
FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 1 of 20

Data Transmission Service

FAQ

Product Introduction

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 2 of 20

Copyright Notice

©2013-2018 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy

or distribute in any way, in whole or in part, the contents of this document without Tencent Cloud's the

prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing

(Beijing) Company Limited and its affiliated companies. Trademarks of third parties referred to in this

document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and

services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products

or services are subject to change. Specific products and services and the standards applicable to them are

exclusively provided for in Tencent Cloud's applicable terms and conditions.

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 3 of 20

Contents

FAQ

Regular Expressions for Data Subscription

Common Issues for Data Subscription

Common Issues

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 4 of 20

What is a regular expression?

A regular expression is used to retrieve text that meets a certain pattern from text.

It matches a string from left to right. We generally use "regex" or "regexp" for short.

A regular expression can be used to replace text in strings, validate forms, and extract strings from a string

based on pattern matching.

Imagine that you are writing an application, and you want to set rules for users to select usernames. We

want usernames to contain letters, numbers, underscores, and hyphens.

To make it look good, we also want to limit the number of characters for a username. We can use the

following regular expression to verify usernames:

The above regular expression can match john_doe , jo-hn_doe , and john12_as . However, it cannot

match Jo which contains an uppercase character and is too short.

FAQ
Regular Expressions for Data Subscription
Last updated：2018-08-31 11:55:16

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 5 of 20

Contents

Basic Match

Metacharacter

Period

Character Set

Negative Character Set

Repetition

Asterisk

Plus Sign

Question mark

Curly Bracket

Character Group

Branch Structure

Escape Special Character

Locator

Caret

Dollar Sign

Abbreviated Character Set

Assertion

Positive Lookahead Assertion

Negative Lookahead Assertion

Positive Lookbehind Assertion

Negative Lookbehind Assertion

Label

Case Insensitive

Global Search

Multiline Match

Common Regular Expression

Basic Match

Regular expressions are patterns we use to retrieve letters and numbers in text. For example, the regular

expression cat indicates: the letter c followed by letters a and t .

"cat" => The cat sat on the mat

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 6 of 20

The regular expression 123 matches the string "123". Regular matching is done by comparing each

character in the regular expression with that in the string to be matched one by one.

Regular expressions are generally case sensitive, so the regular expression Cat does not match the string

"cat".

"Cat" => The cat sat on the Cat

Metacharacter

Metacharacters are the basic elements of regular expressions. Metacharacters here are not the same as

usual, but are interpreted in a special way. Some metacharacters in square brackets have special meaning.

Here are the metacharacters:

Metacharacter Description

. Match any characters other than line breaks.

[] Character class. Match any characters enclosed in square brackets.

[^] Negative character class. Match any characters not enclosed in square brackets.

* Match the preceding subexpression zero or more times

+ Match the preceding subexpression one or more times

?
Match the previous subexpression zero or one time, or specify a non-greedy
qualifier.

{n,m}
Curly bracket. Match the preceding character at least n times, but not more than m
times.

(xyz) Character group. Match the character xyz in an exact order.

| Branch structure. Match characters before or after the symbol.

\
Escape character. It can restore the original meaning of metacharacters, allowing
you to match reserved characters [] () { } . * + ? ^ $ \ |

^ Match the start of the line

$ Match the end of the line

Period

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 7 of 20

The period . is the simplest example of a metacharacter. The metacharacter . can match any single

character. It does not match a line break or a new line character. For example, the regular expression .ar

indicates: any characters followed by letters a

and r .

".ar" => The car parked in the garage.

Character set

A character set is also called character class. Square brackets are used to specify the character set. Specify

the character range using the hyphen within the character set. The order of the character ranges in square

brackets can be ignored.

For example, the regular expression [Tt]he indicates: uppercase T or lowercase t followed by the letters

 h and e .

"[Tt]he" => The car parked in the garage.

However, the period in the character set indicates its literal meaning. The regular expression ar[.]

indicates the lowercase letter a followed by the letter r and a period . character.

