Framebuffer 不再交由 VGA 处理,VNC 无法访问操作系统。

2. 由于其他原因导致操作系统启动失败,例如安装了和系统冲突的第三方软件等。

解决方式

- 1. 若实例有公网 IP,则可参见 使用 RDP 文件登录 Windows 实例 登录实例。
- 2. 针对安装图形驱动的 GPU 实例,可在该实例中手动安装 VNC Server,用户即可在本地通过 VNC Client 进行登录。

请自行获取 VNC Server/Client 安装包。

 如果确认是因为原因1导致,可通过TAT命令禁用显卡驱动,禁用后可使用控制台VNC方式登录实例,设置 显示设置>扩展这些显示器>仅在1上显示,再次使用TAT命令恢复显卡驱动即可。

TAT 命令可参见 使用 TAT 命令禁用和恢复显卡驱动 操作。

检查已安装的第三方软件,分析其可能导致无法通过 VNC 方式登录实例的原因。
 建议卸载该第三方软件,或重装系统。