
Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 1
of 172

Serverless Cloud Function

Operation Guide

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 2
of 172

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

The complete copyright of this document, including all text, data, images, and other content, is solely and exclusively owned by

Tencent Cloud Computing (Beijing) Co., Ltd.（"Tencent Cloud"); Without prior explicit written permission from Tencent Cloud, no

entity shall reproduce, modify, use, plagiarize, or disseminate the entire or partial content of this document in any form. Such

actions constitute an infringement of Tencent Cloud's copyright, and Tencent Cloud will take legal measures to pursue liability

under the applicable laws.

Trademark Notice

This trademark and its related service trademarks are owned by Tencent Cloud Computing (Beijing) Co., Ltd. and its affiliated

companies("Tencent Cloud"). The trademarks of third parties mentioned in this document are the property of their respective

owners under the applicable laws. Without the written permission of Tencent Cloud and the relevant trademark rights owners, no

entity shall use, reproduce, modify, disseminate, or copy the trademarks as mentioned above in any way. Any such actions will

constitute an infringement of Tencent Cloud's and the relevant owners' trademark rights, and Tencent Cloud will take legal

measures to pursue liability under the applicable laws.

Service Notice

This document provides an overview of the as-is details of Tencent Cloud's products and services in their entirety or part. The

descriptions of certain products and services may be subject to adjustments from time to time.

The commercial contract concluded by you and Tencent Cloud will provide the specific types of Tencent Cloud products and

services you purchase and the service standards. Unless otherwise agreed upon by both parties, Tencent Cloud does not make any

explicit or implied commitments or warranties regarding the content of this document.

Contact Us

We are committed to providing personalized pre-sales consultation and technical after-sale support. Don't hesitate to contact us at

4009100100 or 95716 for any inquiries or concerns.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 3
of 172

Contents

Operation Guide

Quota Management

Quota Limits

Exceeded Quota Management

Function Management

Function Overview

Creating Function

Updating Function

Querying Function

Debugging Function

Testing Function

Deploying Function

Deleting Function

Copying Function

HTTP-Triggered Function Management

Function Overview

Creating And Testing Function

Bootstrap File Description

Trigger Management

HTTP-Triggered Function Billing

Deploying Web Function On Command Line

WebSocket Protocol Support

SSE Protocol Support

HTTP-Triggered Function Request Concurrency Management

Log Management

Log Search Guide

Log Structure Description

Log Delivery Configuration

Log Delivery Configuration (Legacy)

Concurrence Management

Concurrency Overview

Concurrency Management System

Provisioned Concurrency

Scheduled Provisioned Concurrency

Dynamic Provisioned Concurrency Metric

Concurrency Overrun

Trigger Management

Creating Trigger

Deleting Triggers

Enabling/Disabling Triggers

Function URL

Function URL Overview

Function URL Authentication Configuration

Version Management

Overview

Viewing A Version

Releasing A Version

Using A Version

Alias Management

Related Operations For Alias Management

Traffic Routing Configuration

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 4
of 172

Permission Management

Permission Management Overview

Role And Authorization

SCF Policy Syntax

Sub-users And Authorization

Managing Monitors And Alarms

Descriptions Of Monitoring Metrics

Configuring Alarm

Viewing Execution Logs

Network Configuration

Network Configuration Management

Fixed Public Outbound IP

VPC Communication

Layer Management

Overview

Creating Layer

Binding Function To Layer

Using Layer

Execution Configuration

Async Execution

Status Trace

Async Event Management

Namespace Management

ICP Filing

Extended Storage Management

Mounting CFS File System

DNS Caching Configuration

Managed Resource Hosting Mode

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 5
of 172

Operation Guide

Quota Management

Quota Limits
Last updated：2023-09-27 17:13:38

For each user account, the SCF has a certain quota limit.

User Account Quota Limits

Content Default Quota Limit

Total function code size per region 100GB

Total function concurrency quota per

region

128,000 MB(Guangzhou, Shanghai, Beijing, Chengdu, and Hong Kong (China))

64,000 MB(Mumbai, Singapore, Tokyo, Toronto, Silicon Valley, Frankfurt,

Shenzhen Finance, and Shanghai Finance)

Number of namespaces per region 5

Total concurrent function quota per

namespace
You can purchase function packages to adjust the quota.

Number of functions per namespace 50

Function Quota Limits

Content Default Quota Limit

Function name length limit
60 characters, the total character length of the namespace name +

function name should not exceed 118.

Maximum code size (including bound layers) per

function (version) before compression
500MB

Maximum number of same-type triggers per function 10

Maximum environment variable size per function 4KB

Number of layer versions bound to one function version 5

Layer Quota Limits

Content Default Quota Limit

Number of layers per region 20

Number of versions per layer 200

Note:

SCF currently supports one million MB-level concurrency, which can effectively support scenarios with high concurrency

demand such as ecommerce promotions and parallel processing of medical and biological data.

The concurrency quota per region on the SCF platform is shared by all functions by default. You can customize the

function concurrency to meet your actual needs. If you want to increase the quotas or add concurrency quota

management capabilities at the namespace granularity, you can directly purchase a function package .

In SCF, a COS trigger has limits in two dimensions: SCF and COS, as detailed below:

SCF dimension: one function can be bound to 10 COS triggers at most.

COS dimension: Only one function can be bound to the same event and prefix/suffix rules in a single COS bucket.

https://console.cloud.tencent.com/scf/buy?rid=1&ns=default
https://cloud.tencent.com/document/product/583/45757
https://console.cloud.tencent.com/scf/buy?rid=1&ns=default
https://cloud.tencent.com/document/product/583/9707

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 6
of 172

Function Runtime Environment Limits

Content Quota Limit

Allocated memory
Minimum: 64 MB, maximum: 3,072 MB, in increments of 128 MB starting

from 128 MB

Temporary cache space; i.e., size of the /tmp

directory
512MB

Timeout period Minimum: 1 second, maximum: 900 seconds

Number of file descriptors 1024

Total processes and threads 1024

Sync request event size 6MB

Sync request response size 6MB

Async request event size 128KB

Note

If the size of a Base64-encoded file is below 6 MB, you can pass the encoded file to SCF through API Gateway . Otherwise,

we recommend you upload the file to COS and pass the object address to SCF first. Then, SCF will pull the file from COS to

complete the upload.

https://cloud.tencent.com/product/apigateway
https://cloud.tencent.com/product/cos

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 7
of 172

Exceeded Quota Management
Last updated：2023-09-28 09:47:13

For the SCF quotas that exceed the limit, the corresponding solutions are as follows:

Content Solution

The number of namespaces in each

region has reached its maximum

limit.

You can submit a ticket to increase the quota limit.

The number of functions in the

namespace has reached its

maximum limit.

Each region can support multiple namespaces, and the function quota of other

namespaces can be utilized as a priority.

If the number of namespaces and functions in the current region have both reached

their maximum limits, you can submit a ticket to increase the quota limit.

Cloud Development manages quotas through packages. Please refer to Cloud

Development Product Pricing to understand the quota of each package and increase

the quota by upgrading the package.

The number of triggers for a single

function has reached its maximum

limit.

It is suggested to refine the granularity of the function business and solve the problem

of the single function trigger limit by binding triggers to multiple functions separately.

If the business needs cannot be divided, you can submit a ticket to increase the quota

limit.

The total concurrency quota for

functions in each region has

reached its maximum limit.

Please try adjusting the total concurrency quota in the current region on the function

concurrency quota page.

The function initialization timeout

period has exceeded the limit.
You can submit a ticket to increase the quota limit.

https://console.cloud.tencent.com/workorder/category?level1_id=6&level2_id=668&source=0&data_title=%E6%97%A0%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%BA%91%E5%87%BD%E6%95%B0%20SCF&step=1
https://console.cloud.tencent.com/workorder/category?level1_id=6&level2_id=668&source=0&data_title=%E6%97%A0%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%BA%91%E5%87%BD%E6%95%B0%20SCF&step=1
https://cloud.tencent.com/document/product/876/39095#.E5.85.8D.E8.B4.B9.E7.89.88
https://console.cloud.tencent.com/workorder/category?level1_id=6&level2_id=668&source=0&data_title=%E6%97%A0%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%BA%91%E5%87%BD%E6%95%B0%20SCF&step=1
https://console.cloud.tencent.com/workorder/category?level1_id=6&level2_id=668&source=0&data_title=%E6%97%A0%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%BA%91%E5%87%BD%E6%95%B0%20SCF&step=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 8
of 172

Function Management

Function Overview
Last updated：2023-09-27 17:14:32

A function is the basic unit of management and operation in SCF, which usually consists of a series of configuration items and

executable code/packages. You can trigger a function through APIs. You can also pass different events to a function through

different triggers to trigger it for event processing.

A function resource must belong to a certain region. For regions supported by SCF, see Billing Overview .

A function resource must be created under a specific namespace in a certain region. Each region has a default default

namespace, and users are allowed to create new namespaces . Once created, the namespace name cannot be modified.

It is the unique identifier of a function, must be unique under the same namespace, and cannot be modified after creation.

SCF supports two types of functions: event functions and Web functions.

SCF uses the UTC time by default, which you can modify by configuring the TZ environment variable. After you select a time zone,

the TZ environment variable corresponding to the time zone will be added automatically.

Execution environment of the function code. Currently, SCF supports Python , Node.js , PHP , Java , Go , Custom Runtime , and

image deployment .

The execution method specifies the starting file and function while invoking the function. There are three ways as follows:

It is used to record information such as the purpose of the function, which is optional.

Relevant Concepts of Function

Region

Namespace

Function name

Function type

Event-triggered functions are triggered by events in a specified format, such as scheduled triggering events and COS triggering

events. For more information on the event structure, see Trigger Overview .

HTTP-triggered functions focus on optimizing web services and can directly accept and process HTTP requests. For more

information, see Function Overview .

Time zone

Running environment

Function execution method

Single-segment format "[filename]" is used for Go environment. For example: "main".

Two-segment format "[filename].[function name]" is used for Python, Node.js, and PHP environments. For example:

"index.main_handler".

Description

Please note that FileName does not include the file name extension, and FunctionName is the name of the entry function.

Ensure that the file name extension matches the programming language. For example, for Python programming, the file

name extension is .py , and for Node.js programming, the file name extension is .js .

Three-segment format "[package].[class]::[method]" is used for Java environment. For example: "example.Hello::mainHandler".

Function description

Relevant Configurations of Function

https://cloud.tencent.com/document/product/583/17299#.E6.94.AF.E6.8C.81.E5.9C.B0.E5.9F.9F
https://cloud.tencent.com/document/product/583/35913
https://cloud.tencent.com/document/product/583/55592
https://cloud.tencent.com/document/product/583/11060
https://cloud.tencent.com/document/product/583/17531
https://cloud.tencent.com/document/product/583/12214
https://cloud.tencent.com/document/product/583/18032
https://cloud.tencent.com/document/product/583/47274
https://cloud.tencent.com/document/product/583/56051
https://cloud.tencent.com/document/product/583/9705
https://cloud.tencent.com/document/product/583/56124

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 9
of 172

In addition to the above configuration items, you can also modify the following configuration items for function execution by editing

the function configuration in the console or updating function configuration :

The computing power supported by SCF includes CPU and GPU.

Set the specifications corresponding to the resource type, such as different memory configurations for CPU, different card types for

GPU, etc. For more details, see Function Computing Power Support .

Maximum initialization duration of the function between 3 and 300 seconds (90 seconds for image deployment-based functions and

60 seconds for other functions by default).

Maximum execution duration of the function between 1 and 900 seconds (3 seconds by default).

It can be defined in the configuration and obtained from the environment when the function is executed. For more information, see

Environment Variables .

It grants the corresponding permissions of the policy contained in it to the function. For more information, see Role and

Authorization . For example, to execute the action of writing an object into COS in the function code, you should configure an

execution role with the permission to write COS.

It delivers function invocation logs to the specified log topic. For more information, see Log Search Guide .

It configures the function network access permissions. For more information, see Network Configuration Management .

After it is enabled, the function can access resources of the mounted file system. For more information, see Mounting CFS File

System .

The execution configuration includes async execution, status tracking, and async execution event management. For more

information, see Execution Configuration .

Resource type

Resource specification

Initialization timeout period

Note

The function initialization phase includes the preparations of function code, image, layer, and other relevant resources

and execution of the main process code of the function. If your function has a larger image or complex business logic,

please increase the initialization timeout period appropriately.

The initialization timeout period only takes effect in the scenario where the triggered instance is cold started for

invocation.

The client waiting time is better to be slightly larger than the sum of the initialization timeout period and the execution

timeout period.

Execution timeout period

Environment variable

Execution Roles

Log configuration

Network configuration

Public network: it is enabled by default. The function cannot access public network resources after it is disabled.

Fixed outbound IP: After it is enabled, the platform will assign a fixed public network outbound IP to the function.

VPC: after it is enabled, the function can access resources in the same VPC.

File system

Execution Configuration

Async execution: after it is enabled, the function execution timeout period can be up to 24 hours. It cannot be modified after

function creation.

https://cloud.tencent.com/document/product/583/84097
https://cloud.tencent.com/document/product/583/68734
https://cloud.tencent.com/document/product/583/30228
https://cloud.tencent.com/document/product/583/47933
https://cloud.tencent.com/document/product/583/52637
https://cloud.tencent.com/document/product/583/38202
https://cloud.tencent.com/document/product/583/46199
https://cloud.tencent.com/document/product/583/51519

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 10
of 172

Through Async Invocation Configuration , you can set the retry policy for asynchronous invocation scenarios. You can also

configure a Dead Letter Queue to collect error event information and analyze the cause of failure.

Once enabled, SCF will report the basic runtime of the function to the specified Application Performance Monitoring (APM) system.

You can also embed points in the function code for custom reporting, helping you track and monitor the execution of the function.

For more details, see Application Performance Monitoring .

In SCF use cases, DNS delays may cause function execution timeouts, affecting the normal business logic. In case of frequent

function invocations, the resolution of the DNS server may exceed the frequency limit, which also leads to function execution

failures. SCF provides the DNS cache configuration to solve these problems, which can improve the DNS efficiency and mitigate the

impact of various factors such as network jitter on the DNS success rate. For more information, see DNS Caching Configuration .

Function trigger-related operations include:

Linkage trace: it can be enabled only for async execution. When it's enabled, it will keep the logs of real-time status of response

for async function events. You can query and stop the event and check the related statistics. Data of event status will be

retained for three days.

Async invocation configuration

Application performance monitoring

DNS configuration

Executable Operations for a Function

Creating function : Creates a function.

Updating function :

Updating function configuration: Updates the configuration items of the function.

Updating function code: Updates the execution code of the function.

Getting details : Gets function configuration, trigger, and code details.

Testing function : Triggers the function in a sync or async manner as needed.

Getting log : Gets the log of function execution and output.

Deleting function : Deletes a function that is no longer needed.

Copying function : copies a function to the specified region, name, and configuration.

Creating trigger : Creates a trigger.

Deleting trigger : deletes an existing trigger.

Start/Stop Trigger : Temporarily halts the triggering of cloud functions by event sources through the activation or deactivation of

triggers.

https://cloud.tencent.com/document/product/583/41138
https://cloud.tencent.com/document/product/583/51666
https://cloud.tencent.com/document/product/583/63985
https://cloud.tencent.com/document/product/583/72198
https://cloud.tencent.com/document/product/583/19806
https://cloud.tencent.com/document/product/583/19806
https://cloud.tencent.com/document/product/583/19809
https://cloud.tencent.com/document/product/583/14572
https://cloud.tencent.com/document/product/583/19810
https://cloud.tencent.com/document/product/583/19807
https://cloud.tencent.com/document/product/583/33664
https://cloud.tencent.com/document/product/583/30230
https://cloud.tencent.com/document/product/583/30231
https://cloud.tencent.com/document/product/583/30232

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 11
of 172

Creating Function
Last updated：2023-09-27 17:15:14

SCF offers multiple function creation methods. This document describes how to create a function through the console and

command line tool.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. At the top of the Function Service page, select the desired region and namespace for function creation, then click Create to

initiate the function creation process. As shown in the figure below:

3. On the "Create Function" page, you can choose the method of creating a function based on your actual needs.

4. Configure the basic information of the function.

Create from template

1. Add tag queries to the "Fuzzy Search" in the template. As shown below:

2. Select the template and click Next.

3. Enter the basic information of the function.

Creating functions via the console

Template: You need to enter the required function name and use configuration items in the function template to create the

function.

Create from scratch: You need to enter the required function name and runtime environment to create the function.

Use TCR image: You can create a function based on a TCR image. For more information, see Usage .

Function name: The function name is automatically populated by default and can be modified as needed.

Region: The region is automatically populated by default and can be modified as needed.

Time Zone: By default, the cloud function uses UTC time. You can modify this by configuring the TZ environment

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/56052

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 12
of 172

Create from scratch

Enter the basic information of the function.

Use TCR image

Enter the basic information of the function.

5. Configure the function code.

Create from template

variable. After you select a time zone, the corresponding TZ environment variable for that time zone will be

automatically added.

Function type: Select Event-triggered function or HTTP-triggered function.

Event-triggered function: Receives JSON-formatted events from TencentCloud API or various triggers to trigger the

function execution. For more information, see Basic Concepts .

HTTP-triggered function: Directly receives HTTP requests to trigger the function execution in web service scenarios.

For more information, see Function Overview .

Function name: The function name is automatically populated by default and can be modified as needed.

Region: The region is automatically populated by default and can be modified as needed.

Runtime environment: The runtime environment is automatically populated by default and can be modified as needed.

Time Zone: By default, the cloud function uses UTC time. You can modify this by configuring the TZ environment variable.

After you select a time zone, the corresponding TZ environment variable for that time zone will be automatically added.

Function type: Select Event-triggered function or HTTP-triggered function.

Event-triggered function: Receives JSON-formatted events from TencentCloud API or various triggers to trigger the

function execution. For more information, see Basic Concepts .

HTTP-triggered function: Directly receives HTTP requests to trigger the function execution in web service scenarios.

For more information, see Function Overview .

Function name: The function name is automatically populated by default and can be modified as needed.

Region: Select the region where the function is deployed, which must be the same as the region where the image repository

is located.

Time Zone: By default, the cloud function uses UTC time. You can modify this by configuring the TZ environment variable.

After you select a time zone, the corresponding TZ environment variable for that time zone will be automatically added.

https://cloud.tencent.com/document/product/583/9210
https://cloud.tencent.com/document/product/583/56124
https://cloud.tencent.com/document/product/583/9210
https://cloud.tencent.com/document/product/583/56124

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 13
of 172

The runtime environment and execution method are automatically populated by default, as shown below:

Create from scratch

Select the method for submitting function code and the execution method, as shown below:

Use TCR image

Submission Method: Supports online editing, local upload of zip packages, local upload of folders, and uploading zip

packages via COS.

For scripting languages: You can directly use the function code editor.

For non-scripting languages: You can submit the function code by uploading a zip package or through COS and then

edit it.

Execution: It specifies the starting file and function while invoking the cloud function. For more information, see Function

Overview .

https://cloud.tencent.com/document/product/583/19805#.E5.87.BD.E6.95.B0.E7.9B.B8.E5.85.B3.E6.A6.82.E5.BF.B5

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 14
of 172

Enter the relevant image information, as shown below:

6. In the log configuration, choose whether to enable log shipping, as shown below:

Log shipping is disabled by default. When enabled, function running logs can be shipped in real-time to the specified location.

For more details, see Log Shipping Configuration .

7. In the advanced settings, you can configure the function environment, permissions, layers, network, etc., according to your

actual needs. For more details, see Function-related Configuration .

8. In the trigger configuration, choose whether to create a trigger. If you choose "Custom Creation", see Trigger Overview for more

details.

9. Click Complete. You can view the created function on the Functions page.

You can create a function as needed in more ways as detailed below:

Image: Select an image already built in the image repository in the current region.

ENTRYPOINT: (Optional) Startup command for the container. If left blank, the Entrypoint in the Dockerfile is used. Enter a

valid command, such as python .

CMD: (Optional) Startup parameters for the container. If left blank, the CMD in the Dockerfile is used. Separate each

parameter with a space, for example, -u app.py .

Image acceleration: It is disabled by default. After it is enabled, SCF will pulling image much more quickly. It takes over 30

seconds to enable this option; therefore, wait patiently.

Note

Currently, you cannot select the log template for image-based functions and HTTP-triggered functions.

Creating Function on CLI

Use Serverless Cloud Framework CLI to create a function. For more information, see Creating Functions on Serverless Cloud

Framework .

Use VS Code to create a function. For more information, see Creating Functions with VS Code Plugin .

https://cloud.tencent.com/document/product/583/52644
https://cloud.tencent.com/document/product/583/19805#.E5.87.BD.E6.95.B0.E7.9B.B8.E5.85.B3.E9.85.8D.E7.BD.AE
https://cloud.tencent.com/document/product/583/9705
https://console.cloud.tencent.com/scf/list
https://cloud.tencent.com/document/product/583/37510
https://cloud.tencent.com/document/product/583/37511

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 15
of 172

Updating Function
Last updated：2023-09-27 17:15:31

This document provides guidance on how to update function configurations and code via the console and command line tools.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. At the top of the main interface, select the region and namespace where the function is located, click on the function name in the

list, and proceed to the function details page.

3. Navigate to the function configuration page and click Edit in the upper right corner to enter edit mode, as shown below:

4. You can modify the basic configuration, environment configuration, permission configuration, log configuration, and network

configuration of the function according to your needs. For more details, see Function-related Configuration .

5. After making the modifications, click Save to store the updated configuration. If you wish to cancel the operation, click Cancel to

discard the changes.

1. To modify the function configuration, directly modify the serverless.yml configuration file under the function root directory as

shown below:

Function Configuration Update

Updating function configuration in the console

Serverless Cloud Framework Updating Function Configuration

serverless.yml

component scf # Name of the imported component, which is required. The tencent-scf component is used in this example

name scfdemo # Name of the instance created by this component, which is required

inputs

 name scfFunctionName

 src ./src

runtime Nodejs10.15 # The runtime environment of the cloud function. In addition to Nodejs10.15, other available options

include: Python2.7, Python3.6, Nodejs6.10, Nodejs8.9, Nodejs12.16, PHP5, PHP7, Golang1, Java8.

 region ap guangzhou

 handler index.main_handler

 events

 apigw

 name serverless_api

 parameters

 protocols

 http

 https

 serviceName

:

:

:

:

:

:

: -

:

:

- :

:

:

:

-

-

:

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/19805

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 16
of 172

2. After making the modifications, deploy the function by executing the scf deploy command using the Serverless Cloud

Framework.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. At the top of the main interface, select the region and namespace where the function is located, click on the function name in the

list, and proceed to the function details page.

3. Switch to the function code page and select the submission method to edit the function code in the following ways:

4. After making changes, click Save to store the modified configuration. If you wish to cancel, click Cancel to discard the changes.

After modifying the function code locally, execute the scf deploy command using Serverless Cloud Framework to deploy the

function and complete the code update.

 description The service of Serverless Cloud Framework

 environment release

 endpoints

 path /index

 method GET

:

:

:

- :

:

Updating function code

Updating function code in the console

For scripting languages: You can directly use the function code editor.

For non-scripting languages: You can submit the function code by uploading a zip package or through COS and then edit it.

Updating function code using Serverless Cloud Framework

Note

Serverless Cloud Framework's development mode supports synchronous updates of functions. For more details, please

refer to Development Mode and Cloud Debugging .

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/44775

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 17
of 172

Querying Function
Last updated：2023-09-27 20:43:30

A function can be queried in the console or on Serverless Cloud Framework CLI.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. At the top of the "Functions" page, select the desired region and namespace where the function is located. Through the function

list, you can view all functions within the specified region and namespace, as shown in the figure below:

3. The function list includes the function name, monitoring, function type, runtime environment, log configuration, creation time,

etc. You can customize the list fields according to your needs. Click on the right side of the function list , as shown in the

figure below:

Viewing a Function in the Console

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 18
of 172

In the pop-up window, check the list details you want to display and click OK, as shown in the figure below:

4. Click on the function name to enter its details page, as shown in the figure below:

The function details page includes the following content:

Function management: View and manage the configurations, codes , and layers of the function.

Version management: Fixate the code and configuration of the function by publishing a version. For more information, see

Overview .

Alias Management: Use aliases to invoke bound functions. For more information, see Alias Management .

Trigger management: View the triggers configured for the function and create triggers. For more information, see Creating

Triggers .

Monitoring information: View the monitoring information of function execution. For more information, see Descriptions of

monitoring metrics .

Log query: View the execution logs of the function and filter logs by certain criteria. For more information, see Viewing

Execution Logs .

Concurrency quota: View the concurrency quota of the function and set the reserved quota and provisioned concurrency of

the function. For more information, see Concurrency Overview .

Deployment logs: View the deployment logs of the function.

Getting Deployment Information on Serverless Cloud Framework CLI

Description

https://cloud.tencent.com/document/product/583/48650
https://cloud.tencent.com/document/product/583/40159
https://cloud.tencent.com/document/product/583/43760
https://cloud.tencent.com/document/product/583/36149
https://cloud.tencent.com/document/product/583/30230
https://cloud.tencent.com/document/product/583/32686
https://cloud.tencent.com/document/product/583/36143
https://cloud.tencent.com/document/product/583/45757

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 19
of 172

You can run the scf info command on Serverless Cloud Framework CLI to view deployment information.

Before using the Serverless Cloud Framework tool, please refer to Installing Serverless Cloud Framework to complete the

installation.

Debugging Function

https://cloud.tencent.com/document/product/583/44753

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 20
of 172

Last updated：2023-09-27 20:46:01

The SCF console now supports the Online Debugging feature, enabling you to troubleshoot and pinpoint issues directly through the

console.

1. Log in to the SCF console and select Function Service on the left sidebar.

2. At the top of the Function Service page, select the region of the function you wish to enable debugging mode for. Then, click on

the name of the function you wish to debug to enter its details page.

3. On the Function management page, select Function codes > Remote debugging, and click Enable debugging mode. As shown in

the figure below:

4. In the pop-up window, click Confirm to complete the activation of debugging mode. As shown in the figure below:

Note

Currently, the Online Debugging feature is exclusively compatible with the Chrome browser and only supports the Node.js

10.15 and Node.js 12.16 programming languages.

Enable debugging mode

Note

Before utilizing the Online Debugging feature, you must manually enable the debugging mode for the function. Enabling

debugging mode will alter certain function configurations, which will be restored upon disabling the debugging mode. This

may impact your operations, so please ensure you understand the following:

This function will transition into single-instance mode, where all versions of the function can only respond to one event at

a time. Any concurrent events exceeding this limit will result in a failed call.

The execution timeout period is adjusted to 900 seconds. The execution timeout period cannot be set during the

debugging phase.

Multiple pre-set instances will be reduced to a single instance.

Enabling debugging mode will reduce the function's performance. This function will transition into single-instance mode,

where all versions of the function can only respond to one event at a time. Any concurrent events exceeding this limit will

result in a failed call.

https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 21
of 172

1. After Enabling Debugging Mode , the function will automatically initiate debugging upon update.

2. Once the loading is complete, the entry file will be automatically displayed. To open any file you need, you can use the shortcut

Cmd + P (Mac) or Ctrl + P (Windows).

3. You can set breakpoints as needed and click Test to trigger a test based on the test template. As shown in the figure below:

1. In the Function management page, select Function codes > Remote debugging.

2. By turning off the Enable debugging mode button, you can exit the debug mode and the function configurations will be restored.

Debugging Steps

Note

If debugging mode is already enabled, you will need to manually select Start Debugging when you re-enter the debugging

interface.

Explanation

For more information about debugging tools, refer to Chrome DevTools.

Exit Debug Mode

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 22
of 172

Note

Modifications made to the code on the debugging page will not be synchronized to the cloud. If you need to save the

modified code, please save it and use the online code editing feature.

Troubleshooting

Due to network issues or code anomalies, the inspector might disconnect. If you encounter a situation like the one shown below,

you need to click on Restart debugging to reconnect.

If your function runs normally but encounters an Out Of Memory error in debug mode, you need to increase the memory

configuration of the function. This will resolve the issue of insufficient memory caused by the increased memory requirements of

the function when debug mode is enabled.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 23
of 172

Testing Function
Last updated：2023-09-27 17:17:24

The testing feature of Serverless Cloud Function (SCF) allows you to initiate function calls directly through the console, simulating

trigger events sent by triggers, and displaying the execution status, return content, and running logs of the SCF. In the function

details page of the console, you can enter the function code subpage and click Test to test run the function. The following video will

introduce you to the function testing:

Watch video

1. Log in to the SCF console and select Function Service on the left sidebar.

2. On the Functions page, click the target function to enter its details page.

3. Select Function codes on the Function management page.

4. Select the desired test template in the editor, as shown below:

5. Click Test to test the function.

Throughout the product iteration process, default test event templates will be continuously added. These templates are used to

simulate the events and content passed to the cloud function when the corresponding trigger initiates the function's execution,

which is reflected in the function as an event parameter. The test event templates must be in JSON format. The currently included

default test event templates and their descriptions are as follows:

You can modify the preset templates based on your own requirements, and save them as your custom templates.

Procedure

Preset Testing Event Templates

Hello World Event Template: A simple, customizable event template. When triggering the function through the cloud API, you can

input custom event content.

COS Upload/Delete File Event Template: This simulates the events generated and passed when a cloud function is triggered

upon file upload or deletion in a Bucket, following the binding of a COS object storage trigger.

CMQ Topic Event Template: This simulates the events generated and passed when a cloud function is triggered upon receiving

a message in the message queue, following the binding of a CMQ message queue topic subscription.

API Gateway Event Template: This simulates the events generated and passed when a cloud function is triggered upon the

arrival of an API request at the API Gateway, following the binding of the API Gateway to the cloud function.

Note:

There is a call timeout limit in the function console testing scenario. Calls with a timeout of less than 60 seconds are

synchronous, while those exceeding 60 seconds are asynchronous.

Custom Testing Event Template

https://cloud.tencent.com/edu/learning/quick-play/2939-54953?source=gw.doc.media&withPoster=1¬ip=1
https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 24
of 172

The following use restrictions apply to custom testing event templates:

Select a preset template and click Create Template. Make changes as you want, specify a new template name and save it as a

custom template. This template is used by default next time when you enter the test page.

To delete a custom template that is no longer used, select the template and click Delete.

Use limits

Custom testing event templates are configured at the account level, which means the templates are shared by functions under

the same account.

Up to 5 custom testing templates can be configured for a single account.

Each custom testing template can contain up to 64 KB of data.

Creating custom testing event templates

Deleting custom testing event templates

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 25
of 172

Deploying Function
Last updated：2023-09-27 20:47:56

A deployment package is a zip file containing all the code and dependencies that the SCF platform runs. It must be specified when

creating a function. Users can create a deployment package in their local environment and upload it to the SCF platform, or write

code directly on the SCF console, which will then create and upload the deployment package for you. Please determine whether

you can use the console to create a deployment package based on the following conditions:

The code package submitted directly to the SCF platform, or submitted via COS and then imported into SCF, must be in ZIP format .