"ar[.]" => A garage is a good place to park a car.

Negative character set

In general, the insertion character ̂ indicates the start of a string. However, if it appears in square

brackets, it cancels the character set. For example, the regular expression [^c]ar indicates: any characters

other than the letter c followed by the character a and

letter r .

"[^c]ar" => The car parked in the garage.

Repetition

The following metacharacters + , * or ? are used to specify how many times the sub-pattern can

appear. These metacharacters work differently in different situations.

Asterisk

The symbol * indicates matching the previous matching rule zero or more times. The regular expression

 a* indicates that the lowercase a can be repeated zero or more times. But if it appears after a character

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 8 of 20

set or character class, it indicates the repetition of the entire character set.

For example, the regular expression [a-z]* indicates: a line containing any number of lowercase letters.

"[a-z]*" => The car parked in the garage #21.

The symbol * can be used with the meta symbol . to match any string .* . The symbol * can be used

with the space character \s to match a string of space characters.

For example, the regular expression \s*cat\s* indicates: zero or more spaces followed by a lowercase

letter c , a lowercase letter a , a lowercase letter t , and zero or more spaces.

"\s*cat\s*" => The fat cat sat on the cat.

Plus sign

The symbol + matches the previous character one or more times. For example, the regular expression

 c.+t indicates: a lowercase letter c followed by any number of characters and a lowercase letter t .

"c.+t" => The fat cat sat on the mat.

Question mark

In regular expressions, the metacharacter ? is used to indicate that the previous character is optional.

This symbol matches the previous character zero or one time.

For example, the regular expression [T]?he indicates: the optional uppercase letter T followed by a

lowercase letter h and a lowercase letter e .

"[T]he" => The car is parked in the garage.

"[T]?he" => The car is parked in the garage.

Curly bracket

Curly brackets (also called quantifier ?) are used in regular expressions to specify the number of times a

character or a group of characters can be repeated. For example, the regular expression [0-9]{2,3}

indicates: matching at least 2 numbers but no more than 3 numbers (characters ranging from 0 to 9).

"[0-9]{2,3}" => The number was 9.9997 but we rounded it off to 10.0.

We can omit the second number. For example, the regular expression [0-9]{2,} indicates: matching 2 or

more numbers. If we delete the comma, the regular expression [0-9]{2} indicates: matching exactly two-

digit numbers.

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 9 of 20

"[0-9]{2,}" => The number was 9.9997 but we rounded it off to 10.0.

"[0-9]{2}" => The number was 9.9997 but we rounded it off to 10.0.

Character group

A character group is a set of sub-patterns written in parentheses (...) . As we discussed in regular

expressions, if we put a quantifier after a character, the previous character is repeated.

However, if we put a quantifier after a character group, the entire character group is repeated.

For example, the regular expression (ab)* indicates matching zero or more strings "ab". We can also use

the metacharacter | in a character group. For example, the regular expression (c|g|p)ar indicates: the

lowercase letter c , g or p followed by letters a and r .

"(c|g|p)ar" => The car is parked in the garage.

Branch structure

The vertical bar | is used to define the branch structure in a regular expression. The branch structure is

like the condition between multiple expressions. Now you may think that this character set works in the

same way as the branch structure.

But the difference is that the character set is only used at the character level, while the branch structure

can be used at the expression level.

For example, the regular expression (T|t)he|car indicates: the uppercase letter T or lowercase letter t is

followed by a lowercase letter h , a lowercase letter e or lowercase letter c , then a lowercase letter a ,

and a lowercase letter r .

"(T|t)he|car" => The car is parked in the garage.

Escape special character

Use the backslash \ in the regular expression to escape the next character. This allows you to use

reserved characters as the matching characters { } [] / \ + * . $ ^ | ? . You can use it as a matching

character by adding a \ before a special character.

For example, the regular expression . is used to match any characters other than line breaks. To match

the . character in the input string, the regular expression (f|c|m)at\.? indicates: the lowercase letter f ,

 c , or m followed by a lowercase letter a , a lowercase letter t , and an optional . character.

"(f|c|m)at\.?" => The fat cat sat on the mat.

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 10 of 20

Locator

In regular expressions, we use locators to check whether the matching symbol is a start or end symbol.

There are two types of locators: ̂ , which checks if the matching character is the start character, and $,

which checks if the matching character is the end character of an input string.

Caret

The caret ̂ is used to check if the matching character is the first character of an input string. If we use

the regular expression ̂ a (if "a" is the start symbol) to match the string abc , it matches a .

But if we use the regular expression ̂ b , it matches nothing, because "b" in the string abc is not the start

character.

Take a look at another regular expression ̂ (T|t)he , which indicates: the uppercase letter T or lowercase

letter t is the start symbol of the input string, followed by a lowercase letter h and a lowercase letter e .

"(T|t)he" => The car is parked in the garage.

"^(T|t)he" => The car is parked in the garage.

Dollar sign

Dollar sign $ is used to check if the matching character is the last character of an input string. For

example, the regular expression (at\.)$ indicates: the lowercase letter a followed by the lowercase letter

 t and character . , and this matcher must be the end of the string.

"(at\.)" => The fat cat. sat. on the mat.

"(at\.)$" => The fat cat sat on the mat.

Abbreviated Character Set

Regular expressions provide abbreviations for common character sets and regular expressions. The

abbreviated character set is as follows:

Abbreviation Description

. Match any characters other than line breaks

\w Match all alphanumeric characters: [a-zA-Z0-9_]

\W Match non-alphanumeric characters: [^\w]

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 11 of 20

Abbreviation Description

\d Match numeric characters: [0-9]

\D Match non-numeric characters: [^\d]

\s Match space characters: [\t\n\f\r\p{Z}]

\S Match non-space characters: [^\s]

Assertion

Lookbehind assertions and lookahead assertions are sometimes referred to as assertions, which are special

types of non-capturing groups (used for matching pattern, but not included in the matching list). When

we use this pattern before or after a particular pattern, we use assertions first.

For example, we want to obtain all the numbers before the character $ in the input string $4.44 and

$10.88 . We can use this regular expression (?<=\$)[0-9\.]* to indicate: get all numbers before the

character $ with the character . included.

The followings are the assertions used in regular expressions:

Symbol Description

?= Positive lookahead assertion

?! Negative lookahead assertion

?<= Positive lookbehind assertion

?<! Negative lookbehind assertion

Positive lookahead assertion

For positive lookahead assertions, the first part of the expression must be a lookahead assertion

expression. The returned matching result only contains the text that matches the first part of the

expression.

To define a positive lookahead assertion in brackets, the question mark and equal sign in brackets are

expressed as (?=...) . The lookahead assertion expression is put after the equal sign in brackets.

For example, the regular expression (T|t)he(?=\sfat) indicates: matching uppercase letter T or lowercase

letter t , which is followed by letters h and e .

In brackets, we define a positive lookahead assertion that leads the regular expression engine to match

 The or the which is followed by fat .

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 12 of 20

"(T|t)he(?=\sfat)" => The fat cat sat on the mat.

Negative lookahead assertion

When we need to obtain the content mismatching the expression from an input string, we use a negative

lookahead assertion. Negative lookahead assertion is defined in the same way as positive lookahead

assertion.

The only difference is that we use negation symbol ! instead of equal sign = , such as (?!...) .

Take a look at the following regular expression (T|t)he(?!\sfat) , which indicates: get all The or the

mismatching fat from the input string, with a space character added before fat .

"(T|t)he(?!\sfat)" => The fat cat sat on the mat.

Positive lookbehind assertion

Positive lookbehind assertions are used to obtain all matching content before a particular pattern. The

positive lookbehind assertion is expressed as (?<=...) . For example, the regular expression (?<=(T|t)he\s)

(fat|mat) indicates: get all the fat and mat behind the word The or the from the input string.

"(?<=(T|t)he\s)(fat|mat)" => The fat cat sat on the mat.