Tools for compression or decompression can be used, such as the 7-Zip tool on the Windows platform, or the zip command-line

tool on the Linux platform.

When packaging, you need to package the files, not the entire code directory. After packaging, the entry-point function file should

be located in the root directory of the package.

The following illustrates the process of creating a Python deployment package in a local environment.

1. Create a directory:

2. Save all Python source files (.py files) for this function in this directory.

3. Use pip to install all dependencies into this directory:

For instance, the following command will install the Pillow library in the 'my-first-scf' directory:

Deploy via the Console

For simple scenarios: If your custom code only requires the use of standard libraries and SDK libraries provided by Tencent

Cloud, such as COS and SCF, and there is only one code file, then you can use the inline editor in the SCF console. The console

will automatically compress the code and related configuration information into a runnable deployment package.

For advanced scenarios: If the code you write requires other resources (such as using graphic libraries for image processing,

using web frameworks for web programming, using database connection libraries to execute database commands, etc.), you

need to first create a function deployment package in your local environment, and then upload the deployment package using

the console.

Packaging Requirements

ZIP Format

Packaging Method

When packaging on Windows, you can enter the function code directory, select all files, right-click, and choose "Compress to zip

package" to generate the deployment package. When browsing the zip package using tools like 7-Zip, the package should

directly contain the entry program and other libraries.

When packaging on Linux, you can enter the function code directory and specify all files in the code directory as the source files

when calling the zip command. This will generate the deployment package, for example, zip /home/scf_code.zip * -r .

Deployment Package Example

Note

Typically, the dependency libraries installed locally run well on the SCF platform. However, in a few cases, the installed

binary files may cause compatibility issues. If this happens, please try to contact us .

In the example for the Python development language, the pip tool will be used locally to install libraries and

dependencies. Please ensure that Python and pip are already installed on your local system.

Creating a Python Deployment Package in Linux

mkdir /data/my-first-scf

pip install <module-name> -t /data/my-first-scf

https://baike.baidu.com/item/Zip%E6%A0%BC%E5%BC%8F/10284382?fr=aladdin
https://cloud.tencent.com/document/product/583/9712

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 26
of 172

4. In the 'my-first-scf' directory, compress all contents. Pay special attention to compress the contents within the directory, not

the directory itself:

It is recommended that you package the dependencies and code that have been successfully run in the Linux environment into a zip

package as the function's execution code. For specific operations, please refer to Code Practice - Retrieve Images from COS and

Create Thumbnails .

For Windows systems, you can also use the pip install <module-name> -t <code-store-path> command to install Python libraries.

However, for packages that require compilation or come with static/dynamic libraries, since the libraries compiled under Windows

cannot be invoked and run in the SCF runtime environment (CentOS 7), the library installation under Windows is only suitable for

libraries implemented purely in Python.

You can deploy functions by executing the scf deploy command through the Serverless Cloud Framework.

pip install Pillow -t /data/my-first-scf

cd /data/my-first-scf && zip my_first_scf.zip * -r

Note

For libraries that require compilation, to maintain consistency with the SCF runtime environment, it is recommended to

perform the packaging process under CentOS 7.

If there are requirements for other software, compilation environments, or development libraries during the installation

or compilation process, please resolve the compilation and installation issues according to the installation prompts.

Creating a Python Deployment Package on Windows

Deploying via Serverless Cloud Framework Command Line

Note

Before using the Serverless Cloud Framework tool, please complete the installation through Installing Serverless Cloud

Framework .

https://cloud.tencent.com/document/product/583/9736
https://cloud.tencent.com/document/product/583/44753

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 27
of 172

Deleting Function
Last updated：2023-09-27 20:49:10

Function deletion can be accomplished through either the console or the Serverless Cloud Framework command line.

1. Log in to the Serverless console and select Function Service from the left sidebar.

2. On the "Functions" page, select the region and namespace to view all functions within the specified region.

3. In the function list, check the functions you want to delete and then click Delete, as shown in the figure below:

4. After confirming the information in the "Delete Function" pop-up window, click OK to delete the function.

You can delete the deployed project by executing the scf remove command via Serverless Cloud Framework.

Deleting Functions via the Console

Deleting Functions via Serverless Cloud Framework

Note

Before starting, install the Serverless Cloud Framework CLI tool first as instructed in Installation .

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/44753

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 28
of 172

Copying Function
Last updated：2023-09-27 17:18:42

You can replicate functions across regions and namespaces through the Serverless Cloud Function Console. When replicating a

function, you can choose to copy only the function code or both the function code and configuration. For functions with a high

degree of code repetition, we can quickly create functions through the copy feature, modify the code, and swiftly implement

multiple cloud functions with subtle differences.

The content that can be replicated in a cloud function includes the function code and its configuration:

When replicating a function, you can choose from the following two replication methods:

Operational Overview

Feature Overview

Source and Target of Replication

Function Type Description Usage Constraints

Source Function
The replicated cloud function

becomes the source function.

You can select and replicate a cloud function from any region or

namespace.

By default, the content of the $LATEST version of the source

function is replicated.

Target Function

The function to which it is copied

is referred to as the target cloud

function.

The target function for replication can be selected from any region,

any namespace, and can be custom-named.

Within the selected region and namespace, if a function with the

same name exists, the replication operation will overwrite the

identically named function.

The target function for replication only generates or updates the

$LATEST version.

Description

The $LATEST version is intended for development and testing, facilitating further code development and debugging.

Replication Method

Function Code: This includes the function's code package, runtime environment, and execution method.

Function Configuration: This encompasses the function's memory, timeout, description, environment variables, network, logs,

and other configuration details, excluding trigger configurations.

Replication Method Description Usage Constraints

Copy Code Only
Only the source function's code is copied

to the target function's code.

If the target function exists, the original configuration is

used; otherwise, the default configuration is applied.

If the target function exists, its runtime environment

must be identical to that of the source function.

Copy Code and

Configuration

Both the source function's code and

configuration are copied to the target

function.

If the target function exists, its runtime environment

must be identical to that of the source function.

Note

If the source function and the target function are in different regions, the network and log configurations in the function

configuration cannot be copied to the target function during the code and configuration copy process.

Due to the absence of identical objects across regions, configuration items with regional attributes cannot be copied. If

additional configurations are required, you can manually edit the cloud function to modify the necessary configurations

after the copy process is completed.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 29
of 172

1. Log in to the SLS console .

2. In the left sidebar, select Function Service to navigate to the Function Service Management page.

3. At the top of the Function Service, select the region where the function you wish to update is located to view all functions in that

region.

4. In the function list, select the row of the source function you wish to copy, then click Copy in the Operation column.

5. In the pop-up Function Copy window, fill in the following information:

6. Click Submit to complete the copy.

If the target function already exists, please confirm again in the warning window, or cancel and modify the function name again.

Procedure

Region: The region to which the target function belongs.

Namespace: The namespace to which the target function belongs.

Function Name: The name of the target function.

Content to Copy: By ticking Function Configuration, you can choose to Copy Function Code Only or Copy Both Function

Code and Configuration.

Overwrite Target Function: If this option is selected, it will overwrite the function with the same name in the target region.

Description: Enter the optional description for the target function.

https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/scf/list

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 30
of 172

HTTP-Triggered Function Management

Function Overview
Last updated：2024-06-14 14:57:09

HTTP-Triggered function is a function type in SCF. Compared with event-triggered function that has limits on the event format, it

focuses on optimization of web service scenarios and can directly send HTTP requests to URLs to trigger function execution.

In terms of the support for web service scenarios, HTTP-triggered Function excels event function in the following aspects:

The operating principle of the HTTP-triggered Function is illustrated as follows:

After your HTTP request passes API Gateway, when directly passing through the native request, API Gateway will add the content

required by the gateway to trigger the function, such as function name and function region, to the request header and pass the

modified request to the function environment to trigger the backend function.

In the function environment, the built-in proxy is used to implement Nginx-based forwarding, remove the request information not

required by the service specification from the header, and send the native HTTP request to your web server service through the

specified port.

After being configured with the specified listening port 9000 and service bootstrap file, your web server will be deployed in the

cloud and use this port to get HTTP requests for processing.

Features and Strengths

Functions can directly receive and process HTTP or native WebSocket requests, so API Gateway doesn't need to convert the

requests to JSON format, which reduces the request processing steps and improves the web service performance.

The writing experience of HTTP-triggered Function is closer to that of native web services, and native Node.js APIs can be used

to deliver a service experience consistent with that of local development.

A rich set of frameworks are supported. You can use common web frameworks, such as Node.js web frameworks Express and

Koa , to write HTTP-triggered functions. You can also quickly migrate your local web framework services to the cloud with

minimal modification.

An HTTP-triggered function can automatically create an API Gateway service for you. After the deployment is completed, API

Gateway will automatically generate a default URL for user access and invocation, which reduces the learning costs and

simplifies debugging.

The SCF console provides testing capabilities for you to quickly test your services in the console.

Operating Principle

Use limits

Feature limits

Currently, HTTP-triggered functions can be bound to only API Gateway triggers.

A function can be bound to multiple API Gateway triggers, but all APIs must be under the same API service.

Async invocations and retries are not supported.

In the Tencent Cloud standard environment, only the /tmp directory is readable and writable. When outputting files, please

select the /tmp path; otherwise, the service will exit exceptionally due to the lack of write permission.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 31
of 172

The common request headers received by your web server from the function environment are as detailed below, none of which can

be customized:

For projects that requires compression for deployment (JAVA, Go), please make sure that scf_bootstrap is included in the ZIP

package.

Request limits

HTTP-triggered functions can be invoked only through API Gateway but not function APIs.

The following restrictions apply to Response headers :

The total size of all key and value values cannot exceed 4 KB.

The size of body cannot exceed 6 MB.

When deploying your web service, you must listen to the specified port 9000 and address 0.0.0.0 .

Currently, the Connection field in the HTTP request header cannot be customized.

Common Function Request Headers

Header Field Description

X-Scf-Request-Id Current request ID

X-Scf-Memory Maximum memory that can be used during function instance execution

X-Scf-Timeout Timeout period for function execution

X-Scf-Version Function version

X-Scf-Name Function name

X-Scf-Namespace Function namespace

X-Scf-Region Function region

X-Scf-Appid Appid of function owner

X-Scf-Uin Uin of function owner

X-Scf-Session-Token Temporary SESSION TOKEN , this field will be available once the function execution role is enabled.

X-Scf-Secret-Id Temporary SECRET ID , this field will be available once the function execution role is enabled.

X-Scf-Secret-Key Temporary SECRET KEY , this field will be available once the function execution role is enabled.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 32
of 172

Creating And Testing Function
Last updated：2023-09-27 17:55:28

This document describes how to quickly create and use a HTTP-triggered Function in the SCF console.

Before using SCF, you need to sign up for a Tencent Cloud account and complete identity verification first.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. Select the region where to create a function at the top of the page and click Create to enter the function creation process.

3. Choose to create a new function using a template. Filter for WebFunc in the search box to view all HTTP-triggered Function

templates. Select the template you wish to use and click Next. As shown in the figure below:

4. On the Configuration page, you can view and modify the specific configuration information of the template project.

5. Click Complete to create the function.

Once the function is created, you can view the basic information of the HTTP-triggered Function on the Function Management

page, and access it via the access path URL generated by the API gateway.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. Select the region where to create a function at the top of the page and click Create to enter the function creation process.

3. Choose to create a new function from scratch and fill in the basic function configuration, as shown in the figure below:

Operational Overview

Prerequisites

Procedure

Creating a Function via Template

Creating custom function

https://cloud.tencent.com/register?s_url=https%3A%2F%2Fcloud.tencent.com%2F
https://cloud.tencent.com/document/product/378/3629
https://console.cloud.tencent.com/scf/index?rid=1
https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 33
of 172

4. In Advanced Settings, view other required configuration items.

5. In Trigger Configuration, triggers currently only support API Gateway triggering and will automatically create triggers according

to the default configuration.

6. Click Complete to create the function.

Once the function is created, you can view the basic information of the HTTP-triggered Function on the Function Management

page, and access it via the access path URL generated by the API gateway.

Function Type: Select "HTTP-triggered Function".

Function name: Enter the name of your function.

Region: enter your function deployment region.

Runtime Environment: Here, using Nodejs framework as an example, select "Nodejs 12.16".

Namespace: the default namespace is used by default. You can select another namespace for deployment.

Start Command: For HTTP-triggered Functions, you must configure the scf_bootstrap startup file for your project to ensure

that the Web Server can start normally in the function environment. You can choose the default framework template

provided by SCF, or use a custom template to write your own start command. For more details, refer to Startup File

Instructions .

https://cloud.tencent.com/document/product/583/56126

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 34
of 172

Method 1

You can open the access path URL in your browser. If it can be accessed normally, it indicates that the function has been

created successfully. As shown in the following figure:

Method 2

On the function code page, you can assemble specific HTTP requests for testing through the testing capability. You can

determine whether the function has been successfully deployed by examining the HTTP response results.

Cloud test

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 35
of 172

Method 3

You can use other HTTP testing tools such as CURL and Postman to test the HTTP-triggered Function you have successfully

created.

For HTTP-triggered Functions, the returned body information of each request will not be automatically reported to the log. You can

customize the reporting in the code through statements such as console.log() or print() in your programming language.

For PHP, as all inputs are automatically used as the body, you need to run the following command to output the log to stdout and

complete log reporting:

On the details page of a created function, select Log Query to view its detailed logs. For more information, please see Viewing

Execution Logs .

On the details page of a created function, select Monitoring Information to view metrics such as function invocations and execution

duration. For more information, please see Monitoring Metric Descriptions .

Common errors can be categorized into two types: User Errors and System Errors.

The table below describes the possible scenarios of request errors and function errors, so that you can quickly troubleshoot

problems. For more information on error codes, please see Function Status Code .

Note

The console invokes and tests the function by using the gateway API. If the test fails, the API will automatically execute

the retry logic for up to 4 retries. Therefore, you will see multiple execution logs for one failed request.

Viewing logs

<?php

 $stdout = fopen "php://stderr" "w"

 fwrite $stdout "123\n"

?>

(,);

(,);

View monitoring data

Note

The minimal granularity of monitoring statistics collection is 1 minute. You need to wait for 1 minute before you can view the

current monitoring record.

Common Errors and Solutions

User errors: the execution failure is caused by improper user operations; for example, the sent request does not meet the

standard, the commands in the bootstrap file are incorrect, the correct port is not listened on, or the internal business code is

incorrectly written. The returned error code is 4xx.

Platform errors: the execution failure is caused by internal errors of the SCF platform. The returned error code is 500.

2xx status codes

Status

Code

Return

Message
Description

200 Success
The function has executed successfully. If you see this return code, but the return message

does not match your expectations, please verify the correctness of your code logic.

4xx Status Code

Status Return Message Description

https://cloud.tencent.com/document/product/583/36143
https://cloud.tencent.com/document/product/583/32686
https://cloud.tencent.com/document/product/583/42611

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 36
of 172

When debugging in a local container, in order to ensure consistency with the standard container environment in the cloud, you need

to pay attention to the limits of readable and writable files in the local environment. The local container startup command is as

follows:

Code

404 InvalidSubnetID
The subnet ID is invalid. Check whether the network configuration of the

function is correct and whether the subnet ID is valid.

405 ContainerStateExitedByUser
The container process has exited normally. Please verify the correctness of

your startup file. For more details, refer to the Troubleshooting Guide .

406 RequestTooLarge
The request body size is too large. The upper limit for sync request events is 6

MB.

410
The HTTP response body

exceeds the size limit.

The size of function response body exceeds the upper limit of 6 MB. Adjust it

and try again.

430 User code exception caught

A user code execution error occurs. Based on the error log on the console,

check the error stack of the code and see whether the code can be executed

properly.

433 TimeLimitReached

The function execution time has exceeded the timeout configuration. Check

whether there are time-consuming operations in the business code, or adjust

the execution timeout period on the function configuration page.

439
User process exit when

running

The user process exits accidentally. Based on the error message, find out the

cause and fix the function code.

446 PortBindingFailed
No listening port is specified. Check whether your business code listens on

port 9000 .

499 kRequestCanceled The user manually interrupts the request.

5xx Status Code

Status Code Return Message Description

500 InternalError Internal error. Please try again later. If the problem persists, contact us for assistance.

Notes on local debugging

Note

This command is for reference only. Please modify it with your own image environment.

docker run -ti --read-only -w /var/user

 -v /usr/local/cloudfunction/runtime:/var/runtime:ro

 -v ${PWD}:/var/user:ro

 -v /tmp:/tmp

 -v /usr/local/cloudfunction/runtime:/var/runtime:ro

 -v /usr/local/cloudfunction/lang:/var/lang:ro

 ccr.ccs.tencentyun.com/cloudfunc/qcloud-func bash

\

\

\

\

\

\

https://cloud.tencent.com/document/product/583/97808#eab82a71-0693-42b0-ab9a-597ae925494a
https://cloud.tencent.com/online-service?from=doc_583

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 37
of 172

Bootstrap File Description
Last updated：2023-09-27 17:55:55

Within the standard language image environment built into the function, you need to create an executable file named scf_bootstrap

to launch the Web Server. This file, along with your code files, should be packaged and deployed together to complete the creation

of the HTTP-triggered Function. During actual request processing, your Web Server listens to the specified 9000 port to receive

HTTP requests. These requests are then forwarded to the backend service for logical processing and response to the user.

scf_bootstrap is the bootstrap file of your web server and ensures that your web service can normally start and listen on requests.

In addition, you can customize scf_bootstrap to implement more personalized operations as needed:

Local package upload

You can write your scf_bootstrap file locally, make sure that the file permission meets the requirements, package it with the

project code, and deploy them together on the HTTP-triggered function.

Quick creation in console

You can create an HTTP-triggered function in the Serverless Console . During the Create Function process, you can edit your

bootstrap file under Advanced Configuration > Startup Command. SCF provides common startup templates for popular web

frameworks, which you can modify according to your needs. As shown in the figure below:

Bootstrap File Usage

Set the paths and environment variables of the runtime's dependency libraries.

Load the dependency library files and extensions of the custom programming language and version. If there are dependent files

that need to be pulled in real time, you can download them to the /tmp directory.

Parse the function file and execute the global operations or initialization processes (such as initializing SDK client (HTTP client)

and creating database connection pool) required before function invocation, so they can be reused during invocation.

Start plugins such as security and monitoring.

Note

SCF only supports reading scf_bootstrap as the bootstrap file name, and other names cannot start the service normally.

In the Tencent Cloud standard environment, only the /tmp directory is readable and writable. When outputting files,

please select the /tmp path; otherwise, the service will exit exceptionally due to the lack of write permission.

Prerequisites

The permission to execute is required. Make sure that your scf_bootstrap file has the 777 or 755 permission; otherwise, it

cannot be executed due to insufficient permissions.

Be able to run in the SCF system environment (CentOS 7.6).

If the bootstrap file is a shell script, it must have #!/bin/bash in the first line.

The bootstrap command must be the absolute path /var/lang/${specific_lang}${version}/bin/${specific_lang} ; otherwise, it cannot

be invoked normally. For more information, see Absolute Paths in Standard Language Environments .

The recommended listening address is 0.0.0.0 , and the internal loopback address 127.0.0.1 cannot be used.

The file must end with an LF carriage return.

Creation method

https://console.cloud.tencent.com/scf/list?rid=1&ns=default
https://cloud.tencent.com/document/product/583/56125

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 38
of 172

Once the function is created, the console will automatically package and deploy your code along with the scf_bootstrap file.

Note

The configuration in the console takes effect only if no scf_bootstrap is detected in the uploaded code. If there is an

scf_bootstrap file in your project, the system will deploy the function based on it.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 39
of 172

Upon successful deployment, you can view and edit the scf_bootstrap file in the code editor, as shown in the figure below:

The scf_bootstrap executable file serves as the container's startup command. It is crucial to ensure that the container can start and

execute the code logic properly. Therefore, please make sure your startup command is written correctly. If you encounter an error

code 405 , it is usually due to the executable file not running correctly. Please ensure that your bootstrap file is written correctly.

Troubleshooting common errors

Absolute Paths in Standard Languages Environments

Language Version Absolute Path

Node.js 16.13 /var/lang/node16/bin/node

Node.js 14.18 /var/lang/node14/bin/node

Node.js 12.16 /var/lang/node12/bin/node

Node.js 10.15 /var/lang/node10/bin/node

Python 3.7 /var/lang/python37/bin/python3

Python 3.6 /var/lang/python3/bin/python3

Python 2.7 /var/lang/python2/bin/python

PHP 8.0 /var/lang/php80/bin/php

PHP 7.4 /var/lang/php74/bin/php

PHP 7.2 /var/lang/php7/bin/php

PHP 5.6 /var/lang/php5/bin/php

JAVA 11 /var/lang/java11/bin/java

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 40
of 172

Nodejs

Python

PHP

JAVA 8 /var/lang/java8/bin/java

Common Web Server Bootstrap Command Templates

#!/bin/bash

export PORT=9000

/var/lang/node12/bin/node app.js # Change to your own bootstrap function name

#!/bin/bash

export PORT=9000

/var/lang/python3/bin/python3 app.py # Change to your own bootstrap file name

#!/bin/bash

/var/lang/php7/bin/php -c /var/runtime/php7 -S 0.0.0.0:9000 hello.php # Change to your own entry function name

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 41
of 172

Trigger Management
Last updated：2023-09-27 17:56:10

Currently, HTTP-triggered Functions only support API Gateway triggers. You can bind API Gateway triggers in the SCF console or

bind backend functions in the API Gateway console .

For HTTP-triggered functions, triggers support two creation methods: default creation and custom creation. You can choose an

appropriate method according to the actual situation:

For detailed billing methods, see HTTP-triggered Function Billing Instructions .

Characteristics of HTTP API Gateway triggers:

Basic gateways can only be bound through the Cloud Function console using the default creation method.

API Gateway triggers can be configured either in the Cloud Function Console or in the API Gateway Console . For more details on

trigger configuration, please refer to API Gateway Trigger Configuration .

Trigger Type Description

Features Default Creation (Basic API Gateway) Custom Creation (Standard API Gateway)

Default domain name Supported Supported

Binding to custom

domain name
Manual binding Management in API Gateway console

Request method

configuration
Supported Supported

Release environment

configuration
Supported Supported

Authentication

method configuration
Supported Supported

Visibility in API

Gateway console
Invisible Visible

Advanced API

Gateway capabilities

(such as plugin and

dedicated instance)

Not supported Supported

Billing method
No charges are levied for the number of gateway

calls.

Billed according to the standard API

Gateway billing plan

Type conversion

The gateway can be upgraded to a standard API

Gateway instance. After upgrade, you can use all

gateway capabilities and billed by standard API

Gateway billable items.

The gateway edition cannot be changed. A

standard API Gateway instance cannot be

rolled back to a basic API Gateway instance

in default creation.

Trigger Overview

Transparent HTTP Request

Upon receiving an HTTP request, if the API on the gateway is configured to dock with a cloud function, the function will be

triggered to run. At this point, the API Gateway will directly forward the HTTP request without converting it into an event type

format. The relevant information of the HTTP request includes the specific service and API rules that received the request, the

actual path of the request, the method, and the content of the request's path, header, and query.

Synchronous Invocation

The API Gateway invokes the function synchronously, waiting for the function to return before the timeout period configured in

the API Gateway expires. For more details on invocation types, please refer to Invocation Types .

Trigger Configuration

https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/apigateway
https://cloud.tencent.com/document/product/583/66237
https://console.cloud.tencent.com/scf/index
https://console.cloud.tencent.com/apigateway/index
https://cloud.tencent.com/document/product/583/12513#api-.E7.BD.91.E5.85.B3.E8.A7.A6.E5.8F.91.E5.99.A8.E9.85.8D.E7.BD.AE
https://cloud.tencent.com/document/product/583/9694#.E8.B0.83.E7.94.A8.E7.B1.BB.E5.9E.8B

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 42
of 172

In API Gateway, one API rule can be bound to only one function, but one function can be bound to multiple API rules as the backend.

You can create an API with different paths in the API Gateway console and point the backend to the same function. APIs with the

same path, same request method, and different release environments are regarded as the same API and cannot be bound

repeatedly.

Request method is the method to process request sent from API Gateway to SCF, and response method is the method to process

the returned value sent from SCF to API Gateway. For HTTP-triggered functions, API Gateway will add the information required for

function triggering in the header and directly pass through the original request to trigger the backend function.

Trigger Binding Limits

Request and Response

Note

 The following parameters do not support user-defined configurations:

Connection Field

Custom fields beginning with X-SCF-

https://console.cloud.tencent.com/apigateway/index

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 43
of 172

HTTP-Triggered Function Billing
Last updated：2023-09-27 17:56:32

Two trigger creation methods are provided for HTTP-triggered functions: default creation and custom creation, which have

different billing logic.

By choosing "Default Creation", the cloud function will automatically create a basic API Gateway service trigger for you. This type of

trigger only provides you with a URL access link and is invisible in the API Gateway console. In this scenario, the billing scheme for

HTTP-triggered functions is as follows:

Select "Custom Creation". You need to select the trigger type in the function console and bind the created related services. In this

scenario, the billing scheme is the same as the existing billing method. The function and trigger are billed according to their

respective billing standards. Taking the standard API Gateway trigger as an example, the HTTP-triggered Function billing scheme

Default Creation

Trigger side: Invocation is not billed, and outbound traffic is billed on the function side.

Function side: In addition to the standard billing items, a new outbound response traffic billing item is added.

Note

A basic API Gateway instance will be created in default creation mode. You can upgrade it to the standard edition in the SCF

console. After upgrade, you can use all gateway capabilities, which will be billed in the standard API Gateway billing method.

The upgrade is irreversible.

Custom creation

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 44
of 172

is as follows:

Trigger side: Costs are calculated according to the product's own billing standards.

Function side: Costs are calculated based on standard billing items (number of calls, resource usage, outbound traffic).

Response traffic is not included in the function side calculation.

Trigger Capability Comparison

Features Default Creation (Basic API Gateway)
Custom Creation (Standard API

Gateway)

Default domain name Supported Supported

Binding to custom domain

name
Manual binding

Management in API Gateway

console

Request method

configuration
Supported Supported

Release environment

configuration
Supported Supported

Authentication method

configuration
Not supported Supported

Visibility in API Gateway

console
Invisible Visible

Advanced API Gateway

capabilities (such as

plugin and dedicated

instance)

Not supported Supported

Billing method No charges for the number of gateway calls
Billed according to the standard

API Gateway billing plan

Type conversion

Can be upgraded to a standard API Gateway, after which

all gateway capabilities can be utilized and billed

according to the standard API Gateway billing plan.

Irreversible, a standard gateway

cannot be reverted back to the

basic gateway created by default.

Backend timeout period Fixed at 15s Configurable

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 45
of 172

Deploying Web Function On Command Line
Last updated：2023-09-27 17:57:02

HTTP-triggered Function is a new function capability in SCF. Compared with event function that has limits on the event format,

HTTP-triggered Function focuses on optimization of web service scenarios and can directly send HTTP requests to URLs to trigger

function execution. For more information, please see Function Overview .

The Serverless Cloud Framework (SCF) now supports the deployment of HTTP-Triggered Functions. With the SCF component, you

can quickly create and deploy HTTP-triggered Functions.

1. Execute the following command to initialize the Serverless HTTP-triggered Function template.

2. Enter the demo project and view the directory structure as shown below:

Here, scf_bootstrap is the project bootstrap file. For the specific writing rules, please see Bootstrap File Description .

3. Open serverless.yml to inspect the configuration details.

You merely need to introduce a new type parameter within the yml file, designate the function type, and you can accomplish

the deployment of a HTTP-Triggered Function.

The sample yml is as follows:

Operational Overview

Procedure

scf init scf-nodejs

. http-demo

├── serverless.yml # Configuration file

├── package.json # Dependency file

├── scf_bootstrap # Project bootstrap file

└── index.js # Service function

Note

For HTTP-triggered Functions, there is no need to specify the entry function.

If the type parameter is not entered, the function will be an event function by default.

If there is no scf_bootstrap bootstrap file in your local code, you can specify the entry function by setting the entryFile

parameter in the yml file. The component will generate a default scf_bootstrap bootstrap file based on the runtime

language and complete the deployment. After deployment, you need to modify the content of the scf_bootstrap file in

the Cloud Function Console according to the actual situation of your project.

component: scf

name: http

inputs:

src:

 src: ./

 exclude:

 - .env

Specify the SCF type as Web type

type: web

name: web-function

region: ap-guangzhou

runtime: Nodejs12.16

For Node.js, automatic dependency installation can be enabled.

installDependency: true

events:

 - apigw:

 parameters:

https://cloud.tencent.com/document/product/583/56124
https://cloud.tencent.com/document/product/583/56126
https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 46
of 172

4. Execute the scf deploy command in the root directory to complete the service deployment. The example is as follows:

Similar to event-based functions, you can directly view the latest 10 log entries of the deployed function using the scf log command.

The example is as follows:

 protocols:

 - http

 - https

 environment: release

 endpoints:

 - path: /

 method: ANY

$ scf deploy

serverless-cloud-framework

Action: "deploy" - Stage: "dev" - App: "http" - Name: "http"

type: web

functionName: web-function

description: This is a function in http application

namespace: default

runtime: Nodejs12.16

handler:

memorySize: 128

lastVersion: $LATEST

traffic: 1

triggers:

-

 NeedCreate: true

 created: true

 serviceId: service-xxxxxx

 serviceName: serverless

 subDomain: service-xxxxxx.cd.apigw.tencentcs.com

 protocols: http&https

 environment: release

 apiList:

-

 path: /

 method: ANY

 apiName: index

 created: true

 authType: NONE

 businessType: NORMAL

 isBase64Encoded: false

 apiId: api-xxxxxx

 internalDomain:

 url: https://service-xxxx.cd.apigw.tencentcs.com/release/

18s › http › executed successfully

Relevant Commands

Viewing access log

$ scf log

serverless-cloud-framework

Action: "log" - Stage: "dev" - App: "http" - Name: "http"

-

 requestId: xxxxx

 retryNum: 0

 startTime: 1624262955432

 memoryUsage: 0.00

 duration: 0

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 47
of 172

Run the following command to remove your deployed cloud resources.

Serverless Cloud Framework also offers a dedicated HTTP component for Web framework deployment, enabling quick

implementation of features such as Web framework deployment, layer creation, static resource separation, and CDN acceleration.

For usage, please refer to Deploying Frameworks via Command Line .

 message:

 """

-

 requestId: xxxxx

 retryNum: 0

 startTime: 1624262955432

 memoryUsage: 0.00

 duration: 0

 message:

 """

Testing service

Solution 1: Directly open the output path URL in the browser. If it can be accessed normally, it indicates that the function has

been created successfully. As shown in the figure below:

Solution 2: You can use other HTTP testing tools, such as CURL, POSTMAN, etc., to test the HTTP-triggered Function you have

successfully created. The following example tests using the CURL tool:

curl https://service-xxx.cd.apigw.tencentcs.com/release/

Deleting service

scf remove

Web framework migration

https://cloud.tencent.com/document/product/1154/59447

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 48
of 172

WebSocket Protocol Support
Last updated：2023-09-27 20:57:45

Currently, an HTTP-triggered function allows you to connect the client to the server where it runs over the native WebSocket

protocol.

You can use a bootstrap file to start the WebSocket server in the runtime environment of the HTTP-triggered function configured

with support for the WebSocket protocol and listen on the specified port (9000) to wait for client connections.

Simultaneously, the API Gateway trigger must be set to support the "WS or WSS" frontend protocol, with the backend being the

currently specified HTTP-triggered function that supports WebSocket. The ws path provided by the API Gateway can be used for

client connections.

The WebSocket client initiates a WebSocket connection using the WS connection provided by the API Gateway trigger. The API

Gateway and the cloud function platform will transparently pass the connection to the service process in the runtime environment.

The negotiation and communication process of establishing the connection are all handled by the server-side code.

After the connection is established, the client and server normally communicate over the WebSocket protocol.

If an HTTP-triggered function supports WebSocket, the lifecycle of a WebSocket connection is the same as an invocation request

of the function, the WebSocket connection establishment process equals request initiation, and disconnection equals request end.

Plus, function instances and connections are in one-to-one correspondence; that is, one instance only processes one WebSocket

connection at a time. When more client connection requests are initiated, the same number of instances will be started for

processing.

A WebSocket connection will be closed in the following cases, and the current request execution will also end, as the request

lifecycle is the same as the connection lifecycle:

How It Works

Starting service

Establishing WebSocket connection

WebSocket connection lifecycle

When a WebSocket connection request is initiated, a function instance will be started and receive the connection request.

After the WebSocket connection is established, the instance will run continuously and receive and process the upstream data

from the client based on the actual business conditions. Or, the server actively pushes the downstream data.

After the WebSocket connection is closed, the instance will stop running.

Disconnection

Disconnection Conditions Function Status

Function

Status

Code

The client or server initiates a connection termination or closes the

connection. The termination status codes are 1000 and 1010 (sent by the

client), and 1011 (sent by the server).

The function executes

normally and the operation

status is successful.

200

The client or server initiates a connection termination or closes the

connection, with termination status codes other than 1000, 1010, and 1011.

The function terminates

abnormally, resulting in a

failed operation status.

439

(Server-

side

closure)

456

(Client-

side

closure)

In the absence of any message being sent upstream or downstream on the

WS connection, reaching the configured idle timeout, the connection is

severed by the function platform.

The function terminates

abnormally, resulting in a

failed operation status.

455

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 49
of 172

Use of WebSocket has the following limits:

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Select the region and namespace where to create a function at the top of the page and click Create to enter the function

creation process.

3. Choose to create a new function from scratch, and select HTTP-triggered Function as the function type.

4. In Advanced Settings, view the supported protocols. By checking WebSocket support and configuring the WebSocket Idle

Timeout, you can complete the WebSocket protocol support. As shown below:

5. After enabling WebSocket support, in Trigger configurations, the protocol support of the API Gateway will also automatically

switch to WS&WSS support. The link address provided by the created API Gateway will also be a WebSocket address. As shown

Upon continuous usage after the connection is established, once the function

runtime reaches its maximum duration, the connection is severed by the

function platform.

The function terminates

unexpectedly, resulting in a

failure status.

433

For more information on WebSocket status codes for connection end, see WebSocket Status Codes .

For more information on function status codes, see Function Status Code .

Use limits

Idle timeout period: 10–7200 seconds. The execution timeout period of a function must be greater than or equal to the idle

timeout period.

Maximum size of a single request or response packet: 256KB. To increase the quota limit, please contact us .

Single connection request size limit: 128KB/s. To increase the quota limit, please contact us .

Single connection request QPS limit: 10. To increase the quota limit, please contact us .

Procedure

Creating a Function

https://console.cloud.tencent.com/scf/index?rid=1
https://datatracker.ietf.org/doc/html/rfc6455#section-7.4
https://cloud.tencent.com/document/product/583/42611
https://cloud.tencent.com/online-service?from=connect-us
https://cloud.tencent.com/online-service?from=connect-us
https://cloud.tencent.com/online-service?from=connect-us

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 50
of 172

below:

You can use the following demos to create a function and try out WebSocket:

Description

After creation, the support for WebSocket protocol cannot be canceled, but the idle timeout period can be changed as

needed.

Sample code

Python Example : Implementing a WebSocket server using the websockets library .

Nodejs Example : Implementing a WebSocket server using the ws library .

https://github.com/tencentyun/serverless-demo/tree/master/Webfunc-WSDemo-Python3
https://github.com/aaugustin/websockets
https://github.com/awesome-scf/scf-nodejs-code-snippet/tree/main/ws_node
https://github.com/websockets/ws

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 51
of 172

SSE Protocol Support
Last updated：2024-03-25 15:42:31

SSE (Server-sent Events) serves as a lightweight alternative to WebSocket , providing a unidirectional, server-to-client (browser)

streaming message push protocol. It is commonly used in scenarios such as AI-generated dialogues. HTTP-triggered Functions

currently support establishing connections between the client and the server running the function via the SSE protocol.

The SSE protocol is supported by default, eliminating the need for any configuration in the console.

Under the SSE support of HTTP-triggered Functions, the lifecycle of an SSE connection is equivalent to a single function call

request. Each function instance corresponds to one connection, meaning that at any given moment, a single instance only handles

one SSE connection. When more connection requests are initiated, a corresponding number of instances will be launched to handle

them.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Select the region and namespace where to create a function at the top of the page and click Create to enter the function

creation process.

3. On the Create Function page, choose to create a new function from scratch, and select HTTP-triggered Function as the function

type.

4. Using Python 3.7 as the runtime environment for this example, select Online Editing in Function Code, and copy and paste the

following app.py sample code into the function code:

5. Click Done. After the function is created, it can be viewed in the function list.

You can initiate an SSE connection using the curl tool in your local terminal. Here is an example command:

Protocol Activation Method

SSE Connection Lifecycle

Procedure

Creating a Function

import json

import time

from flask import Flask Response stream_with_context

app = Flask __name__

@app.route '/stream'

def stream_data

 msg = 'SSE' 'empowering' 'GPT' 'applications' '!' 'Happy' 'chatting' '!'

 # You can use yield to return content piece by piece

 def generate_response_data

 for i word in enumerate msg

 json_data = json dumps

 'id' i 'content' word

 yield f"data:{json_data}\n\n"

 time sleep 1

 return Response stream_with_context generate_response_data mimetype="text/event-stream"

if __name__ == '__main__'

 app run host='0.0.0.0' port=9000

, ,

()

()

():

[, , , , , , ,]

():

, ():

. (

{ : , : })

. ()

((()),)

:

. (,)

Testing Function

curl -v -H 'Accept:text/event-stream' API Gateway address exposed by the function /stream{ }

https://cloud.tencent.com/document/product/583/63406
https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 52
of 172

The returned content is as follows:

> GET /release/stream HTTP/1.1

> Host: XXXXXXXXXXXXXXX.XX.apigw.tencentcs.com

> User-Agent: curl/8.0.1

> Accept: */*

> 'Accept:text/event-stream'

>

< HTTP/1.1 200 OK

< Content-Type: text/event-stream; charset=utf-8

< Transfer-Encoding: chunked

< Connection: keep-alive

< X-Api-RequestId: 22ad36c38536ee65bd07c44cb5311e1d

< Vary: Accept-Encoding

<

data:{"id": 0, "content": "SSE"}

data:{"id": 1, "content": "empowering"}

data:{"id": 2, "content": "GPT"}

data:{"id": 3, "content": "applications"}

data:{"id": 4, "content": "!"}

data:{"id": 5, "content": "Happy"}

data:{"id": 6, "content": "chatting"}

data:{"id": 7, "content": "!"}

* Connection #0 to host XXXXXXXXXXXXXXXXXXX.XX.apigw.tencentcs.com left intact

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 53
of 172

HTTP-Triggered Function Request Concurrency

Management
Last updated：2023-09-27 21:00:39

By default, when a function is invoked, SCF will assign a concurrent instance to process the request or event. After the function

code is executed and its response is returned, the instance will process other requests. If all instances are running when a request

arrives, SCF will assign a new concurrent instance. One concurrent instance processes only one event at any time so as to ensure

the processing efficiency and stability of each event.

In most cases, one single concurrent request is the recommended mode, and you don't need to consider how to solve the typical

concurrency problems for processing multiple concurrent requests, such as thread security, blocked invocation, and exception

handling, when writing code.

However, in web applications, typical business scenarios are I/O-intensive, and access to downstream services such as database

or other system APIs in the function takes a long time to wait for the downstream services to respond. Generally, such waits are

iowait and don't consume the CPU resources. In this case, if the multiple concurrent requests feature is enabled, one instance can

process multiple requests to better utilize the CPU resources of the single instance.

Web functions currently support the Enable Multiple Concurrent Requests configuration, which you can enable and configure

according to your business needs. Multiple concurrent requests support two modes: Custom Static Concurrency and Intelligent

Dynamic Concurrency.

1. Log in to the SCF console and select Function Service on the left sidebar.

2. On the "Function Service" list page, select the HTTP-Triggered function that needs to be configured.

3. On the "Function Management" page, select Function Configuration.

4. On the "Function Configuration" page, click "Edit" to enter the editing mode.

5. In "Multiple concurrent requests", check "Enable" to activate the multiple concurrent request mode. In the input box under the

pop-up "Custom concurrency", enter the required concurrency value. See the following figure:

Request Concurrency Overview

Single concurrent request

Multiple concurrent requests

Custom Static Concurrency

When enabled, if there are multiple requests at the same time, requests up to the specified concurrency value will be scheduled

to execute within the same function instance. As concurrency increases, the CPU, memory, and other resources consumed by

the function instance will also increase. It is recommended to set this value reasonably in conjunction with stress testing to

avoid abnormal function execution. The currently supported concurrency range is 2 to 100 concurrent requests.

Intelligent Dynamic Concurrency

When enabled, it intelligently schedules more requests to run within the same function instance, provided the function instance

load allows. This feature will be launched in the future. Stay tuned.

Strengths of Request Concurrency

In I/O-intensive scenarios such as WebSocket persistent connection, the billable execution duration can be shortened to reduce

the costs.

Multiple concurrent requests in the same instance can reuse the database connection pool to relieve the pressure on the

downstream server.

When there are intensive concurrent requests, they only require one instance for processing, with no need to start multiple

instances. This reduces the cold instance starts and response latency.

Instructions

Enabling multiple concurrent requests

https://console.cloud.tencent.com/scf/list

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 54
of 172

6. Click Save.

When multiple concurrent requests are not enabled, a single function instance will only process one request at a time. The next

request will only be processed after the first one is completed. The billing duration of memory time is the sum of the execution

duration of each request, as shown in the following figure:

Upon enabling multiple concurrent requests, a single function instance will process multiple concurrent requests at once. If a

second request comes in before the first one ends, there will be a period where both requests are being processed simultaneously.

During this overlapping period, the time is only calculated once. As illustrated in the following figure:

Other billable items remain unchanged. For more information, see Billing Overview .

Supports and Limits

Billing

Logs

https://cloud.tencent.com/document/product/583/17299

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 55
of 172

Upon enabling multiple concurrent requests, due to the simultaneous processing of multiple concurrent requests, the logs

generated by each request may not correspond one-to-one with the RequestID during stream reporting. In this case, the logger

should be correctly set in the code to print the RequestID into the logs to resolve this issue. The RequestID is obtained from the

X-Scf-Request-Id field in the common request headers received from the Web function (for some frameworks, it is x-scf-request-id).

Multiple concurrent requests increase the probability of OOM. If OOM occurs, the instance will restart. In this case, the abort error

(error code: 434 MemoryLimitReached) will be reported for multiple ongoing requests in the instance. Before setting the maximum

number of concurrent requests, you need to perform stress tests on the function to determine a safe number, so as to avoid the

impact of OOM.

If a request fails to be executed within the configured execution timeout period, it will be stopped, and error code

433 TimeLimitReached will be returned to the client. Other ongoing requests in the instance won't be affected.

After enabling multiple concurrent requests, the "Concurrent Requests" panel will appear on the monitoring page, where you can

intuitively view the concurrent request situation within a specified time period.

When concurrent requests are made to a function that has not been called for a while, the number of concurrent instances

displayed in the "Concurrent Instances and Provisioned Concurrency" panel may exceed 1, even though the number of concurrent

requests has not exceeded the set concurrency value. This is because the function instances recycle resources after a period of

NodeJS Sample Code

let WebSocketServer = require('ws').Server;

let wss = new WebSocketServer({ port: 9000 });

wss.on('connection', function connection(ws) {

 let requestID = ws.upgradeReq.headers['x-scf-request-id'];

 console.log('requestID: %s', requestID);

 ws.on('message', function incoming(message) {

 console.log('requestID: %s', requestID);

 console.log('received: %s', message);

 });

});

Overrun error

OOM

Timed out

Monitoring

Monitoring FAQs

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 56
of 172

inactivity, leading to a cold start when a request is made. To ensure timely response to incoming requests, multiple function

instances are launched concurrently until the first instance can accept requests normally. For regular HTTP requests, after a while,

new requests will be processed on a few function instances, and the remaining instances will gradually go offline after the request

processing is completed, restoring the normal number of concurrent instances in the monitoring. For WebSocket connections, the

number of concurrent instances will remain at the initial launch number until the connection is disconnected. Configuring dynamic

provisioning to avoid cold starts can reduce the likelihood of such issues.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 57
of 172

Log Management

Log Search Guide
Last updated：2023-09-28 15:55:23

SCF upgraded its log service on January 29, 2021 and was fully connected to Tencent Cloud CLS. The functions created before are

gradually migrated by regions. For more information, please see SCF Log Service Change Notification .

SCF provides two log query methods for functions created after January 29, 2021 and the migrated functions:

You can use the advanced search feature in the following steps:

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. From the "Function Service" list page, select the function name for which you need to search logs, and enter the function details

page.

3. Select Log Query > Advanced Search. In the "Advanced Search" page, you can search using keywords or combine keywords

using query syntax. For detailed syntax rules, please refer to Log Search Syntax and Rules .

4. After configuring the search content, click Search Analysis on the right to query the search results.

The following describes how to get and enter relevant SCF parameters for the CLS log search API.

TopicId is the CLS log topic ID where the function logs are delivered. The steps to obtain TopicId are as follows:

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. From the "Function Service" list page, select the function name for which you need to search logs, and enter the function details

page.

3. View "Log configuration" on the "Function Configuration" page, as shown below:

4. Click the link corresponding to Log Topic to navigate to the log service console, where you can obtain the log topic ID, as shown

below:

Operational Overview

Console Search: The Serverless Console incorporates the CLS search and analysis page, supporting keyword search. You can

use query syntax to combine keywords for search on the advanced log search page of the SCF console.

API Search: You can query function call logs by invoking the Search Logs interface of the CLS log service.

Attention

For the log structure written by SCF into CLS, please refer to Log Structure Description .

If your function was created before January 29, 2021 and has not yet been migrated, and you need to use more log

analysis features, please refer to Log Shipping Configuration (Old) to deliver function call logs to the CLS log service.

Query in console

Query via API

TopicId

https://cloud.tencent.com/document/product/583/51773
https://console.cloud.tencent.com/scf/index?rid=1
https://cloud.tencent.com/document/product/614/47044
https://console.cloud.tencent.com/scf/index?rid=1
https://console.cloud.tencent.com/scf/list?rid=1&ns=default
https://cloud.tencent.com/document/product/614/56447
https://cloud.tencent.com/document/product/583/60336
https://cloud.tencent.com/document/product/583/39536

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 58
of 172

Take the function hello-scf in the default namespace as an example:

Take the request 09c346d3-8417-49c5-8569-xxxxxxxxxxxx as an example:

The execution result includes the request start time, execution result, execution duration, memory usage, and log level. Take the

request 09c346d3-8417-49c5-8569-xxxxxxxxxxxx as an example:

Take the request 09c346d3-8417-49c5-8569-xxxxxxxxxxxx as an example:

For instance, with the function name hello-scf , in the namespace default , querying the alias $DEFAULT , and version 1:

Description

You can also obtain TopicId by calling the Get Function Details API to fetch ClsTopicId .

Query

Attention

For the description of each field in the returned results, please refer to Log Structure Description .

SCF invocation logs are reported in real time. If a request exists but its returned value is empty, it may be because that

the function execution has not been completed yet, so the log has not been reported to CLS. Please search again after

the function is executed.

Getting all invocation logs of a function

SCF_Namespace:"default" AND SCF_FunctionName:"hello-scf"

Getting the invocation logs of a request (RequestId)

SCF_RequestId:"09c346d3-8417-49c5-8569-xxxxxxxxxxxx"

Getting the execution result of a request (RequestId)

SCF_RequestId:"09c346d3-8417-49c5-8569-xxxxxxxxxxxx" AND SCF_Type:Platform AND SCF_Message:Report*

Getting the returned value of a request (RequestId)

SCF_RequestId:"09c346d3-8417-49c5-8569-xxxxxxxxxxxx" AND SCF_Type:Platform AND SCF_Message:Response*

Attention

After SCF logs are connected to CLS, returned data will be retained for functions, which will be written to the

SCF_Message field in the format of Response RequestId:xxx RetMsg:xxx in CLS.

The value of SCF_Message is limited to 8 KB in length, and excessive parts will be truncated.

Getting the list of requests for a function over a period of time

https://cloud.tencent.com/document/product/583/18584
https://cloud.tencent.com/document/product/583/60336#.E9.BB.98.E8.AE.A4.E6.A0.BC.E5.BC.8F

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 59
of 172

Get the list of failed requests due to internal errors:

SCF_Type:Platform AND SCF_Message:Report* | select SCF_RequestId as requestId, SCF_RetryNum as

retryNum,SCF_StartTime as startTime where SCF_FunctionName='hello-scf' and SCF_Namespace='default' and

SCF_Qualifier='1' and SCF_Alias:'$DEFAULT' and SCF_StatusCode = 500 order by startTime desc

Get the list of requests that took more than 3 seconds to execute:

SCF_Type:Platform AND SCF_Message:Report* | select SCF_RequestId as requestId, SCF_RetryNum as

retryNum,SCF_StartTime as startTime where SCF_FunctionName='hello-scf' and SCF_Namespace='default' and

SCF_Qualifier='1' and SCF_Alias:'$DEFAULT' and SCF_Duration>3000 order by startTime desc

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 60
of 172

Log Structure Description
Last updated：2023-09-27 21:01:55

SCF logs are written into CLS by log. Each request is logged in multiple logs, and each log is in a fixed key:value format.

In the default format, each log consists of 14 fixed key:value pairs as shown below:

In the simplified format, there are fewer key-value pairs than in the default format, where only the fields required in log query

scenarios are retained. In this format, logs are divided into user logs and platform logs with different specific formats as shown

below:

A user log is a user's standard output in the code, which the platform will capture and report to CLS.

Key-Value Format of Single Log

Default format

Field Field type Description

SCF_FunctionName text Function name.

SCF_Namespace text Function namespace.

SCF_StartTime long Invocation start time.

SCF_LogTime long Log generation time.

SCF_RequestId text Request ID

SCF_Duration long Function running duration (in milliseconds).

SCF_Alias text Alias.

SCF_Qualifier text Version.

SCF_MemUsage double Function runtime memory.

SCF_Level text Log4J log level. Default value: INFO.

SCF_Message text Log content.

SCF_Type text Log type. Platform: platform log, Custom: user log.

SCF_StatusCode long Function running Status Code . 202 indicates that the request is in progress.

SCF_RetryNum long Number of retries.

Simplified format

User log

Field Field type Description

SCF_FunctionName text Function name.

SCF_Namespace text Function namespace.

SCF_LogTime long Log generation time.

SCF_RequestId text Request ID

SCF_Alias text Alias.

SCF_Qualifier text Version.

SCF_Message text Log content.

https://cloud.tencent.com/document/product/583/42611

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 61
of 172

A platform log is the log printed at the start or end of each request. It is used to mark the start and end of a request and record its

execution. Platform logs cannot be canceled.

Platform logs consist of two types of key-value pairs. The key-value pairs for report logs, which record the execution of requests,

are shown in Table 1. The key-value pairs for other platform logs (such as START, END, ERROR, Response) are shown in Table 2.

Table 1

Table 2

SCF_Type text Log type. Platform: platform log, Custom: user log.

SCF_RetryNum long Number of retries.

Platform log

Field Field type Description

SCF_FunctionName text Function name.

SCF_Namespace text Function namespace.

SCF_StartTime long Invocation start time.

SCF_LogTime long Log generation time.

SCF_RequestId text Request ID

SCF_Duration long Function running duration (in milliseconds).

SCF_Alias text Alias.

SCF_Qualifier text Version.

SCF_MemUsage double Function runtime memory.

SCF_Level text Log4J log level. Default value: INFO.

SCF_Message text Log content.

SCF_Type text Log type. Platform: platform log, Custom: user log.

SCF_StatusCode long Function execution status code .

SCF_RetryNum long Number of retries.

Field Field type Description

SCF_FunctionName text Function name.

SCF_Namespace text Function namespace.

SCF_StartTime long Invocation start time.

SCF_LogTime long Log generation time.

SCF_RequestId text Request ID

SCF_Alias text Alias.

SCF_Qualifier text Version.

https://cloud.tencent.com/document/product/583/42611

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 62
of 172

1. Log in to the SCF console and select Function Service on the left sidebar.

2. At the top of the "Function Service" page, select the region and namespace of the function. Click on the name of the function for

which you wish to switch the log format, to enter its details page.

3. On the "Function Management" page, select Function Configuration > Log Configuration > Log Format to choose and switch the

log format. As shown in the figure below:

There are two log structures for one single SCF request: invocation log and provisioning log.

Invocation log structure

SCF invocation logs use platform logs to mark the request start and end, request error message, function return, and request

execution, and user logs are encapsulated between the start and end of the request. The log structure is as follows (the table

only shows the SCF_Message field as an example):

SCF_Message text Log content.

SCF_Type text Log type. Platform: platform log, Custom: user log.

SCF_RetryNum long Number of retries.

Log format selection and switch

Note

The log configuration is at the function level, and the updated configuration will take effect immediately for both the

$LATEST version and published versions.

The Get Function Execution Logs interface does not currently support querying logs in the simplified format. Please

use the CLS Log Search Interface . If you have already used the API to process log key values, please read carefully

about the field adjustments under different log formats before proceeding.

Compared with the default format, the simplified format can reduce the fees incurred by logs, but information such as

execution duration and memory during function execution will no longer be displayed in real time.

The simplified format is only supported for non-image-based event functions.

Log Structure of Single Request

SCF_Message Log Type Description

START

RequestId:09c346d3

-8417-49c5-8569-

xxxxxxxxxxxx

Platform log Request start.

https://console.cloud.tencent.com/scf/index?rid=1
https://cloud.tencent.com/document/product/583/18583
https://cloud.tencent.com/document/product/614/56447

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 63
of 172

Below is the sample code for printing one line of initialization log and one line of invocation log of a web function in the Python

runtime environment:

The output log structure is as follows (only the content of the SCF_Message field is displayed):

init log User log The log content printed by the user during function initialization. The container

will execute the initialization logic only in case of cold start, and no initialization

logs will be output in non-cold start scenarios.

Init Report

RequestId:

09c346d3-8417-

49c5-8569-

xxxxxxxxxxxx

Coldstart: 236ms

(PullCode: 70ms

InitRuntime: 8ms

InitFunction: 158ms)

Memory: 640MB

MemUsage:

57.86MB

Platform log

Initialization execution log, where Coldstart represents the total time consumed

during the initialization phase. PullCode represents the time consumed to pull

user function and layer codes or to pull image during the initialization phase.

InitRuntime represents the platform time consumed during the initialization

phase. InitFunction represents the time consumed by user code execution

during the initialization phase. Memory represents the configured function

memory, and MemUsage represents the memory used during the initialization

phase. The container will execute the initialization logic only in case of cold

start, and no initialization logs will be output in non-cold start scenarios.

invoke log User log The log content printed by the user during function invocation.

ERROR

RequestId:09c346d3

-8417-49c5-8569-

xxxxxxxxxxxx

Result:xxx

Platform log
Function error cause. There will be no ERROR logs when the function is

executed properly.

Response

RequestId:09c346d3

-8417-49c5-8569-

xxxxxxxxxxxx

RetMsg:"Hello

World"

Platform log The function return is recorded in RetMsg .

END

RequestId:09c346d3

-8417-49c5-8569-

xxxxxxxxxxxx

Platform log Request end.

Report

RequestId:09c346d3

-8417-49c5-8569-

c55033b17f51

Duration:1ms

Memory:128MB

MemUsage:29.7343

75MB

Platform log

Function invocation execution log. Duration is the function execution duration,

Memory is the configured function memory size, and MemUsage is the

execution memory size during function execution.

from flask import Flask

app = Flask __name__

print "init log"

@app.route '/'

def hello_world

 return 'Hello World'

if __name__ == '__main__'

 app run host='0.0.0.0' port=9000

()

()

()

():

:

. (,)

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 64
of 172

Provisioning log structure

SCF provisioning logs start by user log printing and end by provisioning marking in platform log. The log structure is as follows

(the table only shows the SCF_Message field as an example):

START RequestId 09c346d3-8417-49c5-8569-xxxxxxxxxxxx

 * Serving Flask app "app" lazy loading

 * Environment production

 WARNING Do not use the development server in a production environment

 Use a production WSGI server instead

 * Debug mode off

 * Running on http //0.0.0.0 9000/ Press CTRL+C to quit

init log

Init Report RequestId 09c346d3-8417-49c5-8569-xxxxxxxxxxxx Coldstart 640ms PullCode 119ms InitRuntime 2ms

InitFunction 519ms Memory 640MB MemUsage 5 21MB

Hello world

Response RequestId 09c346d3-8417-49c5-8569-xxxxxxxxxxxx RetMsg "Hello World"

END RequestId 09c346d3-8417-49c5-8569-xxxxxxxxxxxx

Report RequestId 09c346d3-8417-49c5-8569-xxxxxxxxxxxx Duration 1ms Memory 128MB MemUsage 29 734375MB

:

()

:

: .

.

:

: : ()

: : (: :

:) : : .

: :

:

: : : : .

SCF_Message

L

o

g

T

y

p

e

Description

provision log

U

s

e

r

l

o

g

The log content printed by the user during function initialization, which will be recorded

in a log in instance provisioning scenarios.

ERROR

RequestId:09c346d3-

8417-49c5-8569-

xxxxxxxxxxxx

Result:xxx

P

l

a

t

f

o

r

m

l

o

g

Cause of an instance provisioning failure. There will be no ERROR logs if instance

provisioning succeeds.

Provisioned Report

RequestId: c6af0fb4-

1c07-4a92-8307-

xxxxxxxxxxxx Coldstart:

640ms (PullCode: 119ms

InitRuntime: 2ms

InitFunction: 519ms)

Memory: 640MB

MemUsage: 5.14MB

P

l

a

t

f

o

r

m

l

Provisioning instance execution log, where Coldstart represents the total time

consumed by the provisioning instance. PullCode represents the time consumed in

pulling user function and layer codes or pulling image during the provisioning process.

InitRuntime represents the platform time consumed during the provisioning process.

InitFunction represents the user code execution time consumed during the provisioning

process. Memory represents the configured function memory, and MemUsage

represents the memory used during the provisioning stage. This log is only output in

provisioning scenarios.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 65
of 172

Below is the sample code for printing one line of initialization log and one line of invocation log of a web function in the Python

runtime environment:

The output log structure in instance provisioning scenarios is as follows (only the content of the SCF_Message field is

displayed):

o

g

from flask import Flask

app = Flask __name__

print "init log"

@app.route '/'

def hello_world

 return 'Hello World'

if __name__ == '__main__'

 app run host='0.0.0.0' port=9000

()

()

()

():

:

. (,)

* Serving Flask app "app" lazy loading

* Environment production

WARNING Do not use the development server in a production environment

Use a production WSGI server instead

* Debug mode off

* Running on http //0.0.0.0 9000/ Press CTRL+C to quit

init log

Previsioned Report RequestId 09c346d3-8417-49c5-8569-xxxxxxxxxxxx Coldstart 640ms PullCode 119ms InitRuntime

2ms InitFunction 519ms Memory 640MB MemUsage 5 21MB

()

:

: .

.

:

: : ()

: : (: :

:) : : .

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 66
of 172

Log Delivery Configuration
Last updated：2023-09-27 21:06:18

SCF was fully connected to Tencent Cloud CLS starting from January 29, 2021. After then, the invocation logs of newly created

functions will be delivered to CLS, and logs can be output in real time. The existing functions are gradually migrated by regions. For

more information, see SCF Log Service Change Notification .

This document describes the two log delivery methods of default delivery and custom delivery provided by SCF and how to

configure them.

To view the logs normally, please ensure that the sub-account at least has the read-only permission of CLS

QcloudCLSReadOnlyAccess . For how the root account grant permissions for the sub-account, see Authorization Management .

Delivering function invocation logs to CLS has the following limits:

For other limits, see CLS Specification Description . Pay attention to whether the CLS configuration can meet your business needs.

Exceeding the limits may cause log write failures.

1. Log in to the Serverless console and select Function Service from the left sidebar.

2. Select the region and namespace where to create a function at the top of the page and click Create to enter the function

creation process.

3. In "Log configuration", select "Default", as shown below:

Description

If your function was created before January 29, 2021 and has not been migrated, but you want to use more log analysis

features, deliver function invocation logs to CLS as instructed in Log Delivery Configuration (Legacy) .

Permission Description

Use Limits

The maximum amount of logs printed within 5 seconds for each request is 1 MB.

The maximum number of logs printed within 5 seconds for each request is 5000.

The maximum length of each log is 8 KB, and excessive parts will be discarded.

Procedure

Default delivery

When creating a function, if you don't specify the destination topic for log delivery, the default log delivery capability will be used. For

default log delivery, SCF will activate the CLS service for you and deliver the function invocation logs to the log topic under the SCF-

specific logset. The SCF-specific logset and log topic are prefixed with SCF_logset and SCF_logtopic respectively, and will be

created automatically if they do not exist. Function invocation logs will be retained for 7 days by default, and you can view and

manage them on the CLS console .

Description

CLS is billed separately, and the SCF-specific log topic will consume the free tier of CLS. For more information, please

see Billing Overview .

To ensure the normal display of logs in the SCF console, the SCF-specific log topic does not support modification of

index configurations. If you need to customize the log index configuration, please refer to the following section on

customizing the delivery configuration of function log topics.

Configuring CLS

https://cloud.tencent.com/document/product/614
https://cloud.tencent.com/document/product/583/51773
https://cloud.tencent.com/document/product/598/10602
https://cloud.tencent.com/document/product/614/17413
https://console.cloud.tencent.com/scf/list
https://cloud.tencent.com/document/product/583/39536
https://console.cloud.tencent.com/cls/logset
https://cloud.tencent.com/document/product/614/45802

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 67
of 172

4. Click Finish to create the function and complete the default log delivery. You can view the log configuration in Function

Management > Function Configuration, as shown below:

You can click on the logset ID in "Log Configuration" to go to the Log Service Console to view and manage logs. The SCF dedicated

logset is marked with SCF in the Log Service Console. If you need to persistently store, deliver or consume logs, or monitor and

alert log content, you can complete the configuration in the Log Service Console.