Negative lookbehind assertion

Negative lookbehind assertions are used to obtain all matching content that are not before a particular

pattern. Negative lookbehind assertions are expressed as (?<!...) . For example, the regular expression (?<!

(T|t)he\s)(cat) indicates: get all the cat that are not behind The or the in the input characters.

"(?<!(T|t)he\s)(cat)" => The cat sat on cat.

Label

Label modifies the output of the regular expression, which is also called modifier. The following labels can

be used in any order or combination, and are part of a regular expression.

Label Description

i Case insensitive: Set the matching rule as case insensitive.

g Global search: Search the entire input string for all matching content.

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 13 of 20

Label Description

m Multiline match: Match each line of the input string.

Case insensitive

The modifier i is used to perform case-insensitive matching. For example, the regular expression /The/gi

indicates: the uppercase letter T followed by a lowercase letter h and a letter e .

But at the end of regular matching, the label i informs the regular expression engine to ignore it. As you

can see, we also use the label g because we want to search the entire input string for matching content.

"The" => The fat cat sat on the mat.

"/The/gi" => The fat cat sat on the mat.

Global search

The modifier g is used to perform a global match (it finds all matching items, and will not stop until the

first one is found).

For example, the regular expression /.(at)/g indicates: any characters other than line breaks followed by a

lowercase letter a and a lowercase letter t .

Because we use the label g at the end of the regular expression, it finds each matching item from the

entire input string.

".(at)" => The fat cat sat on the mat.

"/.(at)/g" => The fat cat sat on the mat.

Multiline match

The modifier m is used to perform a multiline match. As we discussed earlier about (^, $) , use a locator

to check whether the matching character is the start or the end of an input string. However, we want to

use a locator for each line, so we use the modifier m .

For example, the regular expression /at(.)?$/gm indicates: the lowercase letter a , followed by the

lowercase letter t matching any character other than line breaks zero or one time. And because of the

label m , the regular expression engine matches the end of each line in the string.

"/.at(.)?$/" => The fat
 cat sat

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 14 of 20

 on the mat.

"/.at(.)?$/gm" => The fat
 cat sat
 on the mat.

Common Regular Expression

Type Expression

Positive integer ^-\d+$

Negative integer ^-\d+$

Phone number ^+?[\d\s]{3,}$

Phone code ^+?[\d\s]+(?[\d\s]{10,}$

Integer ^-?\d+$

User name ^[\w\d_.]{4,16}$

Alphanumeric characters ^[a-zA-Z0-9]*$

Alphanumeric characters
with spaces

^[a-zA-Z0-9]*$

Password ^(?=^.{6,}$)((?=.*[A-Za-z0-9])(?=.*[A-Z])(?=.*[a-z]))^.*$

Email ^([a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4})*$

IPv4 address
^((?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|
[01]?[0-9][0-9]?))*$`

Lowercase letter ^([a-z])*$

Uppercase letter ^([A-Z])*$

User name ^[\w\d_.]{4,16}$

Website
^(((http|https|ftp):\/\/)?([[a-zA-Z0-9]\-\.])+(\.)([[a-zA-Z0-9]]){2,4}([[a-
zA-Z0-9]\/+=%&_\.~?\-]*))*$

VISA credit card number ^(4[0-9]{12}(?:[0-9]{3})?)*$

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 15 of 20

Date
(MM/DD/YYYY)

^(0?[1-9]|1[012])[- /.](0?[1-9]|[12][0-9]|3[01])[- /.](19|20)?[0-9]{2}$

Date
(YYYY/MM/DD)

^(19|20)?[0-9]{2}[- /.](0?[1-9]|1[012])[- /.](0?[1-9]|[12][0-9]|3[01])$

MasterCard credit card
number

^(5[1-5][0-9]{14})*$

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 16 of 20

Does the data subscription allow multiple SDKs to be connected to and consume one
channel at a time?

No. A channel can only be connected with and consumed by one SDK. If you have multiple downstream

SDKs to subscribe to the same database table, you can build multiple channels.

Does the data subscription support connecting one SDK to multiple channels?