Log in to the Log Service Console and Create Log Topic . This document uses the creation of the SCF-test log topic in Guangzhou

as an example. As shown in the figure below:

1. Log in to the Serverless console and select Function Service from the left sidebar.

Viewing and managing logs

Custom delivery

When creating a function, if you need to specify the destination log topic to deliver function invocation logs, you can use the custom

log delivery capability. Before using this capability, you should make sure that the CLS service has been activated.

Creating logset and log topic

Note

For the logset region, please select the region where the SCF service is located. Cross-region log push is not supported

currently.

Configuring CLS

https://console.cloud.tencent.com/cls/logset
https://console.cloud.tencent.com/cls
https://cloud.tencent.com/document/product/614/34340#3.-.E5.88.9B.E5.BB.BA.E6.97.A5.E5.BF.97.E9.9B.86.E5.92.8C.E6.97.A5.E5.BF.97.E4.B8.BB.E9.A2.98
https://console.cloud.tencent.com/scf/list
https://cloud.tencent.com/product/cls

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 68
of 172

2. Select the region where to create a function at the top of the page and click Create to enter the function creation process.

3. In "Log configuration", select "Custom" and choose the log topic that has been created for this function, this document uses

SCF-test as an example. As shown in the figure below:

4. Click Confirm.

Log search depends on the index configuration of the log topic. SCF will automatically complete the index configuration when you

create a function. If the index is exceptional and logs cannot be viewed properly, please configure the index in the following steps:

1. Log in to the Serverless console and select Function Service from the left sidebar.

2. On the Function Service list page, select the name of the function whose index is abnormal to enter the Function Management

page.

3. In the "Log Query" tab, select "Index Configuration" under "Advanced retrieval". As shown in the figure below:

4. In the "Index Configuration" page, enable "Index Status" and "Key-Value Index". As shown in the figure below:

Index configuration

https://console.cloud.tencent.com/scf/list

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 69
of 172

This configuration method is only effective for scenarios where there are function call logs in the log topic. If there are no

function call logs in the log topic, please refer to the following table to manually configure Key-Value Index.

Field Field Type Description

SCF_FunctionName text Function name.

SCF_Namespace text Function namespace.

SCF_StartTime long Invocation start time.

SCF_LogTime long Log generation time.

SCF_RequestId text Request ID.

SCF_Duration long Function execution duration.

SCF_Alias text Alias.

SCF_Qualifier text Version.

SCF_MemUsage double Function runtime memory.

SCF_Level text Log4J log level. Default value: INFO.

SCF_Message text Log content.

SCF_Type text Log type. Platform: platform log, Custom: user log.

SCF_StatusCode long Function execution status code .

SCF_RetryNum long Number of retries.

https://cloud.tencent.com/document/product/583/42611

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 70
of 172

To ensure the display effect of the logs in the SCF console, toggle on Enable Statistics for the field in the key-value index

configuration:

5. After configuring the index, click OK.

Log Delivery Configuration (Legacy)

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 71
of 172

Last updated：2023-09-27 21:09:22

When using SCF for function computing, a large number of function operation logs will be generated. If you need to persistently

store, deliver, or consume logs, and monitor and alert on log content, you can deliver logs to the Tencent Cloud Log Service (CLS)

platform. As shown in the following figure:

Before using the SCF real-time log service, you need to activate CLS first.

Log in to the Log Service Console and Create a Log Topic . This document uses the creation of the SCF-test log topic in

Guangzhou as an example.

1. Log in to the Serverless console and select Function Service from the left sidebar.

2. Select the SCF region and namespace at the top of the page and click the function name in the list for which to collect logs in

real time.

3. On the "Function Configuration" page, click Edit in the upper right corner. As shown below:

Description

Starting from January 29, 2021, SCF has been fully integrated with Tencent Cloud Log Service CLS . Function call logs

created after this date will be delivered to CLS by default and support real-time output. If your function was created before

January 29, 2021, and you need to perform log retrieval and delivery, please refer to this document to use this feature.

Overview

Prerequisites

Description

For understanding the related limitations of the log service, please refer to the Specifications . Exceeding these limitations

may result in log loss.

Procedure

Creating log topics

Attention

For the logset region, please select the region where the SCF service is located. Cross-region log push is not supported

currently.

Configuring CLS

https://cloud.tencent.com/product/cls
https://console.cloud.tencent.com/cls
https://cloud.tencent.com/document/product/614/34340#3.-.E5.88.9B.E5.BB.BA.E6.97.A5.E5.BF.97.E9.9B.86.E5.92.8C.E6.97.A5.E5.BF.97.E4.B8.BB.E9.A2.98
https://console.cloud.tencent.com/scf/list
https://cloud.tencent.com/document/product/614
https://cloud.tencent.com/document/product/614/17413

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 72
of 172

4. In "Log Delivery", check "Enable" and select the logset and log topic that have been created for this function. In this example, we

use SCF-test . As shown below:

5. Click Save to successfully connect to the log service platform.

Log retrieval depends on the index configuration of the log topic. After the function is associated with the log topic, SCF

automatically configures the index for the log topic. If an index anomaly still causes log retrieval to fail, please refer to this step to

adjust the index configuration.

1. Log in to the log service console and select Log Topic from the left navigation bar.

2. Click on the ID of the created log topic to enter the "Basic Information" page.

3. Select Manage on the right side of the row where the log topic is located to enter the "Basic Information" page of the log topic.

4. On the "Basic Information" page of the log topic, click Index Configuration. As shown below:

Enabling index

https://console.cloud.tencent.com/cls/logset

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 73
of 172

5. Click Edit in the upper right corner, turn on "Key-Value Index" and add "Field Name" and "Field Type" according to the table

below.

Description

For functions configured with log service, to ensure the display effect of logs in the SCF console, please enable the "Open

Statistics" capability for fields in the Key-Value Index configuration. As shown below:

Field Field Type Description

SCF_FunctionName text Function name.

SCF_Namespace text Function namespace.

SCF_StartTime long Invocation start time.

SCF_LogTime long Log generation time.

SCF_RequestId text Request ID.

SCF_Duration long Function execution duration.

SCF_Alias text Alias.

SCF_Qualifier text Version.

SCF_MemUsage double Function runtime memory.

SCF_Level text Log4J log level. Default value: INFO.

SCF_Message text Log content.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 74
of 172

For more information on other features such as real-time log search, delivery, and consumption, please see the CLS

documentation . These features can be used in the CLS console directly.

SCF_Type text Log type. Platform: platform log, Custom: user log.

SCF_StatusCode long Function execution status code .

SCF_RetryNum long Number of retries.

https://cloud.tencent.com/document/product/614
https://console.cloud.tencent.com/cls
https://cloud.tencent.com/document/product/583/42611

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 75
of 172

Concurrence Management

Concurrency Overview
Last updated：2023-09-28 14:53:07

Concurrency refers to the number of requests that can be processed by a function concurrently at a moment. If it can be sustained

by other services of your business, you can increase the function concurrency from several to tens of thousands with simple

configuration.

When a function is invoked, SCF will assign a concurrent instance to process the request or event. After the function code is

executed and its response is returned, the instance will process other requests. If all instances are running when a request arrives,

SCF will assign a new concurrent instance.

SCF follows the execution logic that one concurrent instance processes only one event at any time so as to ensure the processing

efficiency and stability of each event.

Async events enter a queue on SCF, where they will be processed in a FIFO manner. The system will select an appropriate

concurrency processing method based on the conditions such as queue length and current number of concurrent instances of the

function to pull sufficient concurrent instances and process the events in sequence.

If an async invocation fails, SCF will retry according to certain rules. For more information, please see Error Types and Retry

Policies .

When sync events arrive, SCF checks for idle concurrent instances. If yes, the events are immediately sent to idle instances;

otherwise, new concurrent instances are started to process them.

When a sync invocation fails, you need to retry on your own.

SCF concurrency refers to the number of requests or invocations processed by the function code at a time, which can be estimated

according to the following formula:

Concurrency = Request rate × Function execution time = Requests per second × Average time per request

You can view the average time per request in the "Execution Time" section of the monitoring information.

For instance, if a service has a QPS of 2000 and the average time per request is 0.02s, the concurrency at any given moment is

2000qps × 0.02s = 40.

After a concurrent instance processes a request event, it will not be repossessed immediately; instead, it will be retained for a

certain period of time for reuse. During the retention duration, if there are new request events that need to be processed, the

retained concurrent instance will be used first, so the events can be processed quickly with no need to start new concurrent

instances.

After the retention duration elapses, if there are no requests that need to be processed by the instance, the SCF platform will

repossess it. For low concurrency scenarios, no retention duration is set, and the platform will enable the smart repossession

mechanism for resource repossession.

The concurrent instance retention duration is dynamically adjusted by the SCF platform as needed; therefore, you cannot assume a

certain retention duration when writing the function business code.

When a request arrives, but no concurrent instance for that version is available, a new concurrent instance is automatically

launched and initialized for it. This is called elastic concurrency scale-out, and its speed limit is called function burst.

The default upper limit of scale-out speed (function burst) per region under each account is 500 instances/minute, that is, up to 500

new concurrent instances can be started in one minute for all functions in this region. If the limit is hit in one minute, no more new

How Concurrency Works

Concurrent processing for async invocations

Concurrent processing for sync invocations

Concurrency calculation

Concurrent Instance Reuse and Repossession

Concurrency expansion

https://cloud.tencent.com/document/product/583/41138#.E5.BC.82.E6.AD.A5.E8.B0.83.E7.94.A8

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 76
of 172

instances will be started until the minute elapses, during which a over-limit error (429 ResourceLimit) occurs if new scale-out

requests are initiated. For more information, see Function Status Code .

For example, the concurrency quota of an account in the Guangzhou region is 1,000 concurrent instances by default for a 128 MB

function, and if many requests arrive, 500 concurrent instances can be started from 0 in the first minute. If there are still other

requests to be processed, 500 more concurrent instances can be started to reach 1,000 instances in total in the second minute,

until the number of concurrent instances is sufficient for the requests or reaches the upper limit.

Currently, the function burst of 500 instances/minute can meet the requirements in most business scenarios. If your business is

limited by this scale-out speed, or you need to add namespace-level function burst management capabilities, you can select

provisioned concurrency for prefetch or purchase a function package to increase the limit.

The concurrent instances of the SCF platform need to go through an initialization process during elastic scale-out, including the

initialization of the runtime environment and business code. You can use the provisioned concurrency feature to pre-configure

concurrent instances. The SCF platform will start launching concurrent instances as soon as you configure them, and it will not

actively reclaim provisioned instances, ensuring as many concurrent instances as possible. If a concurrent instance encounters

errors such as memory leaks in the code, the SCF platform will replace it with a new instance. For more information, see

Provisioned Concurrency .

At the region level, the function burst is limited to 500 concurrent instances/minute by default. For example, if you need 50,000

concurrent instances, it will take 50000/500 = 100 minutes to complete the scale-out at the maximum function burst speed. If you

need to increase function burst, you can directly purchase a function package . SCF will adjust the provisioned burst based on your

business, which is 100 concurrent instances/minute by default.

SCF provides concurrency management capabilities at the function granularity by default for you to flexibly control the concurrency

of different functions. Each account has a limit on the quota of total concurrent functions in different regions as detailed below. If

you want to increase the quotas or add concurrency quota management capabilities at the namespace granularity, you can directly

purchase a function package .

SCF provides concurrency management capabilities at the function granularity. For more information, see Concurrency

Management System .

Provisioned concurrency

Concurrency service level

Limit on Concurrency Scale-out

Limit on Concurrency Scale-

out
Default Limit Additional Quota Available for Application

Elastic concurrency scale-out

speed limit (function burst)

500

concurrent

instances/min

ute

Concurrency scale-out speed at the 10,000 concurrent

instances/minute level is supported, which you can get by purchasing a

function package.

Provisioned concurrency

scale-out speed limit

(provisioned burst)

100

concurrent

instances/min

ute

The speed of starting provisioned concurrency can be automatically

adjusted according to business conditions.

Concurrent function quota

Concurrent

function quota

Region
Default

Quota

Additional Quota Available for

Application

Guangzhou, Shanghai, Beijing, Chengdu, and

Hong Kong (China)
128,000MB

At the one million MB level, which can

be increased by purchasing a function

package
Mumbai, Singapore, Tokyo, Toronto, Silicon

Valley, Frankfurt, Shenzhen Finance, and

Shanghai Finance

64,000MB

Concurrency Management

https://cloud.tencent.com/document/product/583/42611
https://console.cloud.tencent.com/scf/buy?rid=1&ns=default
https://cloud.tencent.com/document/product/583/46743
https://console.cloud.tencent.com/scf/buy?rid=1&ns=default
https://console.cloud.tencent.com/scf/buy?rid=1&ns=default
https://cloud.tencent.com/document/product/583/49313

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 77
of 172

To help you manage concurrency more precisely, the SCF concurrency quota is calculated by memory; for example, a 256 MB

concurrency quota represents one concurrent instance with 256 MB memory or two instances with 128 MB memory each.

What a reserved quota does:

When a concurrent instance of a function is processing actual requests, it will be marked as running concurrent instance. In SCF

monitoring information, you can query the running concurrent instances of a function, a specific function version, or an alias. As

there are certain intervals in running instance information collection, if a function's execution time is very short and its number of

concurrent instances is high, the current monitoring data may not be completely accurate.

By using reserved quota and provisioned concurrency together, you can flexibly allocate resources among multiple functions and

warm up functions as needed.

If nothing is configured, all functions share the account quota by default. If a function generates a surge of business invocations, it

can make full use of the unused quota to ensure that the surge will not cause overrun errors.

For functions used for key business, a high request success rate is required. We can set up the reserved quota to allocate

dedicated resources for the function, so as to guarantee the concurrency reliability and avoid overruns caused by concurrency

preemption by multiple functions.

If a function is sensitive to cold start, the code initialization process takes a long time, or many libraries need to be loaded, then you

can set the provisioned concurrency for a specific function version to start function instances in advance and ensure smooth

execution.

Concurrent memory and concurrency

Reserved quota

The reserved quota is the upper limit of the concurrency quota for this function, and the sum of the concurrency quotas for all

versions should be less than or equal to the reserved quota.

After the concurrency quota is allocated to this function, it will be exclusive to this function and will no longer be provided to

other functions.

Concurrency monitoring

Use case

Shared quota

Guaranteed concurrency

Provisioned concurrency

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 78
of 172

Concurrency Management System
Last updated：2023-09-28 15:59:49

The SCF platform provides concurrency management capabilities at the function granularity to allow you to flexibly control the

concurrency of different functions.

SCF supports account-level concurrency quota and function-level reserved concurrency quota.

Each account has a total concurrency quota limit at the region level. The default value is 128,000 MB or 64,000 MB. For more

information, please see Quota Limits . The concurrency quotas between regions are independent of each other and don't affect

each other.

By default, the account-level concurrency quota is shared by all functions in the current region. This means that at any specific

time point, the sum of actual concurrently running instances of all functions can reach up to the concurrency quota of the account.

Requests exceeding the concurrency quota will encounter the overrun error (432 ResourceLimitReached). You can purchase extra

packages to increase the account-level quota.

You can utilize the Reserved Concurrency Quota of a function to allocate the region-level concurrency to a specific function,

thereby managing the function's concurrency. To prevent functions without a set reserved concurrency quota from being unable to

be invoked after all account-level quotas have been allocated, the SCF platform reserves 12,800MB of the account-level

Concurrency Management

Account-Level concurrency quota

 |- Function-Level reserved quota

Note

Provisioned concurrency is not included in the concurrency management capabilities; instead, it only serves as the ability to

start instances in advance. Versions under the same function share the concurrency of the function.

Account-Level concurrency quota

https://cloud.tencent.com/document/product/583/11637
https://cloud.tencent.com/document/product/583/71468
https://cloud.tencent.com/document/product/583/46743

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 79
of 172

concurrency quota as unassignable and exclusively for functions without configured reservations. As shown in the following figure:

The Reserved Concurrency Quota is a concurrency management capability at the function level. When you set a reserved

concurrency quota for a function, it will have the following two effects:

The reserved quota is the upper limit of the function concurrency quota. You can use this capability to manage the function

concurrency and control the costs so as to avoid out-of-control costs. At the same time, you can also disable a function by setting

its reserved quota to 0. Then, all requests for this function will encounter the concurrency overrun error.

Setting the function reserved quota will occupy the concurrency quota at the region level. If the unoccupied quota at the region

level (region-level quota - reserved quotas allocated to other functions - 12,800 MB) is insufficient, it cannot be set.

Follow the steps below to set the desired reserved quota for the function.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. From the "Function Service" list page, select the function name that needs to be configured and proceed to the "Function

Management" page.

3. Select Concurrency Quota on the left, and in "Reserved Quota", click Set in the upper right corner.

4. In the pop-up "Set function-level reserved concurrency quota" window, configure the desired reserved quota and click Submit.

As shown below:

Reserved quota

The reserved quota is the upper limit of the concurrency quota of this function. The sum of the concurrency quotas of all

versions is less than or equal to the reserved quota.

After the concurrency quota is allocated to this function, it will be exclusive to this function and will no longer be provided to

other functions.

Configures the reserved quota

https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 80
of 172

After setting, you can view the configuration status in the "Reserved Quota" page of the "Concurrency Management" page.

When you no longer plan to use the maximum reserved quota, you can delete it. After deleting the maximum reserved quota, the

function will share the concurrency limit of the account dimension with other functions.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. From the "Function Service" list page, select the function name that needs to be configured and proceed to the "Function

Management" page.

3. Select Concurrency Quota on the left, and in "Maximum Reserved Quota", click Delete on the right of the page.

4. In the pop-up window "Delete Function's Maximum Reserved Quota", click Confirm.

Deleting maximum dedicated quota

Note

Deleting the reserved quota and setting the it to 0 are different configurations.

Deleting the maximum reserved quota: The function does not have an exclusive quota and uses the shared quota in the

region. The upper limit is determined by the usage of the shared quota.

Reserved quota set to 0: The function has an exclusive quota of 0, the function's concurrency limit is 0, the function

cannot run, and it stops responding to trigger events.

https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 81
of 172

Provisioned Concurrency
Last updated：2023-09-28 16:02:34

Provisioned concurrency can start concurrent instances in advance according to the configuration. SCF will not repossess these

instances; instead, it will ensure as much as possible that a corresponding number of concurrent instances are available to process

requests.

You can use this feature to set the quota of provisioned concurrent instances for a specified function version, so as to prepare

computing resources in advance and reduce the duration for cold start and initialization of runtime environment and business code.

Provisioned concurrency addresses the problem of concurrent instance initialization when requests are received at the version

level. After you configure provisioned concurrency for a function version, the following effects will be achieved:

1. SCF will immediately start concurrent instances until the configured value is reached.

2. SCF will not repossess provisioned concurrent instances, and it will guarantee a number of provisioned concurrent instances as

much as possible.

The speed of launching instances for provisioned concurrency defaults to 100 instances per minute. This has nothing to do with the

speed for launching instances for elastic invocation. It does not count toward the quota of 500 concurrent instances/minute at the

region level.

SCF will not actively reclaim provisioned concurrent instances, but instances may become unavailable due to process termination

or memory overflow. Once an instance becomes unavailable, SCF will reclaim it and prepare a new concurrent instance to meet the

provisioned concurrency configuration. During this period, the actual number of concurrent instances may temporarily be less than

the provisioned concurrency. Unstarted concurrent instances will not be included in the billing scope. You can view the provisioned

concurrency startup situation in the "Concurrent Executions and Provisioned Concurrency" chart in the function's monitoring

information.

Provisioned concurrency can only be configured on published versions and cannot be configured on the $LATEST version. The

$LATEST version is editable, while provisioned concurrency requires concurrent instances to be launched before requests arrive.

To ensure business stability and avoid inconsistencies due to code and configuration edits, provisioned concurrency can only be

configured on published versions. The code and configuration of published versions cannot be modified, making them suitable for

production environments. For more details, please refer to Version Management .

Setting up the provisioned concurrency can speed up function initialization. However, the provisioned concurrency has nothing to

do with the concurrency capability. It does not affect the maximum number of concurrent requests a function can process, which

depends entirely on the function's reserved quota or region-level concurrency quota.

Take a function version with a configured memory of 128 MB as an example:

Overview

Provisioned Concurrency and Concurrency Management

Scenario
Average

concurrency

Provisio

ned

concurr

ency

Function

reserved

quota

Result

Default

condition

100

concurrent

instances

Not

configur

ed

Not

configured

All concurrent instances need to be initialized when they

process requests for the first time. The concurrency quota

of the function is affected by other functions under the

same account and may be exceeded.

Function

disablement

100

concurrent

instances

Not

configur

ed

0 MB (0

concurrent

instances)

The reserved quota is 0, the function is disabled, and all

requests will get an overrun error.

No provisioned

concurrency

required

100

concurrent

instances

Not

configur

ed

19,200 MB

(150

concurrent

instances)

All concurrent instances need to be initialized when they

process requests for the first time. 150 concurrent

instances can be guaranteed, and an overrun error will

occur if this limit is exceeded.

80%

provisioning

100

concurrent

10,240

MB (80

19,200 MB

(150

80 concurrent instances don't need to be initialized, and 20

concurrent instances need to be initialized when they are

https://cloud.tencent.com/document/product/583/43760

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 82
of 172

The concurrency management system (region-level concurrency quota and function-level reserved quota) is responsible for

processing requests concurrently, while provisioned concurrency is responsible for ensuring that there are concurrent instances

available to process requests. The decoupling of the two can implement capabilities such as traffic switch with no initialization

process .

The configured provisioned concurrency quota is subject to the account-level quota; in other words, the total provisioned

concurrency quotas of all versions of all functions in a region is less than or equal to the concurrency quota at the account level.

For a published function version, you can set a desired number of provisioned concurrent instances.

1. Log in to the Serverless console and click Function Service on the left navigation bar.

2. On the "Function Service" list page, click the target function name to enter the "Function Management" page.

3. Select Concurrency Quota on the left, and in the "Provisioned Concurrency" page, click Add Provisioned Concurrency.

4. In the pop-up "Add Function Provisioned Concurrency" window, select the desired version and the number of provisioned

concurrencies, then click Submit.

After the settings are complete, you can view the configuration status in "Provisioned Concurrency". The SCF backend will take

some time to complete the expansion of provisioned concurrency, and the number of prepared concurrent instances and

completion status will be displayed in the list.

After the SCF backend adds the provisioned concurrent instances, you can modify the number of concurrent instances as needed.

1. Log in to the Serverless console and click Function Service on the left navigation bar.

2. On the "Function Service" list page, click the target function name to enter the "Function Management" page.

3. Select Concurrency Quota on the left, and in the "Provisioned Concurrency" page, click Settings on the right of the row of the

version to be updated.

instances concurr

ent

instance

s)

concurrent

instances)

invoked for the first time. 150 concurrent instances can be

guaranteed, and an overrun error will occur if this limit is

exceeded.

100%

provisioning

100

concurrent

instances

12,800

MB (100

concurr

ent

instance

s)

19,200 MB

(150

concurrent

instances)

100 concurrent instances don't need to be initialized, and

excessive concurrent instances need to be initialized when

they are invoked for the first time. 150 concurrent instances

can be guaranteed, and an overrun error will occur if this

limit is exceeded.

Full

provisioning

100

concurrent

instances

19,200

MB (150

concurr

ent

instance

s)

19,200 MB

(150

concurrent

instances)

All concurrent instances don't need to be initialized. 150

concurrent instances can be guaranteed, and an overrun

error will occur if this limit is exceeded.

Overprovisionin

g

100

concurrent

instances

25,600

MB (200

concurr

ent

instance

s)

19,200 MB

(150

concurrent

instances)

It is the same as full provisioning except that it incurs

additional fees for 50 more provisioned concurrent

instances.

Provisioned Concurrency Limits

Procedure

Adding provisioned concurrency

Note

Provisioned concurrency can be set for a function version only after the version is published .

Updating provisioned concurrency

https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/15371#.E6.93.8D.E4.BD.9C.E6.AD.A5.E9.AA.A4

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 83
of 172

4. In the pop-up "Set Function Provisioned Concurrency" window, update the settings and click Submit.

After the settings are complete, the SCF platform will, based on your modifications, increase or decrease the number of

concurrent instances within a certain period of time.

If you no longer use a provisioned concurrency configuration, you can delete it.

1. Log in to the Serverless console and click Function Service on the left navigation bar.

2. On the "Function Service" list page, click the target function name to enter the "Function Management" page.

3. Select Concurrency Quota on the left, and in the "Provisioned Concurrency" page, click Delete on the right of the row of the

target version.

4. In the pop-up "Delete Function Provisioned Concurrency Quota" window, click Confirm.

After the configuration is deleted, the SCF backend will gradually reclaim the concurrent instances.

You can set the reserved quota for a function based on the volume of concurrent business requests and configure the provisioned

concurrency based on the traffic switch needs as instructed below:

1. Publish a new version.

2. Set the desired provisioned value for the new version.

3. Wait for the provisioned concurrent instances of the new version to be started completely.

4. Gradually switch the traffic from the previous version to the new version through traffic routing configuration . If a problem

occurs, switch the traffic back to the previous version.

5. Switch the traffic completely to the new version and delete the provisioned concurrency of the old version if nothing goes wrong

after a period of time.

In the example below, the reserved quota of the function is 150 concurrent instances, which means the function can concurrently

process up to 150 requests. You can set 100 provisioned concurrent instances for multiple versions (100 instances are started for

each version), so as to switch the traffic with no initialization needed.

As shown in the figure below, 100 provisioned concurrent instances is configured for both version 4 and version 5, and you can use

the traffic grayscale capability to switch the 100 concurrent instances of the business from version 4 to version 5. No matter how

the 100 concurrent instances are allocated to versions 4 and 5 according to any proportion, no instances will need to be initialized,

thus making it easier for you to publish a version and switch traffic more quickly.

Deletes provisioned concurrency

Relevant Operations

Utilizing Provisioned Concurrency for Traffic Switching

Scenario

Average

concurren

cy

Provisio

ned

concurr

ency

Function

reserved quota
Result

100%

provisio

ning

100

concurren

t

instances

12,800

MB (100

concurr

ent

instance

s)

19,200 MB (150

concurrent

instances)

100 concurrent instances don't need to be initialized, and

excessive concurrent instances need to be initialized when they

are invoked for the first time. 150 concurrent instances can be

guaranteed, and an overrun error will occur if this limit is

exceeded.

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/43716

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 84
of 172

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 85
of 172

Scheduled Provisioned Concurrency
Last updated：2023-09-28 16:02:43

Scheduled provisioned concurrency is an elastic policy for provisioned concurrency . You can reasonably configure provisioned

concurrency based on the business conditions and upgrade/downgrade it at specified times to improve the utilization of provisioned

concurrent instances and reduce the fees incurred by idle resources. If the number of concurrent instances actually required by a

function exceeds that configured in scheduled provisioned concurrency, auto scaling will be performed as needed. This feature

supports the following task types: one time, daily, Monday to Friday, Saturday and Sunday, and custom.

The scheduled provisioned concurrency is set as the target value for a specific time period. For instance, if you need to set four

scheduled tasks according to business requirements, such as setting 30 concurrent instances at 6:00, 80 concurrent instances at

10:00, 40 concurrent instances at 18:00, and 0 concurrent instances at 24:00, the final fluctuation of provisioned concurrency would

be as follows:

To start a scheduled provisioned concurrency task at 12:00 on November 13, 2021 to sustain your business traffic peak and end the

task at 16:00 on the same day, perform the following operations:

Overview

Applicable Scenario

Functions with regularly fluctuating traffic, such as data processing functions.

Functions whose business traffic peaks can be predicted, such as functions for events or other scheduled businesses.

Features and Limits

Description

A cron expression for scheduled provisioned concurrency has seven required fields separated with spaces. For more

information, see Timer Trigger Description .

There is a limit to the number of scheduled provisioned concurrency tasks under one user account on one function version. For

more information, see Quota Limits . To increase the maximum number of scheduled tasks (i.e., quota limit), you can submit a

ticket for application.

SCF will adjust the speed of starting provisioned concurrency based on your business, which is 100 concurrent instances per

minute by default. You should reasonably configure the start time of scheduled provisioned concurrency. For more information,

see Concurrency Overview .

If two scheduled provisioned concurrency tasks are scheduled for the same time, the new one will overwrite the old one.

Scenario Example

Starting scheduled task

https://cloud.tencent.com/document/product/583/46743
https://cloud.tencent.com/document/product/583/9708
https://cloud.tencent.com/document/product/583/11637#.E9.85.8D.E9.A2.9D.E9.99.90.E5.88.B6
https://console.cloud.tencent.com/workorder/category
https://cloud.tencent.com/document/product/583/45757#.E5.B9.B6.E5.8F.91.E6.9C.8D.E5.8A.A1.E6.89.BF.E8.AF.BA

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 86
of 172

To schedule a provisioned concurrency task, you need to create a new scheduled task, select the start time, and set the

provisioned concurrency to the target value. The specific operations are as follows:

To schedule the termination of a provisioned concurrency task, you need to add an additional scheduled provisioned concurrency

task, select the end time, and change the provisioned setting value to 0. The specific operations are as follows:

Ending scheduled task

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 87
of 172

Dynamic Provisioned Concurrency Metric
Last updated：2023-09-28 16:02:50

Dynamic provisioned concurrency metric is an elastic policy for provisioned concurrency . SCF will periodically collect information

about actual concurrent function executions and control the dynamic scaling of the provisioned concurrency feature based on the

configured metrics of maximum concurrency, minimum concurrency, and target concurrency usage. This makes the number of

provisioned concurrent function instances closer to the actual resource usage, improves the usage of provisioned concurrent

instances, and reduces the fees incurred by idle resources. If the number of concurrent instances actually required by a function

exceeds that configured dynamic provisioned concurrency metric, auto scaling will be performed as needed.

When the dynamic provisioned concurrency metric is configured, scaling will be performed according to the configured dynamic

policy. If the metrics of minimum concurrency, maximum concurrency, and concurrency usage are set, the system will guarantee

the minimum concurrency of provisioned resources, and the provisioned concurrency will be dynamically scaled between the

minimum and maximum values.

Scaling policy

Overview

Applicable Scenario

Businesses that are sensitive to idle provisioned concurrency fees.

Functions that are sensitive to cold start with unpredictable business traffic peaks.

Implementation Principle

Scale-out: As the actual request volume of the business continues to increase, the system begins to scale out when the scale-

out threshold is triggered. The scale-out operation stops when the maximum concurrency limit is reached. Requests exceeding

this part will be scaled out in a pay-as-you-go mode.

Scale-out frequency: A scale-out operation is performed every 10 seconds, and there is no window time for scale-out.

Scale-in: As the actual request volume of the business continues to decrease, the system begins to scale in when the scale-in

threshold is triggered. The scale-in operation stops when the minimum concurrency limit is reached.

Scale-in frequency: During scale-in, a relatively conservative scale-in process is implemented through a 10-minute window

time. That is, after performing a dynamic scaling operation, no further scale-in operation will be performed within the window

time. This can be understood as a cooldown period similar to waiting to use a skill. If no scaling operation has been performed

before, a scale-in operation can be performed in 10 seconds.

https://cloud.tencent.com/document/product/583/46743

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 88
of 172

Provisioned Target Value

The provisioned target value is determined by the current concurrency and the target concurrency utilization metric.

Concurrency Utilization

Concurrency utilization of a function refers to the proportion of the concurrent value of requests currently being responded to by

function instances to the total number of function instances. The metric value range is [0,1).

Minimum Concurrency

The minimum concurrency represents the least number of concurrent instances that need to be provisioned for the function, i.e.,

the lower limit for scale-in.

Maximum Concurrency

The maximum concurrency represents the maximum number of concurrent instances that can be provisioned for the function, i.e.,

the upper limit for scale-out.

1. Log in to the Serverless console and select Function Service on the left.

2. From the "Function Service" list page, select the function name that needs to be configured and proceed to the "Function

Management" page.

3. Select Concurrency quota > Provisioned concurrency on the left to enter the "Provisioned Concurrency" page.

4. On the "Provisioned Concurrency" page, click Add provisioned concurrency configuration as shown below:

5. In the pop-up "Add provisioned function concurrency" window, select the provisioned type as dynamic metric provisioned and

function version. Set the minimum concurrency, maximum concurrency, and target concurrency utilization metric according to

the business scenario, then click Submit as shown below:

Provisioned Target Value = Current total function instances × Current concurrency utilization ÷ Target concurrency utilization =

Current total function instances × (Current concurrency ÷ Current total function instances) ÷ Target concurrency utilization =

Current concurrency ÷ Target concurrency utilization metric

Calculation example of the target provisioned concurrency value: If the current concurrency is 100 and the target concurrency

usage is 80%, then the target provisioned concurrency value will be 100 / 80% = 125.

Procedure

Adding dynamic provisioned concurrency metric

https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 89
of 172

After setting, you can check the configuration status in "Provisioned Concurrency". The cloud function backend will take some

time to complete the expansion of the provisioned concurrency, and the number of started and prepared concurrencies and the

completion status will be displayed in the list.

When updating the dynamic provisioned concurrency metric, you can modify parameters such as the provisioned type, minimum

concurrency, maximum concurrency, and target concurrency utilization metric.

1. Log in to the Serverless console and select Function Service on the left.

2. From the "Function Service" list page, select the function that needs concurrency provision updating, and enter the "Function

Management" page.

3. Select Concurrency Quota > Provisioned Concurrency on the left to enter the "Provisioned Concurrency" page.

4. On the "Provisioned Concurrency" page, locate the version to update and click Settings on the right.

5. In the pop-up "Add provisioned function concurrency" window, update the settings and click Submit as shown below:

Updating dynamic provisioned concurrency metric

https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 90
of 172

1. Log in to the SCF console and select Function Service on the left sidebar.

2. On the "Function Service" list page, select the function with provisioned concurrency that you want to delete and proceed to the

"Function Management" page.

3. Select Concurrency Quota > Provisioned Concurrency on the left to enter the "Provisioned Concurrency" page.

4. On the "Provisioned Concurrency" page, select Delete on the right of the row where the version to be adjusted is located. As

shown in the figure below:

5. In the pop-up window for "Delete Function Provisioned Concurrency Quota", click Confirm to proceed.

Note

Basic provisioned concurrency and dynamic provisioned concurrency metric are supported for the provisioned

concurrency type. After the provisioned concurrency type is updated, the previously set type will become invalid.

Deleting dynamic provisioned concurrency metric

https://console.cloud.tencent.com/scf/list

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 91
of 172

Concurrency Overrun
Last updated：2024-06-14 14:56:55

Concurrency overrun (ResourceLimitReached) refers to a situation where the number of concurrent executions of an SCF function

at the same time exceeds the quota limit , leading to a function error. Concurrency overrun is divided into two types: sync

invocation and async invocation.

Async invocation includes Cloud API triggers , COS triggers , Timer triggers , CMQ Topic triggers , CLS triggers , and MPS triggers ,

etc. For specific trigger invocation types, please refer to the relevant trigger documentation.

When async invocation exceeds the concurrency limit, the SCF function will automatically retry. For more details, please refer to

Async Invocation Retry Strategy .

Sync invocation includes Cloud API triggers for sync invocation, API Gateway triggers , and CKafka triggers .

Since the error information is directly returned to the user during the sync invocation process, the platform will not automatically

retry when an error occurs in sync invocation. The retry policy (whether to retry and how many times to retry) is determined by the

caller. In the case of sync invocation, the SCF function will return a 432 status code , and the request will not be retried.

You can view the number of limited times and specific logs of the function in the SCF console.

1. Log in to the Serverless console and select Function Service on the left.

2. In the Function Service page, select the function you want to view to access its details page.

3. In Function Management, select Monitoring Information > Limited Times to view the number of limited times for the relevant

function, as shown in the figure below:

1. Log in to the Serverless console and select Function Service on the left.

2. In the Function Service page, select the function you want to view to access its details page.

3. In Log Query, select Invocation logs to view the specific limit logs for the relevant function, as shown in the figure below:

Concurrency Overrun

Async invocation

Sync invocation

Concurrency Overrun Troubleshooting

Viewing concurrency overrun monitoring data

Viewing the number of limited times

Viewing function limit log

https://cloud.tencent.com/document/product/583/11637
https://cloud.tencent.com/document/product/583/18198
https://cloud.tencent.com/document/product/583/9707
https://cloud.tencent.com/document/product/583/9708
https://cloud.tencent.com/document/product/583/11517
https://cloud.tencent.com/document/product/583/49587
https://cloud.tencent.com/document/product/583/50833
https://cloud.tencent.com/document/product/583/41138#.E5.BC.82.E6.AD.A5.E8.B0.83.E7.94.A8
https://cloud.tencent.com/document/product/583/18198
https://cloud.tencent.com/document/product/583/12513
https://cloud.tencent.com/document/product/583/17530
https://cloud.tencent.com/document/product/583/42611
https://console.cloud.tencent.com/scf/index?rid=1
https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 92
of 172

A DLQ is a CMQ queue under your account used to collect error event information and analyze causes of failures. If you have

configured a DLQ for a function, messages in retry failures caused by overrun will be sent to it. For more information, please see

Creating Dead Letter Queue .

The maximum reserved quota is the maximum limit that ensures the available concurrency of a function. By configuring this quota,

the function can launch a sufficient number of concurrent instances within the limit, up to the configured quota. By setting this

maximum reserved quota, the function no longer shares the account concurrency quota with other functions, reducing the

possibility of concurrency overrun and ensuring more reliable operation. For more information, please see Setting Maximum

Reserved Quota .

Fixing concurrency overrun

Asynchronous Invocation has a platform retry strategy for concurrency overrun scenarios, which automatically handles and

retries concurrency overruns. Generally, users do not need to take any action for concurrency overruns in asynchronous

invocations. Within the set maximum waiting time, the function platform will automatically retry concurrency overrun errors.

When an error occurs during a Synchronous Invocation, the error message is directly returned to the user, and the request will

not be retried.

Note

In asynchronous invocations, if you are sensitive to timeliness, you can reduce or mitigate the impact of overruns on the

business system by configuring the maximum exclusive quota. For instance, if it is crucial that important messages are not

lost after exceeding the set maximum retention time, you should configure a dead letter queue as a fallback.

Configuring DLQ

Configuring reserved quota

https://cloud.tencent.com/document/product/583/51666#.E6.AD.BB.E4.BF.A1.E9.98.9F.E5.88.97.E5.88.9B.E5.BB.BA
https://cloud.tencent.com/document/product/583/49313

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 93
of 172

Trigger Management

Creating Trigger
Last updated：2023-09-28 16:08:05

After creating a function, you can create a trigger to associate the function with an event source. The associated event source will

trigger the function synchronously or asynchronously as specified when an event is generated, and the event will be passed to the

entry function as an input parameter upon triggering.

A function trigger can be created in the console or on Serverless Cloud Framework CLI.

1. Log in to the Serverless console and click on Function Service in the left sidebar.

2. At the top of the "Function Service" list page, select the region and namespace where the function is located, as shown in the

figure below:

3. Click the function name to enter the function details page.

4. Select Trigger management on the left to enter the trigger browsing and operation interface. Click Create trigger to start

creating a new trigger, as shown in the figure below:

5. In the "Create trigger" pop-up window, select the trigger alias/version and the trigger method, as shown in the figure below:

Note

 HTTP-Triggered Functions only support the creation of API Gateway triggers. For more details, please refer to Creating

HTTP-triggered Functions .

Creating a Trigger in the Console

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/56125

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 94
of 172

6. After completing the trigger configuration, click Submit to create the trigger.

For local functions, add the trigger description in the serverless.yml file. Then, run the scf deploy command on Serverless Cloud

Framework CLI to add a trigger to the function.

The following video will guide you on how to create, delete, and manage triggers:

Watch video

Trigger alias/version: Switch to the desired trigger version. A trigger can be created on a specified version of a function. An

event of the trigger created in this manner will trigger the code on the specified version. For more information, see Overview .

Note

There are certain quota limits for the total number of triggers and number of triggers in each type for a function.

Triggers created on different versions take up the quota of the function. To increase the limit, contact us for

application.

Trigger method: The information to be entered varies by trigger method. For example, for a timer trigger, you need to enter

the trigger name, cycle, and status. For a COS trigger, you need to enter the COS bucket, event type, and prefix/suffix filters.

For more information, see Trigger Overview .

Creating Trigger on Serverless Cloud Framework CLI

Description

Before starting, install the Serverless Cloud Framework CLI tool first as instructed in Installation .

Tutorial Video

https://cloud.tencent.com/edu/learning/quick-play/2939-54956?source=gw.doc.media&withPoster=1¬ip=1
https://cloud.tencent.com/document/product/583/43760
https://console.cloud.tencent.com/workorder/category?level1_id=6&level2_id=668&source=0data_title=%E6%97%A0%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%BA%91%E5%87%BD%E6%95%B0%20SCF&step=1
https://cloud.tencent.com/document/product/583/9705
https://cloud.tencent.com/document/product/583/44753

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 95
of 172

Deleting Triggers
Last updated：2023-09-27 18:10:42

You can disassociate a function from an event source by deleting a trigger in the console. After disassociation, the event source will

no longer trigger the function.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. At the top of the "Function Service" list page, select the region and namespace where the function is located, as shown in the

figure below:

3. Click the function name to enter the function details page.

4. Select Trigger Management on the left to enter the trigger browsing and operation interface, then click Delete in the upper right

corner of the trigger, as shown in the figure below:

Confirm the deletion in the pop-up window.

Deleting a Trigger in the Console

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 96
of 172

Enabling/Disabling Triggers
Last updated：2023-09-27 18:10:55

You can disable a trigger to temporarily prevent a function from being triggered by an event occurring at the event source. This

document describes how to do so in the console.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. At the top of the "Function Service" list page, select the region and namespace where the function is located, as shown in the

following figure:

3. Click the function name to enter the function details page.

4. Select Trigger Management on the left to enter the trigger browsing and operation interface. Click on the in the "Status" of

the trigger you wish to enable or disable to toggle its status. As shown in the figure below:

During the creation of a trigger, you can set its enabled or disabled status. Once the trigger is created, it will be in the set status.

For instance, when creating a timed trigger, if you wish for the trigger not to take effect immediately but to be activated later as

needed, you can deselect Enable Now. As shown in the figure below:

Enabling or Disabling a Trigger in the Console

Setting the Enables/Disabled Status of a Trigger During Creation

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 97
of 172

After the trigger is created, you can activate it by toggling the enabled/disabled status.

At present, the enabled/disabled status switch is not supported for certain triggers, and the Enable button is not displayed for them

in the console. When this is supported for them subsequently, the status and button will be displayed accordingly.

Precautions

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 98
of 172

Function URL

Function URL Overview
Last updated：2023-09-27 18:11:17

The function URL is the dedicated HTTP(S) endpoint of a function. Once the function URL is configured for a function, it can be

invoked through its HTTP(S) endpoint using a web browser, curl, Postman, or any HTTP client.

You can create and configure function URLs through the SCF console or SCF API/CLI. Once a function URL is created, its URL

endpoint remains constant. The endpoint format of the function URL is as follows:

Function URLs exist at the same level as triggers and are applicable to both event functions and web functions. You can configure

triggers such as API Gateways while enabling function URLs.

The function URL is bound one-to-one with the function's version and alias. You need to manually enable or disable the function

URL for each version and alias. By default, the function URL is disabled.

Upon receiving a request, the URL triggers the function to run, and the URL sends the relevant request information to the triggered

function in the form of an event parameter. The relevant request information includes details such as the specific service and API

rules that received the request, the actual path of the request, the method, and the request's path, headers, and query.

When the function returns a response, it parses the response and converts it into an HTTP response, with a standard response

payload:

Feature Overview

Public Network: https://<app-id>-<url-id>-<region>.scf.tencentcs.com

Private Network: https://<app-id>-<url-id>-<region>-in.scf.tencentcs.com

Invoke parameters

Event-triggered function

Request Parameters

// Example of detailed Event information [Compatible with apigw protocol, remove headerParameters, isBase64Encoded,

pathParameters, queryStringParameters, requestContext related fields]:

 "body" "{\"test\":\"hello world\"}"

 "headers"

 "accept" "*/*"

 "accept-encoding" "gzip, deflate, br"

 "cache-control" "no-cache"

 "connection" "keep-alive"

 "content-length" "17"

 "httpMethod" "POST"

 "path" "/"

 "queryString"

 "a" "1"

 "b" "2"

{

: ,

: {

: ,

: ,

: ,

: ,

:

},

: ,

: ,

:{

: ,

:

}

}

Response Parameters

{

 "statusCode": 201,

 "headers": {

 "Content-Type": "application/json",

 "My-Custom-Header": "Custom Value"

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 99
of 172

The function will infer the response format for you. If your function returns valid JSON and does not return a statusCode, the

function will assume the statusCode is 200, the content-type is application/json, and the body is the function response.

The standard response parameter format for the function is as follows:

Upon receiving an HTTP request, the URL triggers the function to run. At this point, the URL directly forwards the HTTP request

without any event type format conversion, and the request response is also directly forwarded.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. On the Function Service page, click on the function name to access its detailed information.

3. Select Function URL from the left navigation and click on Create Function URL, as shown below:

 },

 "body": "{ \"message\": \"Hello, world!\" }"

}

Function output HTTP Response (Content visible to the client)

"Hello, world!"

HTTP/2 200

date: Wed, 08 Sep 2021 18:02:24 GMT

content-type: application/json

content-length: 15

"Hello, world!"

{

 "message": "Hello, world!"

}

HTTP/2 200

date: Wed, 08 Sep 2021 18:02:24 GMT

content-type: application/json

content-length: 34

{

 "message": "Hello, world!"

}

{

 "statusCode": 201,

 "headers": {

 "Content-Type": "application/json",

 "My-Custom-Header": "Custom Value"

 },

 "body": JSON.stringify({

 "message": "Hello, world!"

 })

}

HTTP/2 201

date: Wed, 08 Sep 2021 18:02:24 GMT

content-type: application/json

content-length: 27

my-custom-header: Custom Value

{

 "message": "Hello, world!"

}

HTTP-triggered function

Instructions

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 100
of 172

4. On the Create Function URL page, create a new function according to the following information, as shown below:

5. Click Submit to complete the creation.

Configuration items Description

Alias/Version
The URL is bound to an alias or version dimension, and only one URL is permitted to be

created for each alias or version.

Public/Private Network

Access
Depending on your business needs, you can choose to enable public or private URL access.

Permission Type

The permission type supports the selection of Open and CAM Authentication.

Open: There is no need for identity verification for function requests, anonymous access

is supported, and anyone can initiate an HTTP request to invoke your function.

CAM Authentication: Function CAM authentication verification is required. Users can

manage resources and configure usage permissions based on the InvokeFunctionUrl

interface. For more details, refer to the URL Authentication and Authorization

documentation.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 101
of 172

Function URL Authentication Configuration
Last updated：2024-03-25 10:01:52

You can control access to function URLs by configuring authentication and authorization policies.

When configuring function URLs, one of the following authentication options must be specified:

You can follow the steps below to configure InvokeFunctionUrl policy permissions to open or restrict access to the interface.

1. On the Policies page of the CAM console, click Create Custom Policy in the upper left corner.

2. In the pop-up window for selecting the creation method, click Create by Policy Generator to enter the policy editing page.

3. In the Visual Policy Generator, add a service and operation bar, supplement the following information, and edit an authorization

statement.

4. Upon completion of the policy authorization statement, click Next to proceed to the basic information and associated user/user

group/role page.

5. On the Associate User/User Group/Role page, supplement the policy name and description information. You can also quickly

authorize by associating users/user groups/roles simultaneously.

6. Click Complete to finish creating a custom policy using the policy generator.

Feature Overview

CAM Authentication: This requires CAM authentication verification for the function. Users can manage resources and configure

usage permissions based on the InvokeFunctionUrl interface. You can open or restrict access to the interface by configuring the

InvokeFunctionUrl policy permissions.

Open: There is no need for identity verification for function requests, anonymous access is supported, and anyone can initiate

an HTTP request to invoke your function.

Configuring InvokeFunctionUrl Policy Permissions

Effect (Required): Select Allow.

Service (Required): Select Serverless Cloud Function (SCF).

Action (Required): Click Expand on the right side of All Actions (scf:*), search for InvokeFunctionUrl, and check it. As shown

below:

Resource (Required): Select all resources or the specific resources you wish to authorize.

Condition (Optional): Set the conditions under which the above authorization will take effect.

https://console.cloud.tencent.com/cam/policy

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 102
of 172

Please refer to the Security Credential Service Signature Method for the signature algorithm. The code sample is as follows:

Java

Signature Generation and Authentication Process

Client-side Signature Generation

import Charset

import StandardCharsets

import MessageDigest

import SimpleDateFormat

import Date

import TimeZone

import TreeMap

import Mac

import SecretKeySpec

import DatatypeConverter

public class TencentCloudAPITC3Demo

 private final static Charset UTF8 = StandardCharsets UTF_8

 // Set the environment variable TENCENTCLOUD_SECRET_ID, with the value as the example

AKIDz8krbsJ5yKBZQpn74WFkmLPx3***

 private final static String SECRET_ID = System getenv "TENCENTCLOUD_SECRET_ID"

 // Set the environment variable TENCENTCLOUD_SECRET_KEY, with the value as the example

Gu5t9xGARNpq86cd98joQYCN3***

 private final static String SECRET_KEY = System getenv "TENCENTCLOUD_SECRET_KEY"

 private final static String CT_JSON = "application/json"

 public static byte hmac256 byte key String msg throws Exception

 Mac mac = Mac getInstance "HmacSHA256"

 SecretKeySpec secretKeySpec = new SecretKeySpec key mac getAlgorithm

 mac init secretKeySpec

 return mac doFinal msg getBytes UTF8

 public static String sha256Hex String s throws Exception

 MessageDigest md = MessageDigest getInstance "SHA-256"

 byte d = md digest s getBytes UTF8

 return DatatypeConverter printHexBinary d toLowerCase

 public static void main String args throws Exception

 String service = "scf"

 String host = "1253970226-xxxxxxx-cq.scf.tencentcs.com"

 String algorithm = "TC3-HMAC-SHA256"

 String timestamp = String valueOf System currentTimeMillis / 1000

 SimpleDateFormat sdf = new SimpleDateFormat "yyyy-MM-dd"

 // Be mindful of the time zone to avoid errors

 sdf setTimeZone TimeZone getTimeZone "UTC"

 String date = sdf format new Date Long valueOf timestamp + "000"

 // *﻿*﻿* Step 1: Concatenate the Canonical Request String ﻿*﻿**

 String httpRequestMethod = "POST"

 String canonicalUri = "/"

 String canonicalQueryString = ""

 String canonicalHeaders = "content-type:application/json\n"

 + "host:" + host + "\n"

 String signedHeaders = "content-type;host"

 // Request body

 String payload = "{\"Limit\": 1, \"Filters\": [{\"Values\": [\"\\u672a\\u547d\\u540d\"], \"Name\": \"instance-name\"}]}"

 String hashedRequestPayload = sha256Hex payload

java.nio.charset. ;

java.nio.charset. ;

java.security. ;

java.text. ;

java.util. ;

java.util. ;

java.util. ;

javax.crypto. ;

javax.crypto.spec. ;

javax.xml.bind. ;

{

. ;

. ();

. ();

;

[] ([] ,) {

. ();

(, . ());

. ();

. (. ());

}

() {

. ();

[] . (. ());

. (). ();

}

([]) {

;

;

;

. (. ());

();

. (. ());

. ((. ()));

;

;

;

;

;

;

();

https://cloud.tencent.com/document/product/1312/48202

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 103
of 172

Go

 String canonicalRequest = httpRequestMethod + "\n" + canonicalUri + "\n" + canonicalQueryString + "\n"

 + canonicalHeaders + "\n" + signedHeaders + "\n" + hashedRequestPayload

 System out println canonicalRequest

 // *﻿*﻿* Step 2: Concatenate the String to be Signed ﻿*﻿**

 String credentialScope = date + "/" + service + "/" + "tc3_request"

 String hashedCanonicalRequest = sha256Hex canonicalRequest

 String stringToSign = algorithm + "\n" + timestamp + "\n" + credentialScope + "\n" + hashedCanonicalRequest

 System out println stringToSign

 // *﻿*﻿* Step 3: Calculate the Signature ﻿*﻿**

 byte secretDate = hmac256 "TC3" + SECRET_KEY getBytes UTF8 date

 byte secretService = hmac256 secretDate service

 byte secretSigning = hmac256 secretService "tc3_request"

 String signature = DatatypeConverter printHexBinary hmac256 secretSigning stringToSign toLowerCase

 System out println signature

 // *﻿*﻿* Step 4: Concatenate the Authorization ﻿*﻿**

 String authorization = algorithm + " " + "Credential=" + SECRET_ID + "/" + credentialScope + ", "

 + "SignedHeaders=" + signedHeaders + ", " + "Signature=" + signature

 System out println authorization

 StringBuilder sb = new StringBuilder

 sb append "curl -X POST https://" append host

 append " -H \"Authorization: " append authorization append "\""

 append " -H \"Content-Type: application/json; charset=utf-8\""

 append " -H \"Host: " append host append "\""

 append " -H \"X-Scf-Cam-Uin: " append uin append "\""

 append " -H \"X-Scf-Cam-Timestamp: " append timestamp append "\""

 append " -d '" append payload append "'"

 System out println sb toString

;

. . ();

;

();

;

. . ();

[] ((). (),);

[] (,);

[] (,);

. ((,)). ();

. . ();

;

. . ();

();

. (). ()

. (). (). ()

. ()

. (). (). ()

. (). (). ()

. (). (). ()

. (). (). ();

. . (. ());

}

}

package main

import

 "crypto/hmac"

 "crypto/sha256"

 "encoding/hex"

 "fmt"

 "os"

 "strings"

 "time"

func sha256hex s string string

 b := sha256 Sum256 byte s

 return hex EncodeToString b

func hmacsha256 s key string string

 hashed := hmac New sha256 New byte key

 hashed Write byte s

 return string hashed Sum nil

func main

(

)

() {

. ([] ())

. ([:])

}

(,) {

. (. , [] ())

. ([] ())

(. ())

}

() {

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 104
of 172

 // Set the environment variable TENCENTCLOUD_SECRET_ID, with the value as the example

AKIDz8krbsJ5yKBZQpn74WFkmLPx3***

 secretId := os Getenv "TENCENTCLOUD_SECRET_ID"

 // Set the environment variable TENCENTCLOUD_SECRET_KEY, with the value as the example

Gu5t9xGARNpq86cd98joQYCN3***

 secretKey := os Getenv "TENCENTCLOUD_SECRET_KEY"

 host := "1253970226-xxxxxxx-cq.scf.tencentcs.com"

 algorithm := "TC3-HMAC-SHA256"

 service := "scf"

 var timestamp int64 = time Now Unix

 // step 1: build canonical request string

 httpRequestMethod := "POST"

 canonicalURI := "/"

 canonicalQueryString := ""

 canonicalHeaders := fmt Sprintf "content-type:%s\nhost:%s\n"

 "application/json" host

 signedHeaders := "content-type;host"

 payload := "Limit" 1 "Filters" "Values" "\u672a\u547d\u540d" "Name" "instance-name" ﻿

 hashedRequestPayload := sha256hex payload

 canonicalRequest := fmt Sprintf "%s\n%s\n%s\n%s\n%s\n%s"

 httpRequestMethod

 canonicalURI

 canonicalQueryString

 canonicalHeaders

 signedHeaders

 hashedRequestPayload

 fmt Println "canonicalRequest => " canonicalRequest

 // step 2: build string to sign

 date := time Unix timestamp 0 UTC Format "2006-01-02"

 credentialScope := fmt Sprintf "%s/%s/tc3_request" date service

 hashedCanonicalRequest := sha256hex canonicalRequest

 string2sign := fmt Sprintf "%s\n%d\n%s\n%s"

 algorithm

 timestamp

 credentialScope

 hashedCanonicalRequest

 fmt Println "string2sign ==>" string2sign

 // step 3: sign string

 secretDate := hmacsha256 date "TC3"+secretKey

 secretService := hmacsha256 service secretDate

 secretSigning := hmacsha256 "tc3_request" secretService

 signature := hex EncodeToString byte hmacsha256 string2sign secretSigning

 fmt Println signature

 // step 4: build authorization

 authorization := fmt Sprintf "%s Credential=%s/%s, SignedHeaders=%s, Signature=%s"

 algorithm

 secretId

 credentialScope

 signedHeaders

 signature

 fmt Println authorization

 curl := fmt Sprintf curl - X POST https / / % s - H "Authorization: %s" - H "Content-Type: application/json; charset=utf-8"

- H "Host: %s" - H "X-Scf-Cam-Uin: %d" - H "X-Scf-Cam-Timestamp: %d" - d '%s'

 host authorization host uin timestamp payload

 fmt Println curl

. ()

. ()

. (). ()

. (,

,)

{ : , : [{ : [] , : }] }

()

. (,

,

,

,

,

,

)

. (,)

. (,). (). ()

. (, ,)

()

. (,

,

,

,

)

. (,)

(,)

(,)

(,)

. ([] ((,)))

. ()

. (,

,

,

,

,

)

. ()

. (:

,

, , , , ,)

. ()

}

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 105
of 172

NodeJS

const crypto = require 'crypto'

function sha256 message secret = '' encoding

 const hmac = crypto createHmac 'sha256' secret

 return hmac update message digest encoding

function getHash message encoding = 'hex'

 const hash = crypto createHash 'sha256'

 return hash update message digest encoding

function getDate timestamp

 const date = new Date timestamp * 1000

 const year = date getUTCFullYear

 const month = '0' + date getUTCMonth + 1 slice -2

 const day = '0' + date getUTCDate slice -2

 return $ year - $ month - $ day ﻿

function main

 // Key Parameters

 // Set the environment variable TENCENTCLOUD_SECRET_ID, with the value as the example

AKIDz8krbsJ5yKBZQpn74WFkmLPx3***

 const SECRET_ID = process env TENCENTCLOUD_SECRET_ID

 // Set the environment variable TENCENTCLOUD_SECRET_KEY, with the value as the example

Gu5t9xGARNpq86cd98joQYCN3***

 const SECRET_KEY = process env TENCENTCLOUD_SECRET_KEY

 const endpoint = "1253970226-xxxxxxx-cq.scf.tencentcs.com"

 const service = "scf"

 const timestamp = getTime

 // Time processing, obtaining Universal Time Coordinated (UTC) date

 const date = getDate timestamp

 // *﻿*﻿* Step 1: Concatenate the Canonical Request String ﻿*﻿**

 const payload = "{\"Limit\": 1, \"Filters\": [{\"Values\": [\"\\u672a\\u547d\\u540d\"], \"Name\": \"instance-name\"}]}"

 const hashedRequestPayload = getHash payload

 const httpRequestMethod = "POST"

 const canonicalUri = "/"

 const canonicalQueryString = ""

 const canonicalHeaders = "content-type:application/json\n"

 + "host:" + endpoint + "\n"

 const signedHeaders = "content-type;host"

 const canonicalRequest = httpRequestMethod + "\n"

 + canonicalUri + "\n"

 + canonicalQueryString + "\n"

 + canonicalHeaders + "\n"

 + signedHeaders + "\n"

 + hashedRequestPayload

 console log canonicalRequest

 // *﻿*﻿* Step 2: Concatenate the String to be Signed ﻿*﻿**

 const algorithm = "TC3-HMAC-SHA256"

 const hashedCanonicalRequest = getHash canonicalRequest

 const credentialScope = date + "/" + service + "/" + "tc3_request"

 const stringToSign = algorithm + "\n" +

 timestamp + "\n" +

 credentialScope + "\n" +

();

(, ,) {

. (,)

. (). ()

}

(,) {

. ()

. (). ()

}

() {

()

. ()

((. ())). ()

(. ()). ()

{ } { } { }

}

(){

. .

. .