Yes. An SDK can consume multiple channels at a time.

An error occurred while starting SDK: already has sdk on this channel.

A channel can only be connected with and consumed by one SDK. If you add a new connection, this error

will be reported. In this case, confirm whether the program completely exits. If the error occurs again

during reconnection after confirmation, the interval between restarts may be slightly longer, such as 20

seconds.

When the data subscription subscribes to the real-time incremental data, is the new
data only the added data or does it include modified data?

Data subscription can subscribe to the following incremental data: all additions, deletions and

modifications (DML), and structure changes (DDL).

A TencentDB instance and a local database have the same table structure, but different
indexes. Does the data subscription support real time synchronization?

Yes. If the data subscription only subscribes to data changes, consumption will not be affected by

different indexes. If it subscribes to structure changes, and indexes will change on the TencentDB

instance, the structure changes may fail to be consumed locally due to different indexes.

Why can't I modify the consumption time point of a data subscription channel?

When an error occurred while modifying a consumption time point, a prompt will appear on the interface.

It is generally because the subscription channel is consumed by a downstream SDK. You can check the

consumption source IP on the DTS console to see if there is a downstream SDK consuming data. If yes,

stop the consumption and then modify the consumption time point.

How can I determine whether the data is consumed normally?

When data is written into a channel (or some data is not consumed), if the data is consumed normally, the

consumption time point on the console will be migrated normally.

Common Issues for Data Subscription
Last updated：2018-08-31 11:55:22

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 17 of 20

If a record at the consumer end is not acknowledged by the data subscription, why SDK
receives duplicate data after restart?

When SDK has messages that have not been acknowledged, the SDK will continue pulling messages until

its cache is full, and no new message will be received. At this point, the consumption time point saved on

the server is that of the message not acknowledged.

When SDK is restarted, the server will push data again from the consumption time point of the message

not acknowledged to avoid message loss. Therefore, the SDK will receive some repeated messages.

When SDK quits and restarts after a few days, why does it fail to subscribe to data?
Error: Maybe checkpint is too old?

The time range for data retention in a data subscription channel is 1 day, i.e. from [the current time - the

current time of the next day]. The subscription channel will delete expired data. Therefore, if the data

corresponding to the time point of the last consumption data when SDK quits is not within the valid data

range of the current subscription channel, the data corresponding to this consumption time point cannot

be subscribed to. To fix this problem, modify the consumption time point before starting SDK, to ensure it

is within the valid data range.

When SDK pulls data, it suddenly stops and cannot subscribe to any data. But after
restarting, it consumes some data before stopping again.

In this case, it is more likely that the API ackAsConsumed is not called in the SDK code to report the

consumption time point. Because the SDK has a limited cache space, if ackAsConsumed is not called to

report the consumption time point, the data in the cache space will not be deleted. When the cache is

full, new data cannot be pulled, and the SDK will stop and fail to subscribe to any data. Note: All

messages here, including BEGIN and COMMIT messages, must be acknowledged for consumption.

Messages unrelated to business logic are also included.

How to ensure that the data subscribed to by SDK is a complete transaction, and will
the record in the middle of the transaction be pulled based on the provided
consumption time point?

No. Based on the user-specified consumption time point or the time point of the last acknowledged

consumption, the server will search for the start point of the complete transaction corresponding to this

consumption time point. Data is sent to the downstream SDK from the beginning of the entire

transaction. So the full transaction content can be received.

Is there any problem with the data subscription during the TencentDB master/slave
switch or when the master database is restarted? Will the data be lost?

No. When a switching between master and slave occurs or when TencentDB instance is restarted, the data

subscription will automatically perform switching. This process is transparent to the SDK.

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 18 of 20

An error occurred while starting SDK: Do DTS authentication fail, caused by: get
channel info from msg failed.

Confirm whether the input parameters are matched, including ip, port, secretId, secretKey, and channelId.

When SDK is started, why does the system report that secretId has no permission?