()

()

();

. ()

();

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 106
of 172

Python

 hashedCanonicalRequest

 console log stringToSign

 // *﻿*﻿* Step 3: Calculate the Signature ﻿*﻿**

 const kDate = sha256 date 'TC3' + SECRET_KEY

 const kService = sha256 service kDate

 const kSigning = sha256 'tc3_request' kService

 const signature = sha256 stringToSign kSigning 'hex'

 console log signature

 // *﻿*﻿* Step 4: Concatenate the Authorization ﻿*﻿**

 const authorization = algorithm + " " +

 "Credential=" + SECRET_ID + "/" + credentialScope + ", " +

 "SignedHeaders=" + signedHeaders + ", " +

 "Signature=" + signature

 console log authorization

 const curlcmd = 'curl -X POST ' + "https://" + endpoint

 + ' -H "Authorization: ' + authorization + '"'

 + ' -H "Content-Type: application/json"'

 + ' -H "Host: ' + endpoint + '"'

 + ' -H "X-Scf-Cam-Uin: ' + uin + '"'

 + ' -H "X-Scf-Cam-Timestamp: ' + timestamp.toString() + '"'

 + " -d '" + payload + "'"

 console log curlcmd

main

. ()

(,)

(,)

(,)

(, ,)

. ()

. ()

. ()

}

()

-*- coding: utf-8 -*-

import hashlib hmac json os sys time

from datetime import datetime

Key Parameters

The environment variable TENCENTCLOUD_SECRET_ID needs to be set, with the value as the example

AKIDz8krbsJ5yKBZQpn74WFkmLPx3***

secret_id = os environ get "TENCENTCLOUD_SECRET_ID"

The environment variable TENCENTCLOUD_SECRET_KEY needs to be set, with the value as the example

Gu5t9xGARNpq86cd98joQYCN3***

secret_key = os environ get "TENCENTCLOUD_SECRET_KEY"

service = "scf"

host = "1253970226-xxxxxxx-cq.scf.tencentcs.com"

endpoint = "https://" + host

algorithm = "TC3-HMAC-SHA256"

timestamp = int time time

date = datetime utcfromtimestamp timestamp strftime "%Y-%m-%d"

params = "Limit" 1 "Filters" "Values" "Unnamed" "Name" "instance-name"

﻿﻿* Step 1: Concatenate the Canonical Request String ﻿*﻿**

http_request_method = "POST"

canonical_uri = "/"

canonical_querystring = ""

ct = "application/json"

payload = json dumps params

canonical_headers = "content-type:%s\nhost:%s\n" % ct host

signed_headers = "content-type;host"

hashed_request_payload = hashlib sha256 payload encode "utf-8" hexdigest

canonical_request = http_request_method + "\n" +

 canonical_uri + "\n" +

 canonical_querystring + "\n" +

, , , , ,

. . ()

. . ()

(. ())

. (). ()

{ : , : [{ : [], : }]}

. ()

(,)

. (. ()). ()

(

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 107
of 172

The following parameters need to be added to the header of the URL request:

For server-side calls to the CAM service's signature and authentication, please refer to Access Management .

 canonical_headers + "\n" +

 signed_headers + "\n" +

 hashed_request_payload

print canonical_request

﻿﻿* Step 2: Concatenate the String to be Signed ﻿*﻿**

credential_scope = date + "/" + service + "/" + "tc3_request"

hashed_canonical_request = hashlib sha256 canonical_request encode "utf-8" hexdigest

string_to_sign = algorithm + "\n" +

 str timestamp + "\n" +

 credential_scope + "\n" +

 hashed_canonical_request

print string_to_sign

﻿﻿* Step 3: Calculate the Signature ﻿*﻿**

Function to Calculate Signature Digest

def sign key msg

 return hmac new key msg encode "utf-8" hashlib sha256 digest

secret_date = sign "TC3" + secret_key encode "utf-8" date

secret_service = sign secret_date service

secret_signing = sign secret_service "tc3_request"

signature = hmac new secret_signing string_to_sign encode "utf-8" hashlib sha256 hexdigest

print signature

﻿﻿* Step 4: Concatenate the Authorization ﻿*﻿**

authorization = algorithm + " " +

 "Credential=" + secret_id + "/" + credential_scope + ", " +

 "SignedHeaders=" + signed_headers + ", " +

 "Signature=" + signature

print authorization

print 'curl -X POST ' + endpoint

 + ' -H "Authorization: ' + authorization + '"'

 + ' -H "Content-Type: application/json"'

 + ' -H "Host: ' + host + '"'

 + ' -H "X-Scf-Cam-Uin: ' + uin + '"'

 + ' -H "X-Scf-Cam-Timestamp: ' + str timestamp + '"'

 + " -d '" + payload + "'"

)

()

. (. ()). ()

(

()

)

()

(,):

. (, . (), .). ()

((). (),)

(,)

(,)

. (, . (), .). ()

()

(

)

()

(

()

)

Client Invoke Parameters

Category Description

Authorization

Mandatory signature-related parameters. Example:

TC3-HMAC-SHA256 Credential=AKIDz8krbsJ5yKBZQpn74WFkmLPx3***/2019-02-25/scf/tc3_request,

SignedHeaders=content-type;host;xxx,

Signature=be4f67d323c78ab9acb7395e43c0dbcf822a9cfac32fea2449a7bc7726b770a3

X-Scf-Cam-Timestamp The timestamp used to generate the signature, which is mandatory.

X-Scf-Cam-Uin The primary account Uin, which is mandatory.

X-Scf-Cam-Token If a temporary key is used to generate the signature, token information must be provided.

Server-Side Signature Verification

https://cloud.tencent.com/document/product/598/10583

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 108
of 172

Version Management

Overview
Last updated：2023-09-27 18:14:51

The version of Serverless Cloud Function (SCF) encompasses both the function's code and configuration. During the actual

development process, you can solidify the function's code and configuration content by publishing versions, thereby minimizing

factors that could potentially disrupt the business system.

Upon creation, a function inherently possesses a most recent/latest version ($LATEST), and only the configuration and code of the

$LATEST version can be modified. When publishing, the configuration and code of the $LATEST version serve as the foundation for

the release, generating a new version.

The operations that a version can perform include:

The following video will guide you on how to view, publish, and utilize versions:

Watch video

Overview

Concepts

Most Recent/Latest Version ($LATEST)

Relevant Operations

View Version

Publish Version

Utilize Version

https://cloud.tencent.com/edu/learning/quick-play/2939-54958?source=gw.doc.media&withPoster=1¬ip=1
https://cloud.tencent.com/document/product/583/31211
https://cloud.tencent.com/document/product/583/15371
https://cloud.tencent.com/document/product/583/31166

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 109
of 172

Viewing A Version
Last updated：2023-09-27 18:15:03

When you need to review the version configuration, code, and other information of a specific function, this document can serve as

your guide.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. At the top of the "Function Service" list page, select the region and namespace where the function you want to view is located.

3. Click a function name to enter the function details page.

4. Select the "Version" dropdown list in the upper right corner of the function details page, and click on the name of the version you

want to view. This document uses version 1 as an example, as shown below:

You can then view the relevant information for this version, as shown below:

Operational Overview

Procedure

Note

After switching to a version, the Function Configuration, Function Code, Layer Management, Monitoring Information,

and Log Query tabs will display the content corresponding to that version. For detailed information on each tab, please

refer to Query Function .

After switching to a version other than $LATEST , the function configuration and code remain in the published state

and cannot be modified.

Triggers can be configured differently on various versions.

The logs and monitoring data respectively display the specific invocation logs and monitoring data for the

corresponding version.

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/19809

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 110
of 172

Releasing A Version
Last updated：2023-09-28 15:19:03

Upon completing the configuration of your cloud function, submitting the code, and passing online tests, you can solidify the version

of your cloud function by publishing a version. This helps to prevent online business errors or execution failures caused by

subsequent code modifications and testing. You can publish a version at any time, and any version of the cloud function will publish

the $LATEST version as the latest version.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. At the top of the "Function Service" list page, select the region and namespace where the function to be viewed is located, as

shown in the following figure:

3. Click on the function name to enter the function information page.

4. Select Operation > Release new version in the upper right corner of the function information page, as shown in the following

figure:

5. In the pop-up "Release new version" window, enter the version description and click Submit to publish, as shown in the following

figure:

Operational Overview

Procedure

Explanation

Upon creation, the cloud function possesses the attribute of the $LATEST version. The $LATEST version points to the

currently editable version and always maintains its existence and editable status.

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 111
of 172

Note

Upon submission for publication, the cloud function platform will create a duplicate of the current function's $LATEST

version configuration and code content, and save it as version content.

Upon completion of the release, a version number for the current release will be generated. The version number starts

at 1 and increases with each release, with no upper limit for the current version number.

The published version only records and solidifies the configuration and code of the current function's $LATEST

version, and does not record the function's trigger configuration. The newly published function version does not have

any triggers.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 112
of 172

Using A Version
Last updated：2023-09-27 18:15:30

The versioning feature is primarily used to solidify function configurations and code, preventing any impact on operations during

development, debugging, and testing. After publishing a version of the cloud function , you can utilize this version by invoking the

specified cloud function.

Currently, each published version of a cloud function can independently bind with a trigger. For the same function, each version

operates independently, and each trigger independently initiates the function execution.

When triggering a cloud function call using the TencentCloud API InvokeFunction interface, you can specify the exact version to be

triggered through the optional parameter Qualifier . If this parameter is not provided, the $DEFAULT alias will be triggered by

default. For more details, please refer to Alias Management .

Description

The $LATEST version is designated for development and testing, facilitating further code development and debugging.

Trigger of the version

Description

There is a certain limit to the number of triggers under a user account. For details, please refer to Quota Limits . If you need

to increase the quota of triggers (i.e., quota increase), you can apply by submitting a ticket .

TencentCloud API Triggered Version

https://cloud.tencent.com/document/product/583/15371
https://cloud.tencent.com/document/product/583/36149
https://cloud.tencent.com/document/product/583/11637#.E9.85.8D.E9.A2.9D.E9.99.90.E5.88.B6
https://console.cloud.tencent.com/workorder/category

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 113
of 172

Alias Management

Related Operations For Alias Management
Last updated：2023-09-28 09:33:12

An alias in Serverless Cloud Function (SCF) is a pointer that directs to a bound function version. By using an alias, you can invoke

the bound function. In practical development, aliases can assist you in managing project version updates and rollbacks more

effectively. A single function version can have one or more aliases. For more information on function version management, please

refer to the Overview of Version Management .

Through the configuration of aliases, you can create distinctions for multiple different environments (stages) for a function. For

instance:

Upon creation, a function has a default alias ($DEFAULT) that points to the most recent version ($LATEST). The default alias

cannot be deleted or renamed, but it does support traffic routing configuration.

When configuring triggers and invoking functions through the Cloud API, it is recommended to set the Qualifier parameter during

the call to the default alias ($DEFAULT).

Currently, all aliases created for cloud functions can independently bind triggers. The invocation of the trigger will pass through the

alias and pull up the specific version to execute based on the routing configuration of the alias.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. On the "Function Service" list page, click on the function name to enter the details page of that function.

3. Select Operation > Create Alias in the upper right corner of the page, as shown in the figure below:

4. In the "Create Alias" pop-up window that appears, refer to the following information to create. As shown in the figure below:

Overview

Use case

By creating 'test' and 'release' aliases and configuring triggers to point to these aliases, different codes and configurations can

be activated.

You can use aliases to bind different function versions. Once a version has been validated in the test environment, you can

redirect the traffic of the production environment to the new version through route configuration. For the method of traffic route

configuration, please refer to Traffic Routing Configuration Instructions .

Default Alias

Usage of Default Alias

Instructions

By configuring the default alias, you can control the routing of default traffic generated by triggers and Cloud API calls.

Triggering an Alias

Procedure

Create Alias

https://cloud.tencent.com/document/product/583/43760
https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/43716

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 114
of 172

The main parameters are described as follows:

5. Click Submit to complete the creation.

1. Select Operation > Traffic Settings in the upper right corner of the function details page. As shown below:

2. In the pop-up "Traffic Settings" window, configure as per the instructions below. As shown in the figure:

Note

Once the alias is created, the alias name cannot be modified.

Alias Name: Custom name. It should be between 2 and 60 characters long, start with a letter, and can include a - z , A - Z ,

0 - 9 , - , _ . It must end with a digit or a letter, for example, Tencent-cloud_scf .

Alias Description: Custom description. It can be up to 1000 characters long and may include English letters, numbers,

spaces, commas, periods, and Chinese characters.

Route Method and Version Weight Configuration: For more details, refer to Traffic Routing Configuration .

Modify the alias bound to the function version.

https://cloud.tencent.com/document/product/583/43716

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 115
of 172

The main parameters are as follows:

3. Click Submit to complete the changes. Open the version dropdown list to view the effect of the modifications. As shown in the

figure:

1. Select Operation > Delete Alias in the upper right corner of the function details page. As shown in the figure:

2. In the "Delete Alias" pop-up window, select the alias you wish to delete from the dropdown list and click Submit. This document

uses the deletion of alias test02 as an example. As shown in the figure:

Alias: From the dropdown list, select the alias you wish to bind to this version. In this document, test02 is used as an

example.

Route Method and Version Weight Configuration: For configuration details, please refer to Traffic Routing Configuration .

This document uses the modification of the alias bound to the $LATEST version as an example:

Select the routing method as Weighted Routing.

The version weight configuration is as follows: The weighted routing for version $LATEST is 70%, and the weighted

routing for version 1 is 30%.

Deleting alias

Note

This action only permanently deletes the alias, excluding the underlying version codes and configurations.

https://cloud.tencent.com/document/product/583/43716

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 116
of 172

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 117
of 172

Traffic Routing Configuration
Last updated：2023-09-28 09:38:44

Serverless Cloud Function (SCF) supports traffic routing settings. With this configuration, you can conveniently control the gray

release or rollback process of function versions in actual use cases or environments, mitigating the potential risks of a one-time

launch.

When creating an alias or adjusting traffic configurations, you can control the traffic direction to two function versions through the

console, enabling traffic to route between versions according to certain rules. Currently, we support two routing schemes:

Weighted Random Routing and Rule-based Routing.

1. Refer to the Create Alias steps to access the "Create alias" window.

2. In the "Create alias" window, refer to the following information for traffic routing configuration, as illustrated in the figure below:

The main parameter information is as follows:

3. Click Submit to complete the setup.

The position of the value during matching, that is, determining whether it is a hit by locating and obtaining the value. The currently

supported notation for Key is invoke.headers.[userKey] , where the [userKey] part represents modifiable content. This notation

means that the userKey part in the HTTP request headers is matched when the invoke interface is called.

Operational Overview

When you wish to randomly route between any two versions based on a set percentage weight, you can perform the Weighted

Random Routing operation.

When you wish to route requests containing specific content to a particular version, you can perform the Rule-based Routing

operation.

Procedure

Weighted Random Routing

This article takes the configuration during alias creation as an example. Once creation is complete, traffic will randomly route

between the two versions according to the set percentage. The steps are as follows:

Routing method: Select Weighted Routing.

Version weight configurations: You can select two versions from the drop-down list and configure the percentage weight.

By rules

When configuring routing by rules, the current rule syntax includes the following three parts:

Matching Key

https://cloud.tencent.com/document/product/583/36149#.E5.88.9B.E5.BB.BA.E5.88.AB.E5.90.8D

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 118
of 172

During matching, the method and expression are compared. The currently supported matching methods are exact and range .

A hit occurs when the set value is matched. For the expression syntax, refer to the Matching Method description.

Please follow the steps below to configure routing based on rules:

1. Refer to the Create Alias steps to access the "Create alias" window.

2. In the "Create alias" window, refer to the following information to configure traffic routing, and click Submit to complete the

configuration. See the figure below:

The main parameter information is as follows:

Matching Method

exact : Precise match. When using the exact method, the matching expression must be a string. The rule is hit when the value

read by the matching key is exactly equal to the expression.

range : Range match. When using the range method, the matching expression must be in the form of (a,b) or [a,b], where a and

b must be integers. The rule is hit when the value read by the matching key is an integer and falls within the interval defined by

the expression.

Matching Expression

Routing method: Select Rule-based Routing.

Version rule configurations: Please configure as needed, using the following examples as a guide:

For instance, if you have two versions (Version 2 and Version 1), and you want Version 2's matching rule to be set as

invoke.headers.User exact Bob , and Version 1 to be set for no hits. Refer to the figure below for settings:

Based on this configuration, when the cloud function platform calls the function alias through the invoke interface, if

https://cloud.tencent.com/document/product/583/36149#.E5.88.9B.E5.BB.BA.E5.88.AB.E5.90.8D

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 119
of 172

the routingKey parameter is set to {"User":"Bob"} , the execution will use the code and configuration of Version 2. If the

routingKey parameter is not set or if the routingKey is set to other values, the execution will use the code and

configuration of Version 1.

For instance, if you have two versions (Version 3 and Version 2), and you want Version 3's matching rule to be set as

invoke.headers.userHash range [1,50] , and Version 2 to be set for no hits. Refer to the figure below for settings:

Based on this configuration, when the cloud function platform calls the function alias through the invoke interface, if

the routingKey parameter is set to {"userHash":30} , the execution will use the code and configuration of Version 3. If

the routingKey parameter is not set or if the routingKey is set to values other than [1,50], for example, {"userHash":80}

, the execution will use the code and configuration of Version 2.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 120
of 172

Permission Management

Permission Management Overview
Last updated：2023-09-27 18:18:21

SCF uses Tencent Cloud Access Management (CAM) to manage permissions. CAM is a permission and access management

service that helps you securely manage the access permissions to resources under your Tencent Cloud account. With CAM, you

can create, manage and destroy users and user groups and use identity and policy management to control user access to Tencent

Cloud resources.

You can assign different SCF permissions to sub-accounts or collaborators through your root account. Currently, SCF supports the

following permission granularities:

The current SCF supports the following cloud API interfaces:

SCF implements the access between services and user resources by using the role capability of CAM. SCF offers the configuration

role and the execution role. You can use the configuration role to enable SCF to access user resources in the configuration

process. You can also use the execution role to enable SCF to apply for the temporary authorization for executing the code, so that

the code can implement permission and resource access through the role authorization mechanism.

Overview

Manageable Permissions for SCF

Service Policy Syntax Cloud API Console Authorization Granularity Temporary Certificate

Serverless ✔ ✔ ✔ Resource ✔

API Name Description Level

ListFunctions Gets the function list under the account Account

GetAccount Gets the quota configuration under the account Account

CreateFunction Creates a function Resource

DeleteFunction Deletes a specified function Resource

InvokeFunction Triggers a function synchronously or asynchronously Resource

UpdateFunction Updates a function, including its configuration and/or code Resource

SetTrigger Configures a trigger for a specified function Resource

DeleteTrigger Deletes a trigger for a specified function Resource

GetFunction Gets the configuration information of a specified function Resource

ListVersion Gets the version information of a specified function Resource

GetFunctionLogs Gets the log information of a specified function Resource

Roles and Authorization

https://cloud.tencent.com/document/product/598

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 121
of 172

Role And Authorization
Last updated：2023-09-28 10:43:47

A Role is a virtual identity provided by Tencent Cloud's Cloud Access Management (CAM) that possesses a set of permissions.

Roles can also be granted policies, primarily used to authorize Role Carriers with access to services, operations, and resources in

Tencent Cloud. Once these permissions are attached to a role, the role can be assigned to Tencent Cloud services, allowing the

services to perform operations on authorized resources on behalf of the user. The roles of Tencent Cloud Function SCF are divided

into Configuration Roles and Execution Roles. You can use the Configuration Role to allow SCF to access user resources during the

service configuration process. Alternatively, you can use the Execution Role to request temporary authorization for running code,

facilitating code to achieve permission penetration and resource access through the role's authorization mechanism.

A Policy is a syntax rule that defines and describes one or more permissions. CAM supports two types of policies: preset policies

and custom policies. Preset policies are a collection of common permissions created and managed by Tencent Cloud, such as

super administrators, cloud resource administrators, etc., and these policies are read-only. Custom policies are a more detailed

collection of permissions for resource management created by users. Preset policies cannot specifically describe a resource and

are relatively coarse-grained, while custom policies can flexibly meet the differentiated permission management needs of users.

Permissions describe the conditions under which certain operations are allowed or denied access to certain resources. By default,

the root account is the owner of the resources and has full access to all resources under its name. A sub-account does not have

access to any resources. The creator of a resource does not automatically have access to the resources they create; authorization

is required from the resource owner.

When creating an SCF function, you may manipulate certain Tencent Cloud services other than SCF. Different operations may

require different permissions, such as COS permissions to create and delete COS triggers, API Gateway permissions to create and

delete API Gateway triggers, and COS permissions to read zipped code packages, which can be granted by configuring and

selecting roles.

A configuration role is used to grant the SCF configuration the permissions to connect with other Tencent Cloud resources to

access such resources within the scope of the permissions in the associated policies, including but not limited to code file access

and trigger configuration. The preset policy of the configuration role supports the basic operations of function execution and covers

the basic permissions required in common SCF scenarios.

The default configuration role of SCF is SCF_QcsRole , as detailed below:

Concepts

Roles

Policies

Permissions

Overview

Configuration Roles

Role details

Role name: SCF_QcsRole

Role entity: service-scf.qcloud.com

Role description: SCF default configuration role. This service role is used to grant the SCF configuration the permissions to

connect with other resources in the cloud, including but not limited to code file access and trigger configuration. The preset

policy of the configuration role can support the basic operations of function execution.

Associated policies: this role is associated with the QcloudAccessForScfRole policy, which can:

Write trigger configuration information to the bucket configuration when a COS trigger is configured.

Read the trigger configuration information from the COS bucket.

Read the code zip package from the bucket when the code is updated through COS.

Create API Gateway services and APIs and publish services when an API Gateway trigger is configured.

Perform operations such as configuring and using CLS read/write access.

https://cloud.tencent.com/document/product/598/19420
https://cloud.tencent.com/document/product/598/10583
https://cloud.tencent.com/document/product/598/19421#.E8.A7.92.E8.89.B2.E8.BD.BD.E4.BD.93
https://cloud.tencent.com/document/product/598/10601
https://cloud.tencent.com/document/product/598/10600

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 122
of 172

1. If you are using SCF for the first time, you will be prompted to authorize the service when you open the Serverless Console , as

shown below:

2. Select go to access management to enter the "Role Management" page, and click Grant to confirm the authorization, as shown

below:

3. Upon confirmation of authorization, the role SCF_QcsRole will be automatically created for you. You can view it under Roles , as

shown below:

Perform operations such as configuring and using CMQ read/write access.

Perform operations such as configuring and using CKafka read/write access.

Note

Users can view and modify the policies associated with the current configuration role SCF_QcsRole in the CAM Console .

However, modifying the role's associated policies may cause issues such as SCF not functioning properly, so it is not

recommended.

Service Authorization

Execution Roles

https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/cam/role
https://console.cloud.tencent.com/cam/overview

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 123
of 172

The execution role serves the user's code, with the role entity being product service-scf.qcloud.com . After users add the

corresponding execution role to the function, SCF applies for temporary authorization for the user's running code within the

permission scope of the associated policy of the execution role, facilitating the code to achieve permission penetration and access

to other cloud resources through the role's authorization mechanism.

Taking SCF_QcsRole as an example, users can also choose SCF_QcsRole as the function's execution role, which means granting

the permissions corresponding to the associated policy of SCF_QcsRole to SCF, enabling SCF to obtain the right to apply for access

to other cloud resources for the user's code.

1. Log in to the Serverless Console and click on Function Service in the left navigation bar.

2. On the Function Service list page, click on the name of the function for which you need to create an execution role, and you will

be directed to the function configuration page.

3. Select Edit at the top right corner of the function configuration page, check Enable under "Execution Role", and click on Create

execution role, as shown in the figure below:

4. In the "Enter Role Entity Info" step, select Cloud Function (scf) and click Next.

5. In the "Configure Role Policy" step, select the policy required for the function and click Next, as shown in the figure below:

6. After configuring the role tags as needed, fill in the role name in the "Review" step and click Complete. This document uses

scf_cos_full_access as an example for the role name.

7. Return to the function configuration page and click on the to the right of "Execution Role". You can then select the execution

role you just created from the dropdown list, as shown in the figure below:

Creating execution roles

Note

This document uses the selection of QcloudCOSFullAccess (full access permissions of COS) as an example. Please select

the policies as needed.

Note

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 124
of 172

When a function is running, the SCF service will use the selected execution role to apply for the temporary SecretId , SecretKey ,

and SesstionToken .

When adding policies to an execution role, in addition to preset policies, you can also select custom policies to configure

permissions in a more refined manner. SCF's policy syntax follows CAM's syntax structure and resource description

method , which is based on the JSON format. For more information, please see SCF Policy Syntax .

Getting the temporary key information of an execution role

For functions not created from an image:

The relevant content will be passed into the runtime environment in the form of environment variables, as shown in the figure

below:

Taking Python as an example, you can pass the above information into the function runtime environment and obtain it as an

environment variable using the following code.

secret_id = os environ get 'TENCENTCLOUD_SECRETID'

secret_key = os environ get 'TENCENTCLOUD_SECRETKEY'

token= os environ get 'TENCENTCLOUD_SESSIONTOKEN'

. . ()

. . ()

. . ()

For functions created from an image:

The relevant content will be passed into the context parameter in the form of HTTP headers. For more details, please refer to

Image Function Parameter Description .

https://cloud.tencent.com/document/product/598/10604
https://cloud.tencent.com/document/product/598/10606
https://cloud.tencent.com/document/product/583/47934
https://cloud.tencent.com/document/product/583/56051#.E5.87.BD.E6.95.B0.E5.85.A5.E5.8F.82

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 125
of 172

SCF Policy Syntax
Last updated：2023-09-27 18:20:11

For more information on how to create custom policies, please see Creating Custom Policies . SCF's policy syntax follows CAM's

syntax structure and resource description method , which is based on the JSON format, and all resources can be described in the

six-segment style, as shown in the sample below:

Policy Syntax

qcs::scf:region:uin/uin—id:namespace/namespace-name/function/function-name

Note

When configuring the policy syntax, you also need to use the monitor APIs to get the monitoring information under the

account. For more information about using the monitor APIs, please see the sample policy .

Policy Examples

	

 "version": "2.0",

 "statement":

 "effect": "allow",

 "action":

 "scf:ListFunctions",

 "scf:GetAccountSettings",

 "monitor:*"

 ,

 "resource": "*"

 ,

 "effect": "allow",

 "action":

 "scf:DeleteFunction",

 "scf:CreateFunction",

 "scf:InvokeFunction",

 "scf:UpdateFunction",

 "scf:GetFunctionLogs",

 "scf:SetTrigger",

 "scf:DeleteTrigger",

 "scf:GetFunction",

 "scf:ListVersion"

 ,

 "resource":

 "qcs::scf:ap-guangzhou:uin/**:namespace/default/function/Test1",

 "qcs::scf:ap-guangzhou:uin/**:namespace/default/function/Test2"

{

[

{

[

]

[]

}

{

[

]

[

]

}

]

}

When the action requires associated resources, the resource is defined as * , indicating that all resources are associated.

When the action does not require associated resources, the resource must be defined as * .

This sample allows the sub-account to have the operation permissions of certain functions under the root account. The

https://cloud.tencent.com/document/product/598/37739
https://cloud.tencent.com/document/product/598/10604
https://cloud.tencent.com/document/product/598/10606

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 126
of 172

The access policy language allows you to specify conditions when granting permissions, such as limiting the user access source or

authorization time. The list below contains supported condition operators as well as general condition keys and examples.

Current permissions:

resource in resource is described as a function under the root account.

Specified Conditions

Condition Operator Description Condition Name Sample

ip_equal IP equal to qcs:ip {"ip_equal":{"qcs:ip ":"10.121.2.0/24"}}

ip_not_equal IP not equal to qcs:ip
{"ip_not_equal":{"qcs:ip ":["10.121.1.0/24",

"10.121.2.0/24"]}}

date_not_equal Date is not equal to
qcs:current_tim

e

{"date_not_equal":{"qcs:current_time":"2016-06-

01T00:01:00Z"}}

date_greater_than Date is greater than
qcs:current_tim

e

{"date_greater_than":{"qcs:current_time":"2016-

06-01T00:01:00Z"}}

date_greater_than_e

qual

Date is greater than or

equal to

qcs:current_tim

e

{"date_greater_than_equal":

{"qcs:current_time":"2016-06-01T00:01:00Z"}}

date_less_than Date is less than
qcs:current_tim

e

{"date_less_than":{"qcs:current_time":"2016-06-

01T 00:01:00Z"}}

date_less_than_equa

l

Date is less than or

equal to

qcs:current_tim

e

{"date_less_than":{"qcs:current_time":"2016-06-

01T 00:01:00Z"}}

date_less_than_equa

l

Date is less than or

equal to

qcs:current_tim

e

{"date_less_than_equal":

{"qcs:current_time":"2016-06-01T00:01:00Z"}}

To allow access only by IPs in the 10.121.2.0/24 IP range, use the following syntax:

"ip_equal": "qcs:ip ":"10.121.2.0/24"{ }

Restrict access to IPs 101.226.***.185 and 101.226.***.186 as shown below:

"ip_equal":

 "qcs:ip":

 "101.226.***.185"

 "101.226.***.186"

{

[

,

]

}

User Policy Update

SCF improved the preset permission policies in April 2020. The preset policies QcloudSCFFullAccess and QcloudSCFReadOnlyAccess

were modified, and the QcloudAccessForScfRole policy was added for the configuration role SCF_QcsRole , as shown below:

Preset policy QcloudSCFFullAccess

 "version": "2.0"

 "statement":

 "action":

 "scf:*"

 "tag:*"

 "cam:DescribeRoleList"

 "cam:GetRole"

{

,

[

{

[

,

,

,

,

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 127
of 172

Current permissions:

 "cam:ListAttachedRolePolicies"

 "apigw:DescribeServicesStatus"

 "apigw:DescribeService"

 "apigw:DescribeApisStatus"

 "cmqtopic:ListTopicDetail"

 "cmqqueue:ListQueueDetail"

 "cmqtopic:GetSubscriptionAttributes"

 "cmqtopic:GetTopicAttributes"

 "cos:GetService"

 "cos:HeadBucket"

 "cos:HeadObject"

 "vpc:DescribeVpcEx"

 "vpc:DescribeSubnetEx"

 "cls:getTopic"

 "cls:getLogset"

 "cls:listLogset"

 "cls:listTopic"

 "ckafka:List*"

 "ckafka:Describe*"

 "ckafka:ListInstance"

 "monitor:GetMonitorData"

 "monitor:DescribeBasicAlarmList"

 "monitor:DescribeBaseMetrics"

 "monitor:DescribeSortObjectList"

 "monitor:DescribePolicyConditionList"

 "cdb:DescribeDBInstances"

 "resource": "*"

 "effect": "allow"

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

],

,

}

]

}

Preset policy QcloudSCFReadOnlyAccess

 "version": "2.0"

 "statement":

 "action":

 "scf:Get*"

 "scf:List*"

 "ckafka:List*"

 "ckafka:Describe*"

 "monitor:GetMonitorData"

 "monitor:DescribeBasicAlarmList"

 "monitor:DescribeBaseMetrics"

 "monitor:DescribeSortObjectList"

 "cam:GetRole"

 "cam:ListAttachedRolePolicies"

 "vpc:DescribeVpcEx"

 "vpc:DescribeSubnetEx"

 "cls:getLogset"

 "cls:getTopic"

 "cls:listTopic"

 "apigw:DescribeService"

 "cmqtopic:GetTopicAttributes"

 "cmqtopic:GetSubscriptionAttributes"

 "cos:HeadBucket"

 "cos:GetService"

 "cos:GetObject"

{

,

[

{

[

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 128
of 172

Current permissions:

The preset policy QcloudAccessForScfRole can:

 "resource": "*"

 "effect": "allow"

],

,

}

]

}

Preset policy QcloudAccessForScfRole

 "version": "2.0"

 "statement":

 "action":

 "cos:GetBucket*"

 "cos:HeadBucket"

 "cos:PutBucket*"

 "apigw:*"

 "cls:*"

 "cos:List*"

 "cos:Get*"

 "cos:Head*"

 "cos:OptionsObject"

 "cmqqueue:*"

 "cmqtopic:*"

 "ckafka:List*"

 "ckafka:Describe*"

 "ckafka:AddRoute"

 "ckafka:CreateRoute"

 "resource": "*"

 "effect": "allow"

{

,

[

{

[

,

,

,

,

,

,

,

,

,

,

,

,

,

,

],

,

}

]

}

Write trigger configuration information to the bucket configuration if a COS trigger is configured.

Read the trigger configuration information from the COS bucket.

Read the code zip package from the bucket when the code is updated through COS.

Create API Gateway services and APIs and publish services if an API Gateway trigger is configured.