Sub-account has no permission by default. It must be given the access to the operation

"name/dts:AuthenticateSubscribeSDK", or the access to all DTS operations "QcloudDTSFullAccess" by the

root account.

Will the data subscription receive duplicate data?

No if data is consumed normally. If SDK quits abnormally, the information of the last acknowledgement

time point is not reported timely, and duplicate data may be received when the SDK is started next time.

But the probability is very low.

If a complete transaction is not acknowledged, the data is pulled again from the beginning of the

transaction when the SDK is started next time. In this case, the data cannot be regarded as duplicate data.

The core logic of the SDK guarantees the integrity of the transaction.

Can a data subscription instance subscribe to multiple TencentDB instances?

No. A data subscription channel can subscribe to only one TencentDB instance.

What if OOM occurs while SDK is running?

Choose a host with better configurations. When a single SDK runs smoothly at high speed, it consumes

less than 1-core CPU and less than 1.5 GB of memory.

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 19 of 20

What is DTS?

TencentDB Service for Transmission (DTS) provides database data transfer service integrated with data

migration, data synchronization and data subscription features, helping you achieve database migration

without downtime. It also allows you to use a real-time synchronization channel to easily build a highly

available database architecture which supports remote disaster recovery.

How to use Tencent Cloud DTS?

You can use Tencent Cloud DTS to migrate all your data to the Tencent Cloud-based database at a time,

or you can perform continuous data replication. Tencent Cloud DTS captures changes to the source

database, and applies them to the destination database in a transaction-consistent manner. For

information on how to perform continuous data replication, please see Data Subscription.

Can DTS support data migration between TencentDB instances under two different
Tencent Cloud accounts?

Yes. For the migration between TencentDB instances cross Tencent Cloud accounts, log in to the DTS with

the Tencent Cloud account to which the destination TencentDB instance belongs. And for the source

instance type, select the self-built database with public IP.

Which sources and destinations does Tencent Cloud DTS support?

Tencent Cloud DTS supports MySQL with public IP, MySQL built on CVM, MySQL with Direct Connect,

MySQL with VPN access, source database for TencentDB for MySQL, and destination database for

TencentDB for MySQL.

Can the progress of database migration tasks be monitored?

Yes. You can see the progress of the migration tasks on the Tencent Cloud DTS console management

page.

When I use the Tencent Cloud DTS for data migration, will the data of source database
be deleted after migration?

No. When DTS performs data migration, it actually copies the data of the source database, without any

effect on it.

Does Tencent Cloud DTS support timed automatic migration?

Common Issues
Last updated：2018-08-31 11:55:27

https://cloud.tencent.com/document/product/571/8774

FAQ Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 20 of 20

Yes. After you create Tencent Cloud DTS, you can select the option of timed execution when modifying

the configuration, and select the time for timed migration.

What version of CRS is applicable to migration?

Source instances of version 3.2 or above are not supported for migration.

What version of MySQL is applicable to migration?

MySQL 5.1/5.5/5.6 is supported for the migration of data to the cloud. Since MySQL 5.1 is no longer

supported by Tencent Cloud TencentDB, we recommended that you update MySQL 5.1 to MySQL 5.5

before migrating data to TencentDB for MySQL 5.5. You can also use the DTS data migration tool to

directly migrate data from local MySQL 5.1 to Tencent Cloud TencentDB for MySQL 5.5.

How to check the cause for connectivity failure?

Click Click to View Details to view the solution.

Why is the destination instance unavailable?

The destination instance cannot be used when:

1. The destination instance is not initialized.

2. The destination instance is locked by other tasks.

3. The destination instance has data.

4. The size of data used by the source instance is greater than the capacity of destination instance.

Why does a warning occur when I verify a task?

You can click View Details on the right of the warning item to view the cause and solution.

What causes the error during migration that results in the failure of the migration task?

1. Failed to bgsave the source instance during the migration process.

2. During the migration process, the volume of data written into the source instance is too large and

exceeds the configured sync BUFFER, which causes the sync connection to reconnect. The migration

task will continue to retry the connection and generate RDB.