Create consumers if a CKafka trigger is configured.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 129
of 172

Sub-users And Authorization
Last updated：2023-09-27 18:20:27

1. Log in to the Access Management Console and select Users > User List from the left sidebar.

2. On the User List page, select Create User > Custom Creation to navigate to the Create Sub-User page.

3. In the Select Type step, choose Can Access Resources and Receive Messages, then click Next to fill in the user information.

4. Follow the on-screen instructions to fill in and confirm the information, then click Complete to finish the custom creation of the

sub-user.

1. On the Policies page of the CAM console, click Create Custom Policy in the upper left corner.

2. In the pop-up window for selecting the creation method, click Create by Policy Generator to enter the policy editing page.

3. In the "Visual Policy Generator" page for selecting services, supplement the following information to edit an authorization

statement.

4. Upon completion of the policy authorization statement, click Next to proceed to the basic information and associated user/user

group/role page.

5. On the Associate User/User Group/Role page, supplement the policy name and description information. You can simultaneously

associate users/user groups/roles for quick authorization.

6. Click Complete to finish creating a custom policy using the policy generator.

1. Log in to the Cloud Access Management Console and navigate to the User List management page.

2. On the User List management page, select the sub-user for whom you need to set permissions.

3. Click Authorize in the operation column on the right.

4. In the pop-up policy association window, check the QcloudCamReadOnlyAccess policy.

5. Click OK to complete the authorization of "User and Permissions (CAM) Read-Only Access" for the sub-user.

Upon completion of the above settings, users can log in to the sub-account to view permissions. Log in to the Access Management

Console, select Overview from the navigation bar on the left to enter the Overview page, where you can view the sub-user login

address.

Note

The primary account needs to check on the Roles page whether it has SCF_QcsRole . If not, please follow the Roles and

Policies section's Service Authorization operation to complete the authorization. Otherwise, the sub-user will not be able to

use the Serverless console and call other cloud resources through SCF.

Creating a Sub-user and Granting it All SCF Permissions

Step 1. Create a sub-user by using the root account

Note

For more information, please see Creating a Custom Sub-user .

Step 2. Create a custom policy

Effect: allow

Service: SCF

Action: all

Resource description: *

Condition (optional): empty

Step 3: Grant CAM read-only permissions to the sub-user

Completion

Creating a Sub-user and Granting it Certain SCF Permissions

https://console.cloud.tencent.com/cam/overview
https://console.cloud.tencent.com/cam/policy
https://console.cloud.tencent.com/cam
https://console.cloud.tencent.com/cam/overview
https://console.cloud.tencent.com/cam/role
https://cloud.tencent.com/document/product/583/47933
https://cloud.tencent.com/document/product/598/13674

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 130
of 172

1. Log in to the Access Management Console and select Users > User List from the left sidebar.

2. On the User List page, select Create User > Custom Creation to navigate to the Create Sub-User page.

3. In the Select Type step, choose Can Access Resources and Receive Messages, then click Next to fill in the user information.

4. Follow the on-screen instructions to fill in and confirm the information, then click Complete to finish the custom creation of the

sub-user.

1. On the Policies page of the CAM console, click Create Custom Policy in the upper left corner.

2. In the pop-up window for selecting the creation method, click Create by Policy Generator to enter the Edit Policy page.

3. Copy the policy example code from SCF Policy Syntax , and modify the policy content in Edit Policy > JSON.

4. Click Next to proceed to the Basic Information and Associated User/User Group/Role page.

5. On the Associate User/User Group/Role page, supplement the policy name and description information, and you can quickly

authorize by associating users/user groups/roles simultaneously.

6. Click Complete to finish creating a custom policy using the policy generator.

1. Log in to the Cloud Access Management Console and navigate to the User List management page.

2. On the User List management page, select the sub-user for whom you need to set permissions.

3. Click Authorize in the operation column on the right.

4. In the pop-up policy association window, check the QcloudCamReadOnlyAccess policy.

5. Click OK to complete the authorization of "User and Permissions (CAM) Read-Only Access" for the sub-user.

Upon completion of the above settings, users can log in to the sub-account to view permissions. Click Overview in the left

navigation bar to enter the overview page, where you can view the sub-user login address.

Step 1. Create a sub-user by using the root account

Note

For more information, please see Creating a Custom Sub-user .

Step 2. Create a custom policy

Note

 The resource description in "resource" needs to be replaced with the ID of the root account and the function name under

the root account, and the "region" should be consistent with the function.

Step 3: Grant CAM read-only permissions to the sub-user

Completion

Note

After the policy takes effect, the current sub-account will be able to see all the function names but will only be able to

operate on and view the functions listed in resource .

https://console.cloud.tencent.com/cam/overview
https://console.cloud.tencent.com/cam/policy
https://cloud.tencent.com/document/product/583/47934
https://console.cloud.tencent.com/cam
https://console.cloud.tencent.com/cam/overview
https://cloud.tencent.com/document/product/598/13674

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 131
of 172

Managing Monitors And Alarms

Descriptions Of Monitoring Metrics
Last updated：2023-09-28 15:36:11

The Tencent Cloud Observability Platform provides the following monitoring metrics for SCF:

Currently, two levels of monitoring metrics are supported. Monitoring metrics at the function level can be viewed in specific

functions, while those at the region level can be viewed by selecting a specific region on the overview page to display the statistics

of all function monitoring metrics.

Metric Name Parameter Description Unit
Dimensio

n

Execution

duration
duration

The average execution duration of a function at the

function/region level, indicating the time from the start to

the end of the user's function code execution, calculated

with a specified granularity (1 minute, 5 minutes).

Millisecond

s

Function

Region

Invocations invocation
The number of requests at the function or region level,

summed by granularity (1 minute or 5 minutes).
-

Function

Region

Number of

errors
error

The number of error requests after the function is

executed, which currently includes those on the client side

and on the platform, summed by granularity (1 minute or 5

minutes).

-
Function

Region

Number of

concurrent

executions

concurrent_

executions

The number of requests processed concurrently at the

same time point, summed by granularity (1 minute or 5

minutes) and determined by the maximum value at the

function or region level.

-
Function

Region

Number of

restricted

requests

throttle

The number of requests that reaches the bandwidth limit

at the function or region level, summed by granularity (1

minute or 5 minutes).

-
Function

Region

Execution

memory
mem

The actual memory used by the function runtime, whose

maximum value is calculated by granularity (1 minute or 5

minutes).

MB Function

Time memory
mem_durati

on

Resource usage, which is calculated by multiplying the

function execution duration by the execution memory,

summed by granularity (1 minute or 5 minutes).

MBms Function

Public traffic

out
out_flow

The outbound traffic generated by accessing resources on

the public network from a function, summed by granularity

(1 minute or 5 minutes).

KB Function

System internal

error (HTTP

5xx)

syserr
The number of 5xx status codes returned after function

execution, summed by granularity (1 minute or 5 minutes).
- Function

Function error

(HTTP 4xx)
http_4xx

The number of 4xx status codes returned after function

execution, summed by granularity (1 minute or 5 minutes).
- Function

Successful

invocations

(HTTP 2xx)

http_2xx
The number of 2xx status codes returned after function

execution, summed by granularity (1 minute or 5 minutes).
- Function

Resource limit

exceeded

(HTTP 432)

http_432
The number of 432 status codes returned after function

execution, summed by granularity (1 minute or 5 minutes).
- Function

Function

execution

http_433 The number of 433 status codes returned after function

execution, summed by granularity (1 minute or 5 minutes).

- Function

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 132
of 172

timed out

(HTTP 433)

Memory limit

exceeded

(HTTP 434)

http_434
The number of 434 status codes returned after function

execution, summed by granularity (1 minute or 5 minutes).
- Function

Description

To obtain the required monitoring data, you can visit the Cloud Function Monitoring Interface .

https://cloud.tencent.com/document/product/248/37207

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 133
of 172

Configuring Alarm
Last updated：2023-09-28 10:50:54

You can configure alarm policies for cloud functions through the Tencent Cloud Observability Platform , allowing you to monitor the

operational status of the functions. Currently, the monitoring metrics for which alarms can be configured for cloud functions include

runtime, number of calls, number of errors, etc. For a complete list of supported metrics, please refer to Monitoring Metrics

Description . Additionally, the alarm system allows you to select user groups to receive alarms and choose from various notification

channels such as email, SMS, and WeChat.

1. Log in to the Serverless console and select Function Service from the left navigation bar.

2. On the Function Service list page, click on the function name to enter the function details page.

3. Select Monitoring information from the left navigation and click Set alarm on the Monitoring Information Details page, as shown

in the figure below:

4. On the Create Alarm Policy page, configure the alarm policy as follows:

5. Click Complete. In Alarm Management > Policy Management , you can view the configured policy and choose to start or stop it

at any time based on actual needs.

The following video will guide you on how to configure alarms and view logs:

Watch video

Operational Overview

Procedure

Policy name: Custom.

Monitoring Type: Select "Cloud Product Monitoring".

Policy Type: Supports selection of "Cloud Function/Version" or "Cloud Function/Alias".

Alarm Object: Set according to actual needs. If "Instance ID" is selected, its default region is set to Guangzhou. In different

regions, you can see the corresponding functions, please select the functions that need to apply the alarm policy.

For more detailed alarm policy configuration, please refer to Create Alarm Policy .

Tutorial Video

https://console.cloud.tencent.com/monitor/myalarm
https://cloud.tencent.com/document/product/583/32686
https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/monitor/alarm2/policy
https://cloud.tencent.com/edu/learning/quick-play/2939-54960?source=gw.doc.media&withPoster=1¬ip=1
https://cloud.tencent.com/document/product/248/50398

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 134
of 172

Viewing Execution Logs
Last updated：2023-09-28 10:53:16

You can view the function execution logs in the SCF console. You can filter to display real-time logs or logs from the last 24 hours.

You can also specify a custom time range. You can choose to view all logs, or logs of successful, failed, timed-out, and excessive

invocations and code exceptions in the SCF console.

You can view function logs in the SCF console.

1. Log in to the Serverless console and click on Function Service in the left sidebar.

2. Click a function name to enter the function details page.

3. On the function details page, select Log Query on the left to open the Invocation logs interface for the function, as shown below:

Follow the steps below to find an execution log as needed.

In the search box at the top right, enter the requestID of the execution log you want to view and press Enter to view a specific

execution log, as shown below:

You can also set custom search criteria in the top-left corner based on actual needs.

Operational Overview

Procedure

Viewing execution logs in console

Finding execution log

Invocation log

All Logs: you can select successful or failed invocations logs.

Select a date: you can view the execution logs generated in the last 6 days up to today. Currently, you can only search for logs in

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 135
of 172

You can search for SCF logs by keyword or use query syntax to combine keywords for search. For more information, please see

Log Search Guide .

a time range of no more than 24 hours.

Real-time: you can view the current execution log of a function.

Last 24 hours: you can view the execution logs generated in the last 24 hours.

Advanced search

https://cloud.tencent.com/document/product/583/40964

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 136
of 172

Network Configuration

Network Configuration Management
Last updated：2023-09-27 18:40:47

By default, a newly created cloud function has only the public network access permission. That is, when the cloud function is being

executed, it can only access public network resources such as Tencent Cloud.

SCF supports the following network configurations:

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Choose a region at the top of the page and click the function to be configured.

3. On the Function Configuration page, select Edit in the upper right corner.

4. Based on your actual needs, refer to Fixed Public Network Exit IP and Private Network Communication for configuration.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Select a region at the top of the page and click on the function name to view the current network configuration in Function

Configuration.

Currently, a maximum of 60,000 connections can access the same ip:port concurrently. For non-persistent connections, since the

release of intermediate devices takes time, the number of supported concurrent connections is smaller.

Overview

Configuration Item Description

Only public network access is enabled -

Public Network Access and Static

Public Network Egress IP
The cloud function can access public network resources using a fixed IP address.

Only private network access is enabled

Upon configuring this setting, the cloud function can access resources such as

CVM, Light Application Server (LH), databases, and Redis that are configured in

this private network.

Enable both private and public network

access

Upon configuring this setting, the cloud function can access public network

resources as well as resources such as CVM, Light Application Server (LH),

databases, and Redis that are configured in this private network.

Enable private network access, public

network access, and static public

network egress IP simultaneously.

The cloud function can access public network resources using a fixed IP address

and access resources configured with the private network, such as databases and

Redis.

Explanation

For more information about how the cloud function obtains the fixed public outbound IP, please see Fixed Public Outbound

IP .

Prerequisites

You have registered a Tencent Cloud account. If you have not, please go to the Sign up page.

You have created a cloud function .

Procedure

Performing network configuration

Viewing network configuration

Network Restrictions

Concurrent connection count limits

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/38198
https://cloud.tencent.com/document/product/583/19703
https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/38198
https://cloud.tencent.com/register
https://cloud.tencent.com/document/product/583/37509

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 137
of 172

If multiple functions (or multiple requests of a function) need to access the same ip:port concurrently, you should pay attention to

this limit. You can take the following measures to avoid using up the connections and making code errors.

When configuring public network access and requiring a fixed public network egress IP, the public network bandwidth (out) is

limited to 0.1 Gbps.

When configuring a VPC for private network access, the current bandwidth limit (outbound + inbound) for a specific VPC is 1.5

Gbps. This bandwidth is shared by functions configured with the same VPC and multiple concurrent instances of the function. If you

need to increase the private network bandwidth, please submit a ticket to apply.

Use persistent connections as much as possible. During function initialization, complete and continuously reuse the

connections. This avoids frequent connections and releases caused by the use of non-persistent connections during

invocation. This measure gives full play to the supported connection count, but it is still limited by the connection count limit.

Provide multiple ip:port pairs. In this way, connections are spread to multiple ip:port pairs to avoid reaching the connection count

limit.

Bandwidth cap

Public network

Private network

https://console.cloud.tencent.com/workorder/category

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 138
of 172

Fixed Public Outbound IP
Last updated：2023-09-27 18:41:31

When users need to access databases, WeChat Official Account API interfaces, or other third-party services within a cloud

function, they can utilize the fixed public network egress IP feature of the cloud function to achieve control and management of the

cloud function's network configuration.

The fixed public outbound IP feature of SCF has the following capabilities:

To facilitate your understanding of the usage restrictions of the fixed public outbound IP, here is a simple illustrative example for

you.

Assume your account has the following objects in a region:

Their EIP and function binding relationships are as shown below:

Scenario

If fixed public outbound IP is enabled for an SCF function, the function will get a random EIP. The traffic generated by the

function accessing the public network will be forwarded based on the EIP.

If both public network access and private network access as well as the fixed public outbound IP are enabled for the function,

the traffic generated by accessing the public network will be forwarded based on the EIP, while that generated by accessing the

private network will be forwarded based on the VPC.

Usage Limits

An EIP is shared under the same account in the same region.

Under the same account in the same region, functions with fixed public outbound IP enabled share the same EIP.

If you want to change the fixed outbound IP of a function, you need to disable the fixed public outbound IP feature for all

functions under the same account in the same region. After you enable this feature again, a new EIP will be generated randomly.

The EIP is shared based on the subnet of the VPC. If a function is configured with a VPC and the fixed public outbound IP feature

is enabled at the same time, the function will be assigned a randomly allocated EIP. Functions under the same VPC subnet will

share this fixed outbound IP when the fixed outbound IP feature is enabled.

Sample

Functions a and b have been created under namespace A.

Functions c and d have been created under namespace B.

EIPs IP-x and IP-y represent two different EIPs.

Network Configuration
Namespace A Namespace B

Function A Function B Function C Function D

Only public network

access is enabled
No EIP No EIP No EIP No EIP

Only private network

access is enabled
No EIP No EIP No EIP No EIP

Public network access

and fixed public

outbound IP are
enabled

EIP IP-x EIP IP-x EIP IP-x EIP IP-x

The same VPC is used

for access, and fixed

public outbound IP is

enabled

EIP IP-y EIP IP-y EIP IP-y EIP IP-y

Instructions

Note

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 139
of 172

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Select the function region at the top of the page and click the function name.

3. Navigate to the Function Configuration tab and click Edit in the upper right corner.

4. Configure the function network as needed as shown below:

After configuring, click Save.

Each user is limited to five fixed IP addresses per region.

Note

After public network access is enabled for the function, you can enable fixed public outbound IP.

You cannot manually select or edit the randomly generated EIP.

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 140
of 172

VPC Communication
Last updated：2023-09-27 18:41:52

SCF is deployed in the public network by default. This document describes how to enable SCF to access resources in the private

network through VPC configuration, such as TencentDB, CVM, TencentDB for Redis, and CKafka, which helps ensure the data and

connection security.

When configuring a VPC, pay attention to the following points:

You have created a cloud function .

1. Log in to the Serverless console and click on Function Service in the left sidebar.

2. Select the region at the top of the page and click the name of the function to be configured.

3. On the Function Configuration page, click Edit in the upper right corner.

4. Enable the Private Network feature and select the VPC network and subnet you wish to connect to.

Upon completion of the private network access configuration for the SCF and the initiation of VPC network usage, the SCF will

transition from its current independent network environment to the configured VPC. When the SCF is launched, it will occupy an IP

address in the user's VPC subnet as the IP address for the SCF runtime environment.

Once the SCF is launched, resources in the VPC, such as TencentDB for Redis , Cloud Relational Database , and user-configured

CVMs in the VPC, can be accessed via code and private IP addresses.

Below is an example code for accessing TencentDB for Redis , where the IP address of the Redis instance within the VPC is

10.0.0.86 .

Using Private DNS to access custom domain names in the VPC network (recommended)

In VPC, if you need to access a self-built service on the private network at a domain name, you can use the Private DNS

provided by Tencent Cloud to configure and resolve the custom domain name on the private network.

Overview

Precautions

A function deployed in a VPC is isolated from the public network by default. If you want the function to have access to both

private and public networks, you can do so in the following two ways:

To configure the public network access capability for SCF and ensure that the outbound address is unique, see Static Public

Network Egress IP .

To add a NAT gateway through a VPC, see Configuring NAT in a Private Network .

Currently, functions cannot be connected with resources on the classic network.

Prerequisites

Procedure

Modifying network configuration

Using VPC

-*- coding: utf8 -*-

import redis

def main_handler event context

 r = redis StrictRedis host='10.0.0.86' port=6379 db=0 password="crs-i4kg86dg:abcd1234"

 print r set 'foo' 'bar'

 print r get 'foo'

 return r get 'foo'

(,):

. (, , ,)

(. (,))

(. ())

. ()

Accessing custom domain name in VPC

https://cloud.tencent.com/document/product/583/37509
https://console.cloud.tencent.com/scf
https://cloud.tencent.com/product/crs?idx=1
https://cloud.tencent.com/product/cdb-overview
https://cloud.tencent.com/product/crs?idx=1
https://cloud.tencent.com/document/product/1338/50527
https://cloud.tencent.com/document/product/583/38198
https://cloud.tencent.com/document/product/552/18186#.E6.AD.A5.E9.AA.A41.EF.BC.9A.E5.88.9B.E5.BB.BA-nat-.E7.BD.91.E5.85.B3

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 141
of 172

Setting the Name Server in the SCF Environment

If you want to connect to a custom DNS server, you need to customize the name server configuration in the SCF environment.

Currently, you can implement this by configuring the OS_NAMESERVER environment variable as shown below:

As shown in the following code implemented in Python, the configuration can be checked for effect by printing out the

/etc/resolv.conf file.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Select a region at the top of the page and click the name of the function for which private network access has been configured to

view the specific configuration through the corresponding network and subnet.

Environment

Variable
Value Rule Usage

OS_NAMESERVE

R

It can be one or more IP addresses or domain names

separated by ;.

A maximum of 5 custom name servers can be configured.

It configures the custom name

server.

with open "/etc/resolv.conf" as f

 print f readlines

() :

(. ())

Relevant Operations

Viewing network configuration

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 142
of 172

Layer Management

Overview
Last updated：2023-09-27 18:42:30

If your Serverless Cloud Function (SCF) has numerous dependency libraries or public code files, you can manage them using layers

in SCF. By utilizing layer management, you can place dependencies in layers instead of deployment packages, ensuring the

deployment packages maintain a minimal size. For Node.js, Python, and PHP functions, as long as the deployment package is kept

under 10MB, you can edit the function code online in the SCF console.

The compressed file created for a layer is stored according to the layer's version. When a layer is bound to a function, it is done so

according to the specific layer version and function version. Currently, a function can bind up to five specific versions of a layer, and

there is a certain sequence during binding.

When a function bound to a layer is triggered to run and concurrent instances are launched, the function's runtime code will be

decompressed and loaded into the /var/user/ directory, while the layer content will be decompressed and loaded into the /opt

directory.

If the file file that needs to be used or accessed is placed in the root directory of the compressed file when creating the layer, it can

be directly accessed through the directory /opt/file after decompression and loading. If, when creating the layer, the file is

compressed through a folder dir/file, then during function execution, the specific file must be accessed through /opt/dir/file.

In the case where a function is bound to multiple layers, the decompression and loading of files in the layers will be carried out in the

order they were bound. They will be sorted in ascending order by number, with the layers bound later loading later, but all will be

loaded before the function's concurrent instances are launched. The files in the layers can be used as soon as the function code is

initialized.

Layers are typically used to store static files or code libraries that do not change frequently. When storing code libraries, you can

directly package the available libraries and upload them to the layer. For example, in a Python environment, you can package the

code library folder directly and create it as a layer, then directly reference it in the function code using import. In a Nodejs

environment, you can package the project's node_modules library folder and create it as a layer, then directly reference it in the

function code using require.

By using layers, you can separate the function code from the dependent libraries or static files, keeping the function code compact.

Whether using command line tools, IDE plugins, or editing functions in the console, you can quickly upload updates.

You can create layers , bind layers , and utilize layers through the Serverless console.

Overview

Mode of Operation

Creation and Binding

Runtime Loading and Access

Recommended Usage

Notes

The files in the layer will be added to the /opt directory, which is accessible during the execution of the function.

If your function is bound with multiple layers, these layers will be merged into the /opt directory in order. If the same file appears

in multiple layers, the SCF platform will retain the file in the layer with the highest sequence number.

Relevant Operations

https://cloud.tencent.com/document/product/583/45760
https://cloud.tencent.com/document/product/583/84281
https://cloud.tencent.com/document/product/583/84282

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 143
of 172

Creating Layer
Last updated：2023-09-28 10:56:56

This document outlines how to create a layer via the Serverless console. Upon creation, a version will be automatically generated

for you.

1. Log in to the Serverless console , and select Advanced Capabilities > Layer from the left sidebar.

2. On the Layer Management page, select the region where you want to use the layer, and click Create.

3. On the Create Layer page, configure the layer information according to your actual needs, as shown in the following figure:

4. Click OK. You can view the created layer in the layer list.

Procedure

Layer name: enter a custom layer name.

Description: enter descriptive information of the layer as needed.

Submission method: Local ZIP file, Local folder, and Upload a ZIP pack via COS are supported. Please select an appropriate

layer file submission method based on your actual needs.

Upload Local ZIP File: Click Upload and submit a code package in zip format, with a maximum size of 50MB.

Upload Local Folder: Click Upload and select a folder, with a maximum size of 250MB. This upload method does not

retain the file's executable permissions. If the folder contains executable files, please set the executable permissions

locally first and then upload them via a zip package.

Upload ZIP File via COS: Select the COS bucket to use as the event source, which must be located in the same region

as the function. Enter the full path of the zip code file from the root directory ("/") of the Bucket.

Runtime environment: up to 5 runtime environments compatible with this layer can be set.

https://console.cloud.tencent.com/scf/layer

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 144
of 172

Binding Function To Layer
Last updated：2023-09-28 10:59:20

This document outlines how to bind a layer to a Serverless Cloud Function via the console.

1. Log in to the Serverless console and select Function Service from the left-hand navigation bar.

2. On the "Function Service" page, select the Function ID that requires layer management to proceed to the function details page.

3. Select the Layer management tab and click Bind, as shown in the figure below:

4. In the pop-up "Bind a layer" window, select the corresponding Layer name and Layer version, as depicted in the figure below:

5. Click OK to complete the binding.

Procedure

https://console.cloud.tencent.com/scf/layer

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 145
of 172

Using Layer
Last updated：2023-09-28 11:12:41

This article outlines how to utilize layers via the Serverless console.

Files in the layer are all under the /opt/ directory, which can be accessed through their absolute paths in the function code. In

addition, the built-in environment variables of each runtime also include layer paths, so files can be uploaded according to such

paths, and then they can be imported through their relative paths in the code.

For the environment variables in Python, Java, and Node.js, see the table below:

The following takes importing the cos-nodejs-sdk-v5 dependency from node_modules in a layer in the code in the Node.js runtime

environment as an example:

1. Refer to the Create Layer steps to upload node_modules and generate a layer. The local function directory structure is as

shown below:

2. Refer to Deploy Function to package and upload the local function code. Execute the following command to exclude the

node_modules folder during packaging.

As depicted below:

3. Bind the created layer to the deployed function as instructed in Binding function to layer .

4. You can import files at the layer in the function after completing the steps above.

Use Instructions

Environment Variables Path

PYTHONPATH /var/user:/opt

CLASSPATH /var/runtime/java8:/var/runtime/java8/lib/*:/opt

NODE_PATH /var/user:/var/user/node_modules:/var/lang/node6/lib/node_modules:/opt:/opt/node_modules

Procedure

Node.js

zip -r package name.zip . -x "node_modules/*"

'use strict'

var COS = require 'cos-nodejs-sdk-v5'()

Note

Since the NODE_PATH environment variable includes the /opt/node_modules path, there is no need to specify the

absolute path of the dependency. The SCF runtime will load files according to the path specified in the environment

variable.

If the file path in the layer and the path included in the environment variable are different, you need to use the absolute

path when importing the file.

Python

https://cloud.tencent.com/document/product/583/45760
https://cloud.tencent.com/document/product/583/9702
https://cloud.tencent.com/document/product/583/84281

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 146
of 172

The following takes importing the cos-python-sdk-v5 dependency from a layer in the code in the Python runtime environment as an

example:

1. Refer to the Create Layer steps to upload and generate a layer for cos-python-sdk-v5 .

2. Package and upload the local function code as instructed in Deploying Function . Files that have already been uploaded to the

layer don't need to be uploaded again together with the function code.

3. Bind the created layer to the deployed function as instructed in Binding function to layer .

4. You can import files at the layer in the function after completing the steps above.

This example demonstrates how to use layers and test functions.

1. Navigate to scf_layer_demo , select Clone or download > Download ZIP to download the sample to your local machine and unzip

it.

2. Log in to the Serverless Console and create a layer. For detailed operation steps, see Creating a Layer . Set the parameters as

shown in the following figure:

3. Log in to the Serverless Console and create a new function. For detailed operation steps, see Creating a Function . The basic

configuration is as follows:

4. In the Function codes section, select "Local folder" and choose to upload the function folder from the folder obtained in Step 1 .

As shown in the image below:

-*- coding: utf8 -*-

import cos-python-sdk-v5

Note

Since the PYTHONPATH environment variable includes the /opt path, there is no need to specify the absolute path of

the dependency. The SCF runtime will load files according to the path specified in the environment variable.

If the file path in the layer and the path included in the environment variable are different, you need to use the absolute

path when importing the file.

Sample Code

Layer name: enter a custom name. This document uses demo as an example.

Submiting method: Select "Upload local folder" and choose the layer folder from the directory obtained in Step 1 .

Runtime environment: Select "Nodejs 12.16".

Creation Method: Select "From Scratch".

Function Type: Select Event Function.

Function Name: In this context, layerDemo is used as an example.

Region: The region is filled in by default.

Runtime Environment: Select "Nodejs 12.16".

Time Zone: The cloud function uses UTC time by default.

https://cloud.tencent.com/document/product/583/45760
https://cloud.tencent.com/document/product/583/9702
https://cloud.tencent.com/document/product/583/84281
https://github.com/tencentyun/scf_layer_demo
https://console.cloud.tencent.com/scf/layer
https://cloud.tencent.com/document/product/583/45760
https://console.cloud.tencent.com/scf/list
https://cloud.tencent.com/document/product/583/19806

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 147
of 172

5. In the Advanced Settings > Layer configuration section, click Add a Layer.

6. Choose the layer name and layer version for the function, as depicted in the figure below:

7. Click Complete at the bottom of the page. After creation, you can view the function details.

8. In "Function Management", select the Function Code tab and click Test at the bottom of the page to view the results, as depicted

in the figure below:

Layer name: Select the demo layer created in Step 2 .

Layer version: select v1.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 148
of 172

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 149
of 172

Execution Configuration

Async Execution
Last updated：2023-09-27 18:48:13

In scenarios such as audio and video transcoding, ETL large volume data processing, and AI inference where single tasks require

heavy computation, the single instance of a function needs more computing power and longer stable operation time. If the

function's caller is blocked for a long time waiting for execution results, it will not only continuously occupy the caller's resources,

but also place higher demands on the stability of the call link.

Tencent Cloud's Serverless Cloud Function (SCF) offers a novel function execution mechanism. By utilizing the asynchronous

execution mode provided by SCF, you can increase the execution timeout limit and address issues with the existing execution

mechanism.

Once the function is set to execute asynchronously, it responds to events in asynchronous execution mode when called by either

synchronous (such as API Gateway) or asynchronous (such as COS, CKafka, Timer, etc.) callers.

Upon completion of event scheduling, it immediately returns the event call identifier, RequestId, and ends the call operation,

eliminating the need for the caller to wait in a blocked state. Simultaneously with the return of the RequestId, the call engine

dispatches the event to the function runtime in parallel, initiating the execution of the function logic.

Once in asynchronous execution mode, execution logs are reported in real time to the log service, providing real-time feedback on

the execution status of asynchronous events. The principle is illustrated in the following diagram:

Use case

Execution Mechanism

How it works

Precautions

Due to differences in the execution mechanisms:

You cannot switch between sync/async execution. You can choose whether to enable the "async execution" feature only

when creating a function. This configuration item will be locked and cannot be modified or updated after the function is

created.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 150
of 172

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Select the region and namespace where to create a function at the top of the page and click Create to enter the function

creation process.

3. Choose to create a function using a template or from scratch.

4. On the Function Configuration page, expand Advanced Settings and select Asynchronous Execution, as shown below:

5. Click Complete.

You cannot retry function execution during async invocation in case of errors.

Any exceptional execution of async functions will trigger instance repossession.

If the event is invoked successfully, the returned message will only contain RequestId and the event execution result. You need

to configure the function code logic to call back specific APIs or send notification messages by yourself.

The maximum execution duration currently supported for async execution is 24 hours. If you need a longer execution duration,

you can submit a ticket for application.

If you use a function execution role to get the permission to access other components of Tencent Cloud services, the role's key

is valid for up to 6 hours. If the actual execution duration is longer, we recommend you use a permanent key.

The maximum QPS of asynchronously executed functions is 1,000, and any excess will be limited, resulting in response failures.

Procedure

https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/workorder/category

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 151
of 172

Status Trace
Last updated：2023-09-28 11:15:10

Asynchronously executed functions are usually used to process a large number of async time-consuming tasks. In order to better

manage such tasks, SCF provides a status trace feature, which records and reports the real-time status of event responses and

provides event management services such as event status statistics collection and query.

Once the status trace feature for asynchronously executed functions is enabled, the platform will start recording and reporting the

real-time status of events. The principle is illustrated in the following diagram:

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. Select the region and namespace where to create a function at the top of the page and click Create to enter the function

creation process.

3. Choose to create a function using a template or start from scratch.

4. On the Function Configuration page, expand Advanced Settings, select Asynchronous execution, and then select Status trace,

as shown below:

Use case

Execution Mechanism

How it works

Precautions

The status data of asynchronously executed events is retained for only 3 days and will be cleared on a rolling basis in a time

window of 3 days. If you want to keep all records, you need to periodically pull them and save them to your own storage.

After status trace is disabled, event management services such as recording, collecting, and querying asynchronously executed

events will no longer be available, and the generated event status data will be cleared in 3 days.

If the limit on QPS is exceeded, or if your account falls into arrears, the corresponding exception will be returned by the

scheduling engine directly after you invoke an event, and no event status records will be generated.

Procedure

https://console.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 152
of 172

5. Click Complete. After the function is created, you can click Event management to view the asynchronous event list.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 153
of 172

Async Event Management
Last updated：2023-09-27 18:49:43

SCF provides the features of getting the list and status of and terminating asynchronously executed function events for easier event

management.

An asynchronously executed function event has the following status:

SCF provides two async event termination methods: terminating invocation and sending termination signal, whose differences and

usage are as detailed below:

When a function is invoked, SCF allocates an instance to handle the function request or event. Once the function code has finished

running and returned, the instance will handle other requests. If all instances are in use when a request arrives, a new instance will

be allocated by the cloud function. (For more information on instances, please refer to Concurrency Overview)

After the asynchronously executed function event receives the invocation termination instruction, SCF will forcibly stop instance

operations and repossess the instance. When the next request arrives, if there are no idle instances, SCF will assign a new instance

Note

Features involved in this document are supported only for asynchronously executed functions.

Getting Async Event List and Status

Running: the event is being executed asynchronously.

Invoked successfully: the event is asynchronously executed successfully with a normal response.

Invocation failed: the event is asynchronously executed unsuccessfully with an abnormal response.

Invocation terminated: the user actively terminated the event in progress, and async execution stopped.

Relevant APIs

Related APIs Note Documentation

ListAsyncEvents

This API is used to list the information of an asynchronously executed event.

It can query the information by conditions such as RequestId , function name,

function version, event status, and event invocation/end time.

Only data within three days after event tracking is enabled can be queried.

Pull

Asynchronous

Function Event

List

GetAsyncEventStatus

This feature allows you to retrieve the execution status of an asynchronous

event based on the RequestId . The event status is retained for 72 hours,

starting from the end of the event.

Retrieve

Asynchronous

Function Event

Status

Note:

When using an API, pay attention to the API call rate limit. We recommend you not call the ListAsyncEvents API frequently.

To query the execution result of an async event, call the GetAsyncEventStatus API instead.

Terminates async function event

Relevant APIs

Related APIs Note
Documentati
on

TerminateAsyncE

vent

This API is used to terminate an asynchronously executed event in progress according

to the returned RequestId . The default behavior of this API is to terminate invocation. If

the GraceShutdown parameter is set to True , the SIGTERM termination signal will be

sent to the request. You can listen on the signal and customize the signal processing
logic inside the function.

Terminating

an ongoing

asynchrono

us function

event

Terminating invocation

https://cloud.tencent.com/document/product/583/45757
https://cloud.tencent.com/document/product/583/51519
https://cloud.tencent.com/document/product/583/52501
https://cloud.tencent.com/document/product/583/65704
https://cloud.tencent.com/document/api/583/52500

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 154
of 172

to process the request.

Applicable scenarios

This method is suitable for scenarios where function execution needs to be stopped in advance, such as infinite loop and execution

exception of an asynchronously executed function.

Considerations

Termination invocation will forcibly stop the instance and trigger instance reclamation, which means that cached information in the

instance (such as files in the /tmp directory) will not be retrievable. If you need to use this feature, please promptly write the cached

issues in the instance to other persistent storage media to avoid file loss after instance reclamation.

When the asynchronous event API of the termination function is called and the GraceShutdown parameter is set to True , SCF will

send a termination signal to the event specified in the API parameters. This signal is fixed as SIGTERM . You can listen for this signal

in the function and customize the processing logic after receiving the signal, including but not limited to stopping function execution.

After an asynchronously executed function event receives the SIGTERM signal:

This method is suitable for scenarios where function execution needs to be stopped for business requirements and custom

processing logic needs to be run before the stop.

The following sample code describes how to use a custom signal processing function to stop function execution after the SIGTERM

signal is listened on:

Python

Sending termination signal

If the function code listens and defines a signal handling function, the corresponding signal handling function logic will begin to

execute;

If the signal isn't listened on in the function code, the function process will exit and return the error code 439 (

User process exit when running , indicating that the user process exits).

SCF records the event signal reception conditions into the function execution log:

Signal successfully received: The log will record [PLATFORM] Signal received successfully.

Signal reception failed: The log will record [PLATFORM] Signal reception failed.

Scenarios

How to Use

Code deployment

-*- coding: utf8 -*-

import time

import signal

class GracefulKiller

 kill_now = False

 def __init__ self

 # Register signal processing function

 signal signal signal SIGTERM self graceshutdown

 def graceshutdown self *agrg

 print "do something before shutdown."

 self kill_now = True

def main_handler event context

 killer = GracefulKiller

 while not killer kill_now

 time sleep 1

 print killer kill_now

 print "Graceful shutdown."

 return "END"

:

():

. (. , .)

(,):

()

.

(,):

()

. :

. ()

(.)

()

()

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 155
of 172

Golang

Python

package main

import

 "context"

 "fmt"

 "log"

 "os"

 "os/signal"

 "syscall"

 "time"

 "github.com/tencentyun/scf-go-lib/cloudfunction"

type DefineEvent struct

 // test event define

 Key1 string json "key1"

 Key2 string json "key2"

func hello ctx context Context event DefineEvent string error

 go graceshutdown

 sleepNum := 0

 for

 sleepNum++

 fmt Println "sleep:" sleepNum

 time Sleep time Second

// Register signal processing function

func graceshutdown

 sigs := make chan os Signal 1

 signal Notify sigs syscall SIGTERM

 sig := <-sigs

 log Printf "receive signal %s" sig String

 //do something before shutdown.

 os Exit 0

func main

 // Make the handler available for Remote Procedure Call by Cloud Function

 cloudfunction Start hello

(

)

{

:

:

}

(. ,) (,) {

()

{

. (,)

. (.)

}

}

() {

(. ,)

. (, .)

. (, . ())

. ()

}

() {

. ()

}

Image Deployment

-*- coding: utf8 -*-

from flask import Flask request

import time

import signal

app = Flask __name__

class GracefulKiller

 kill_now = False

 def __init__ self

 # Register signal processing function

,

()

:

():

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 156
of 172

 signal signal signal SIGTERM self graceshutdown

 def graceshutdown self *agrg

 print "do something before shutdown."

 self kill_now = True

@app.route '/event-invoke' methods = 'POST'

def invoke

 while not killer kill_now

 time sleep 1

 print killer kill_now

 print "Graceful shutdown."

 return "END"

if __name__ == '__main__'

 killer = GracefulKiller

 app run host='0.0.0.0' port=9000

. (. , .)

(,):

()

.

(, [])

():

. :

. ()

(.)

()

()

:

()

. (,)

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 157
of 172

Namespace Management
Last updated：2023-09-28 11:25:36

Namespaces provide a relatively independent runtime environment for functions. When creating a cloud function, you can select

the namespace in which the function resides, thereby managing your cloud functions more effectively.

The following restrictions apply to the use of namespaces:

1. Log in to the SLS console .

2. Click Function Service on the left sidebar to enter the Function Service management page.

At the top left of this page, you can see the information of the namespace, such as default(1), where 'default' is the namespace

where the current function is located, and '1' is the number of functions in the namespace.

If you need to view functions deployed under different namespaces, you can select and switch by clicking the namespace

dropdown list.

You can independently manage namespaces through the Serverless Console , such as creating, modifying, and deleting

namespaces. The specific steps are as follows:

1. Log in to the SLS console .

2. Click Function Service on the left sidebar to enter the Function Service management page.

3. At the top left of this page, find Namespace and click on the right to enter the Namespace management interface, as shown

in the figure below:

4. Within the Namespace management page, the following operations can be performed:

Operational Overview

Use limits

The namespace name can contain up to 60 characters, must start with a letter, and can include a - z, A - Z, 0 - 9, -, _. It must

end with a number or a letter, for example, Tencent-Cloud_Space1 .

The Default space cannot be modified or deleted.

Currently, you can create up to 5 namespaces in each region by default, and up to 50 functions within each namespace. If you

wish to increase these quotas, you can apply by submitting a ticket .

Procedure

Viewing namespaces through the console

Managing Namespaces

Note

Once a space name is determined, it cannot be altered.

The default space is the default namespace. If not specifically set, functions will be created within this space by

default.

https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/workorder/category

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 158
of 172

To create a new namespace within this region: Click on Add namespace, enter the namespace name and select Submit to

complete the creation.

To modify the namespace description: Edit the description information and click Submit to finalize the changes.

To delete a namespace: Please first remove all functions under the namespace to be deleted, then click Delete on the right

side of the namespace on the "Namespace Management" page.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 159
of 172

ICP Filing
Last updated：2023-09-27 18:59:46

In accordance with the State Council Order No. 292 "Internet Information Service Management Measures" and the Ministry of

Industry and Information Technology Order No. 33 "Non-operational Internet Information Service Filing Management Measures",

the state implements a licensing system for operational Internet information services and a filing system for non-operational

Internet information services. It is illegal to engage in Internet information services without obtaining a license or completing the

filing procedures.

Therefore, when using Serverless services in the Chinese mainland to establish a website and bind domain name services, it is

mandatory to first complete the website filing. Only after successfully filing and obtaining the ICP filing number issued by the

Communications Administration can domain name access be activated.

If your website is hosted in Tencent Cloud's Serverless service in the Chinese mainland, and the organizer and domain name of the

website have never obtained an ICP filing, then you need to perform the initial ICP filing operation in the Tencent Cloud ICP filing

system first before activating the Serverless service and using SCF for HTTP access to the custom domain name.

Please refer to Initial ICP Filing and complete the ICP filing operation through the mini program.

The necessity of filing depends on the actual situation. If the default access is through the third-level domain provided by the API

Gateway, there is no need for filing. However, if you need to customize the domain name and this domain name points to a

Serverless service in mainland China, filing is required. For instance, scenarios such as accessing blog pages. You can determine

whether filing is necessary based on the following scenarios:

Why is ICP filing necessary?

The ICP filing number is subject to public query on the Ministry of Industry and Information Technology website: Query Entrance

For more information on relevant laws and regulations, please see: Laws and Regulations

ICP Filing Scenarios

ICP Filing Preparations

To expedite the filing process and ensure a successful submission, we recommend familiarizing yourself with the ICP filing

procedures in advance.

Given the varying requirements of different local administrations, the materials needed for preparation may differ. We

recommend that you familiarize yourself in advance with the ICP filing requirements of each province, autonomous region, and

municipality, as well as the related ICP filing restrictions .

Serverless ICP Filing Requirements: While there is no charge for the ICP filing itself, filing via Serverless requires the purchase of

a cloud function package with 50 million invocation times and a resource usage package of 400,000 GBs. Please proceed to the

Resource Package Purchase Page to complete your purchase.

Note

The Serverless ICP filing method is now available to all users.

ICP Filing Process

Note

During the Website Information Entry step, you need to initiate the cloud function filing first, that is, select Serverless in the

filing type.

Troubleshooting

Is it necessary to file an ICP for the access domain name when using Serverless?

No ICP filing required:

When the domain name resolution points to a Serverless service hosted outside mainland China, such as a server in Hong Kong,

China, there is no need for ICP filing.

ICP filing required:

https://cloud.tencent.com/document/product/243/37402
https://beian.miit.gov.cn/#/Integrated/recordQuery
https://beian.miit.gov.cn/#/Integrated/lawStatute
https://cloud.tencent.com/document/product/243/3474
https://cloud.tencent.com/document/product/243/18911
https://buy.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/243/37402#.E5.9B.9B.-.E5.A1.AB.E5.86.99.E7.BD.91.E7.AB.99.E4.BF.A1.E6.81.AF

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 160
of 172

There is no substantive difference between the ICP filing process for Serverless and CVM, the experience is entirely consistent. The

only difference is that the IP filled in during the CVM filing process will be directly exposed to the user, while the IP in the Serverless

filing process will be automatically fetched and provided by the system.

The ICP filing is done with Tencent Cloud, and the DNS resolution also needs to be done with Tencent Cloud. During the ICP filing

process using Tencent Cloud's Serverless method, the IP address for domain name resolution should point to the IP address of a

Tencent Cloud site.

Given the lightweight nature of Serverless, it may be deleted or added in real-time. To cater to the user habits of using Serverless,

the ICP filing for Serverless will be based on the account dimension. Each account is allowed to purchase one cloud function

resource package and file for two websites.

If a domain has already been filed for ICP under the same account in CVM, it can be directly bound through the API Gateway,

eliminating the need for duplicate filings.

The domain itself does not require ICP filing, but real-name authentication is necessary. ICP filing is only required when the domain

initiates a Web service.

No, ICP filing is not required. It is only necessary before your Serverless site officially provides external access. As the filing process

takes some time, it is recommended that you handle it in advance with Tencent Cloud, so your site can be put into use immediately

after it is ready.

No, re-filing is not necessary, but ICP filing for access is required. For more details, please see ICP Filing for Access .

The same entity can simultaneously file for access to multiple websites, with a maximum of 10 cloud functions or CVM filing

information at the same time.

The resource package takes effect immediately after purchase and refunds are not currently supported. For a five-day no-reason

refund and other special refunds, please consult with online customer service . After a successful refund through manual channels,

you will not be able to repurchase the ICP filing resource package within seven days.

When the domain name points to a Serverless service in mainland China, it is necessary to complete the ICP filing.

Is the ICP filing process for Serverless the same as that for CVM?

Why is the IP address inaccessible during the ICP filing process?

Are there any restrictions on Serverless ICP filing?

Does a domain that has already been filed with CVM need to be re-filed?

Does a currently unused registered domain still require ICP filing?

Does a Serverless site that has not been fully set up require ICP filing?

Does a domain that has already been filed for ICP need to be re-filed when accessing Tencent Cloud Serverless

services?

Under what circumstances is it necessary to file for a new website ICP?

If you have multiple domain names, each one requires ICP filing.

You have already filed an ICP for a domain name, and now you need to file for a new domain name.

Can ICP filing for access be applied to multiple Serverless services?

Is a refund available after the purchase of a Serverless ICP filing resource package?

https://cloud.tencent.com/document/product/243/37403
https://cloud.tencent.com/online-service?from=doc_583

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 161
of 172

Extended Storage Management

Mounting CFS File System
Last updated：2023-09-28 11:26:42

Tencent Cloud File Storage (CFS) offers a scalable shared file storage service, which can be used in conjunction with Tencent

Cloud servers, container services, or batch processing services. Adhering to the standard NFS file system access protocol, CFS

provides a shared data source for multiple computing nodes, supports the elastic expansion of capacity and performance, and can

be mounted for use without modification to existing applications. It is a highly available and reliable distributed file system, suitable

for scenarios such as big data analysis, media processing, and content management.

CFS is cost-effective, adopting a pay-as-you-go billing model, with an hourly billing cycle. You only need to pay for the actual

storage space used. For details on CFS billing, please refer to the Billing Overview.

Tencent Cloud SCF can be seamlessly integrated with CFS. After proper configuration, your functions can easily access files stored

in CFS. You can enjoy the following advantages of CFS:

Please follow the steps below to authorize the account:

1. Please refer to Modify Role to associate the SCF_QcsRole role with the QcloudCFSReadOnlyAccess policy. Successful

association is as shown in the figure below:

If the account you are using has not performed this operation, you may encounter issues such as inability to save functions and

unavailability of CFS related functions.

Overview

The function execution space is unlimited.

Multiple functions can share the same file system so as to share files.

Procedure

Associating authorization policy

Note

To use the CFS service, SCF needs permission to operate on your CFS resources.

https://cloud.tencent.com/document/product/598/19389

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 162
of 172

2. If you are using a sub-account, please contact the root account and refer to Sub-user Permission Settings to associate your

sub-account with the QcloudCFSReadOnlyAccess policy. Successful association is as shown in the figure below:

If the sub-account you are using has not performed this operation, you may encounter issues with using CFS related functions.

Please refer to Quickly Building an IPv4 Private Network to complete the creation of the VPC.

Please refer to Creating a CFS File System to complete the creation process.

1. Log in to the Serverless console and click on Function Service in the left navigation bar.

2. On the "Function Service" page, select the function name that needs to be configured.

3. On the "Function Management" page, under the Function Configuration tab, click Edit in the upper right corner.

4. In "Private Network", check the box to enable and select the VPC where the CFS file system is located, as shown below:

5. In "File System", check the box to enable, and mount according to the following information, as shown below:

6. Click Save at the bottom of the page to complete the configuration.

You can execute the following function code to start using the CFS file system.

Creating a Virtual Private Cloud (VPC)

Creating CFS resource

Note

Currently, SCF allows only CFS file systems whose network type is VPC to be added as mount targets. When creating a CFS

file system, please select the same VPC as that of the target function, so as to enable communication.

Mounting and using CFS file system

User ID and User group ID: IDs of the user and user group in CFS file system. SCF uses "10000" for both the user ID and user

group ID by default to manipulate your CFS file system. Set the file owner and corresponding group permission as needed

and ensure that your CFS file system has the required permission. A simple example is to run the

chown 10000:10000 -R /mnt/folder command. For more information, see Managing Permissions .

Remote Directory: remote directory in the CFS file system to be accessed by the function, which consists of a file system

and remote directory.

Local Directory: mount target of the local file system. You can use a subdirectory in the /mnt/ directory to mount the CFS

file system.

File System ID: select the file system to be mounted in the drop-down list.

Mount Target ID: select the ID of the mount target corresponding to the file system in the drop-down list.

'use strict'

var fs = require 'fs'

exports.main_handler = async event, context =>

;

();

() {

https://cloud.tencent.com/document/product/598/36256
https://cloud.tencent.com/document/product/215/30716
https://cloud.tencent.com/document/product/582/9132
https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/582/10951

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 163
of 172

You can use this Demo to test how well CFS performs on SCF.

 await fs.promises.writeFile '/mnt/myfolder/filel.txt', JSON.stringify event

 return event

(());

;

};

Performance test for using the CFS file system on SCF

https://github.com/tencentyun/scf_cfs_demo

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 164
of 172

DNS Caching Configuration
Last updated：2023-09-28 14:34:15

When the client initiates an access request to an address, it will query whether the local DNS cache has relevant records, and if so,

it will directly access the corresponding IP; otherwise, it will delegate global query to the recursive server.

As DNS resolution uses the UDP protocol for communication, it is greatly affected by the network environment and may have a

delay of several seconds in extreme conditions. In SCF use cases, the domain resolution delay may cause function execution

failures due to timeout and affect the normal business logic. When a function is invoked frequently, the DNS server's resolution

frequency may exceed the limit, which also will cause function execution failures.

SCF offers DNS caching configuration to solve the above problems. DNS caching can improve the domain resolution efficiency and

increase the domain resolution success rate by mitigating network jitters.

This feature is applicable to scenarios where an address is requested in the function code and the function is invoked frequently.

Due to different implementation mechanisms, please refer to the following steps to enable DNS caching for event functions, HTTP-

triggered Functions, and functions deployed with images, respectively.

1. Log in to the Serverless Console , select the function for which you want to enable DNS caching, and navigate to the function

details page.

2. On the function configuration page, click Edit in the upper right corner, and in the edit mode, check Enable DNS Caching. As

shown in the figure below:

3. Click Save.

1. In the startup file scf_bootstrap of the HTTP-triggered function, add the following command to start the nscd process and

enable DNS caching.

2. Deploy the updated scf_bootstrap and the function code together in the cloud. Then, DNS caching will be enabled for new

invocations.

1. Install nscd during the image creation process. For instance, in CentOS, you can run the following command to install nscd.

2. Update the default /etc/nscd.conf file with the following content:

Overview

Applicable Scenario

Procedure

Code deployment-based event-triggered function

HTTP-triggered function

/var/lang/bin/nscd -f /var/lang/conf/nscd.conf

Image deployment-based function

yum install nscd -y

#

/etc/nscd.conf

#

An example Name Service Cache config file. This file is needed by nscd.

https://console.cloud.tencent.com/scf
https://cloud.tencent.com/document/product/583/56126

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 165
of 172

#

WARNING: Running nscd with a secondary caching service like sssd may lead to

unexpected behaviour, especially with how long entries are cached.

#

Legal entries are:

#

logfile <file>

debug-level <level>

threads <initial #threads to use>

max-threads <maximum #threads to use>

server-user <user to run server as instead of root>

server-user is ignored if nscd is started with -S parameters

stat-user <user who is allowed to request statistics>

reload-count unlimited|<number>

paranoia <yes|no>

restart-interval <time in seconds>

#

enable-cache <service> <yes|no>

positive-time-to-live <service> <time in seconds>

negative-time-to-live <service> <time in seconds>

suggested-size <service> <prime number>

check-files <service> <yes|no>

persistent <service> <yes|no>

shared <service> <yes|no>

NOTE: Setting 'shared' to a value of 'yes' will accelerate the lookup,

but those lookups will not be counted as cache hits

i.e. 'nscd -g' may show '0%'.

max-db-size <service> <number bytes>

auto-propagate <service> <yes|no>

#

Currently supported cache names (services): passwd, group, hosts, services

#

logfile /var/log/nscd.log

threads 4

max-threads 32

server-user root

stat-user somebody

debug-level 0

reload-count 2

paranoia no

restart-interval 3600

enable-cache passwd no

positive-time-to-live passwd 600

negative-time-to-live passwd 20

suggested-size passwd 211

check-files passwd yes

persistent passwd yes

shared passwd yes

max-db-size passwd 33554432

auto-propagate passwd yes

enable-cache group no

positive-time-to-live group 3600

negative-time-to-live group 60

suggested-size group 211

check-files group yes

persistent group yes

shared group yes

max-db-size group 33554432

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 166
of 172

3. In the startup file scf_bootstrap , add the following command to start the nscd process and enable DNS caching. For instance, in

CentOS, add the following command to the startup file:

auto-propagate group yes

enable-cache hosts yes

positive-time-to-live hosts 300

negative-time-to-live hosts 0

suggested-size hosts 211

check-files hosts no

persistent hosts no

shared hosts yes

max-db-size hosts 8388608

enable-cache services no

positive-time-to-live services 600

negative-time-to-live services 3

suggested-size services 211

check-files services yes

persistent services yes

shared services yes

max-db-size services 33554432

enable-cache netgroup no

positive-time-to-live netgroup 28800

negative-time-to-live netgroup 20

suggested-size netgroup 211

check-files netgroup yes

persistent netgroup yes

shared netgroup yes

max-db-size netgroup 33554432

${PATH}/nscd -f /etc/nscd.conf

Note

${PATH} is the absolute path where nscd is installed.

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 167
of 172

Managed Resource Hosting Mode
Last updated：2024-03-25 16:21:42

The function resource hosting mode determines the resource pool for the SCF runtime. By default, upon enabling the function

service, the platform allocates a public cloud resource pool for each region. This resource pool, composed of underlying machines,

manifests as a 128GB function concurrency quota. You can also enhance the concurrency limit of a region or even a namespace by

purchasing package deals. The platform will automatically allocate matching machines based on the new concurrency limit,

ensuring the smooth operation of functions.

To better cater to your needs in various business scenarios, we now support a custom resource hosting mode for functions. This

allows functions to run on your specified infrastructure, such as public cloud TKE clusters, hybrid clouds, IDCs, and more.

The platform has now launched the K8s resource hosting mode to support the execution of functions in your own TKE clusters,

thereby accelerating business development using functions on a unified cloud-native resource base. Gradually, we will iterate to

support more cloud-native infrastructures such as hybrid clouds.

SCF supports two types: the Default Resource Hosting Mode and the K8s Resource Hosting Mode.

In the K8s Resource Hosting Mode, you can select a TKE cluster as the computing resource pool for the function. All function

request invocations will be scheduled to this resource pool, and no fees will be generated on the function side. Currently, TKE

cluster native nodes and ordinary nodes are supported, while super nodes are not.

In terms of usage, you only need to configure the resource hosting mode as K8s in the function namespace and bind a TKE cluster

to enable this mode. All function requests in this namespace will be scheduled to the bound TKE cluster.

The scheduling principle of functions under the K8s Resource Hosting Mode is illustrated in the following diagram:

Overview of Function Resource Hosting Mode

Types of Function Resource Hosting Modes

In the Default Resource Hosting Mode, functions run in the public cloud resource pools under each region of the function

platform. The function platform fully controls the supply and scheduling of underlying machines. You only need to focus on the

actual business scale requirements and ensure business operations by adjusting the concurrency limit of the function.

In the K8s Resource Hosting Mode, functions run in your specified K8s cluster. You manage the resource supply in the K8s

cluster, while the function platform fully controls the request scheduling of the functions, intelligently invoking them within the

given resource pool to fully utilize resources.

K8s Resource Hosting Mode

Overview

Operating Principle

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 168
of 172

Once you have specified a TKE cluster and function runtime namespace for the function namespace, the platform will automatically

create an scf-system namespace in the cluster, along with daemonset for deploying and managing function code metadata,

request forwarding pod, internal network clb service components, and so on.

The function request sent by the user will first be directed to the request invocation entry in the function environment. The function

scheduling management module will then analyze whether there are idle function runtime Pod resources available for execution in

the TKE cluster:

1. If there are no idle resources, a scheduling request will be issued to the TKE cluster via the resource scheduling module to

prepare function runtime Pod resources. Once the Pod is ready, the function management module in the TKE cluster will

prepare the function code and other metadata, and finally report the newly added runtime resources to the scheduling

management module in the function environment.

2. If there are idle resources, the request will be forwarded to the access layer Service in the TKE cluster via the internal network

CLB. Then, the function invocation module in the cluster will send the request to the function runtime Pod, entering the function

execution phase. During the function execution, logs will be reported in real time to the user's CLS log system. After the function

execution ends, the execution results, monitoring metrics, and other information will be sent back to the request invocation

module in the function environment.

Compared to the default resource hosting model, the K8s resource hosting model offers the following advantages:

TKE Cluster Initialization

Function Request Scheduling Lifecycle

Advantages

Functions can run in your designated K8s cluster, offering greater flexibility and control, enabling better cost management and

stronger infrastructure resource management.

The proactive scheduling mechanism of the function can significantly enhance the resource utilization of your K8s cluster. Not

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 169
of 172

1. Log in to the Serverless Console and click Function Service on the left sidebar.

2. At the top of the Function Service page, select the region where you wish to create the function, and click on the ⚙️ next to the

namespace to enter Namespace Management, as shown in the figure below:

3. In the Namespace pop-up window, click Add New Namespace to navigate to the namespace creation page, as shown in the

figure below:

only does it improve R&D efficiency through the function development experience, but it also reduces resource waste, truly

achieving cost reduction and efficiency enhancement.

By integrating with the K8s ecosystem, a full-stack cloud-native research and development system and service governance

mechanism can be achieved. This brings advanced development experiences to business developers and higher availability

guarantees for online businesses.

Instructions

Create a function namespace and bind it to the TKE cluster

https://console.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 170
of 172

4. In the Resource Hosting Mode option, select K8s. If this is your first time, a pop-up window for TKE role authorization will

appear. Follow the instructions to complete the authorization before proceeding to the next step.

5. In the TKE Cluster Configuration, select the TKE cluster and the namespace under that cluster. The platform will create function

service support components such as daemonset and internal network CLB under the scf-system namespace of the specified

cluster, and will create function runtime Pods under the specified namespace. Please ensure that there are nodes in the

selected TKE cluster, and that the node types are normal and native nodes, to ensure the initialization process is completed

smoothly.

6. In the Function VPC Subnet configuration, specify the subnet. The platform will consume an IP under this subnet to create an

internal network CLB as the function request entry point, enabling function request forwarding to the TKE cluster. Please note

that the subnet does not support the 9.x.x.x network segment.

7. In addition to the basic configuration items above, you can also configure the following items as needed:

Function Directory: Specify a path on a TKE cluster node for temporary storage of function codes, layer codes, and logs

generated during the function execution process.

Support Service Port: Specify an available port number. The function support service will listen on this port to implement the

function scheduling link.

NodeSelector: Function instances can be scheduled to nodes with expected labels based on the scheduling rules. For more

details, refer to the following section Setting the Scheduling Strategy for Function Instances in the TKE Cluster .

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 171
of 172

8. Click Create, then in the pop-up confirmation window, click Continue. This will initiate the function support component

initialization process in the TKE cluster, which will take approximately 20 seconds. Upon completion, you will see the status

updated to "Normal" in the Namespace Management page, as shown below:

9. Switch to the created function namespace to start creating and using functions.

By setting the NodeSelector and Taint Tolerance scheduling strategies, you can specify the scheduling of function instances within

the TKE cluster. This allows for more effective utilization of resources within the cluster. For more details, see Container Service -

Rational Resource Allocation . The following application scenarios exist:

Taint Tolerance Scheduling: Function instances can be scheduled to nodes with expected taints based on the scheduling

rules. For more details, refer to the following section Setting the Scheduling Strategy for Function Instances in the TKE

Cluster .

Setting the Scheduling Strategy for Function Instances in the TKE Cluster

Run function instances on specified nodes.

Run function instances on nodes within a specific scope (the scope can be attributes such as availability zones, machine types,

etc.).

Prerequisites

A scheduling rule is set in the advanced settings of the workload, and the Kubernetes version of the cluster is 1.7 or higher.

To ensure that your Pods can be scheduled successfully, please make sure that the node has resources available for container

scheduling after the scheduling rule is set.

When using the custom scheduling feature, it is necessary to set corresponding Labels or Taints for the nodes. For more details,

please refer to Setting Node Labels and Setting Node Taints .

Setting a Scheduling Rule

NodeSelector

https://cloud.tencent.com/document/product/457/45635
https://cloud.tencent.com/document/product/457/32768
https://cloud.tencent.com/document/product/457/42948#.E6.B7.BB.E5.8A.A0.E6.B1.A1.E7.82.B9.5B.5D(id.3Aaddtaints)

Serverless Cloud Function

©2013-2024 Tencent Cloud. All rights reserved. Page 172
of 172

Custom scheduling rules can be used to match node labels and schedule function instances to specified nodes. If an affinity

condition is met during scheduling, it is scheduled to the corresponding Node. If no node satisfies the condition, the scheduling fails.

For more details, please refer to K8s Node Affinity .

Through custom scheduling rules, node taints can be tolerated, allowing function instances to be scheduled onto specified nodes.

For more details, please refer to K8s Taints and Tolerations .

Should you encounter any issues during use, feel free to join our group for communication:

Taint Tolerance Scheduling

Contact Us

https://kubernetes.io/zh-cn/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/zh-cn/docs/concepts/scheduling-eviction/taint-and-toleration/

