
Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 1 of 57

Serverless Cloud Function

Practical Operation of Code

Product Introduction

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 2 of 57

Copyright Notice

©2013-2018 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy

or distribute in any way, in whole or in part, the contents of this document without Tencent Cloud's the

prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing

(Beijing) Company Limited and its affiliated companies. Trademarks of third parties referred to in this

document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and

services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products

or services are subject to change. Specific products and services and the standards applicable to them are

exclusively provided for in Tencent Cloud's applicable terms and conditions.

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 3 of 57

Contents

Practical Operation of Code

Best Practice

Using API Gateway to provide API service

Example

Step 1. Create and Test blogArticle Function

Step 2. Create and Test API Service

Step 3. Publish API Service and Test Online

Acquire Image on COS and Create a Thumbnail

Example

Step 1. Prepare COS Bucket

Step 2. Create Deployment Package

Step 3. Create CreateThumbnailDemo Function and Test

Step 4. Add Trigger

MapReduce Method that Uses WordCount as an Example

Example

Step 1: Prepare a COS Bucket

Step 2. Create Deployment Package

Step 3. Create Mapper and Reducer Functions and Test

Step 4. Add Trigger

Send Email According to the Messages in CMQ

Example

Step 1. Create CMQ Topic Mode Queue

Step 2. Create and Test sendEmial Function

Step 3. Adding Trigger and Test

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 4 of 57

Based on the features of Serverless Cloud Function (SCF), we recommend that you:

Write function codes in a stateless style, to ensure that your codes are not maintained in any status. Use

COS, Redis/Memcached and other services to cache intermediate information and implement the final

computing results because the results of local storage and internal storage may be lost.

Instantiate any objects that may be reused (such as database connections) other than execution

methods.

Configure +rx (read and execute) permission to your file in the uploaded ZIP to ensure successful

execution of codes.

Minimize the use of startup code that is not directly related to the processing of current event to

reduce cost and improve performance if users want to minimize the startup latency. In addition, since

the underlying computing resources may be reused to some extent, users can execute the function

regularly to use "warm start" for the subsequent calling operations if they want to minimize the startup

latency.

Maximize the use of log/print statements in codes to provide sufficient information for debugging.

You can use external code management services (such as Git) for the purpose of version and audit

management of core codes, to ensure the completeness of codes (version management feature will be

available soon).

Practical Operation of Code
Best Practice
Last updated：2018-08-28 18:03:01

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 5 of 57

In this tutorial, assuming that:

You want to use SCFs to implement Web backend services, such as listing the articles in a blog and

providing article contents.

You want to use APIs to provide services for webpages and Apps.

Implementation Overview

The implementation process of the service is as follows:

Create a function, configure API rules in the API gateway and direct the backend service to the

function.

A user sends a request that contains the article ID to the API.

SCF queries the content corresponding to the ID according to the request parameters, and responds to

the request in JSON format.

The user performs subsequent processing after receiving the response in JSON format.

Note: By the time you finish this tutorial, your account will contain the following resources:

A SCF triggered by the API gateway.

An API service in the API gateway and related API rules.

This tutorial is divided into three parts:

Complete the coding, creation, and testing of a function.

Complete the design, creation and configuration of an API service and API rules.

Test and verify the correctness and operation of the APIs through a browser or http request tool.

API Design

The design of APIs for current applications usually follows the Restful specification. Therefore in this

example, we design the APIs for obtaining blog articles as follows:

Using API Gateway to provide API service
Example
Last updated：2018-08-28 16:04:29

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 6 of 57

/article GET

Return the article list

/article/{articleId} GET

Return the content of the article with the specified ID

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 7 of 57

In this section, you will create a function to achieve API response regarding blog articles, and test the

function by calling it through the console.

Creating a blogArticle SCF

1. Log in to the Serverless Cloud Function Console. Select Guangzhou from the region list and click

Create.

2. In the Function configuration section, enter blogArticle as the function name, leave all the other

configuration options unchanged, and then click Next.

3. In the Function code section, enter index.main_handler as the execution method and paste the

following codes into the code window, and then click Next.

-*- coding: utf8 -*-
import json

testArticleInfo=[
{"id":1,"category":"blog","title":"hello world","content":"first blog! hello world!","time":"2017-12-05 13:
45"},
{"id":2,"category":"blog","title":"record info","content":"record work and study!","time":"2017-12-06 08:
22"},
{"id":3,"category":"python","title":"python study","content":"python study for 2.7","time":"2017-12-06 1
8:32"},
]

def main_handler(event,content):
if "requestContext" not in event.keys():
return json.dumps({"errorCode":410,"errorMsg":"event is not come from api gateway"})
if event["requestContext"]["path"] != "/article/{articleId}" and event["requestContext"]["path"] != "/art
icle":
return json.dumps({"errorCode":411,"errorMsg":"request is not from setting api path"})
if event["requestContext"]["path"] == "/article" and event["requestContext"]["httpMethod"] == "GET"
: #Obtain the article list

Step 1. Create and Test blogArticle
Function
Last updated：2018-09-03 15:26:36

https://console.cloud.tencent.com/scf

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 8 of 57

retList = []
for article in testArticleInfo:
retItem = {}
retItem["id"] = article["id"]
retItem["category"] = article["category"]
retItem["title"] = article["title"]
retItem["time"] = article["time"]
retList.append(retItem)
return json.dumps(retList)
if event["requestContext"]["path"] == "/article/{articleId}" and event["requestContext"]["httpMethod"
] == "GET": #Obtain the article content
articleId = int(event["pathParameters"]["articleId"])
for article in testArticleInfo:
if article["id"] == articleId:
return json.dumps(article)
return json.dumps({"errorCode":412,"errorMsg":"article is not found"})
return json.dumps({"errorCode":413,"errorMsg":"request is not correctly execute"})

1. In the Triggering method section, you do not need to add any trigger method because the API

gateway trigger is configured in the API gateway. Click Complete.

Note

The data structure of articles can be saved and simulated using the variable testArticleInfo. Usually, data

structures are read from databases or files.

Testing the blogArticle SCF

When a function is created, it is generally tested through the console or API, to ensure the function

output meets the expectation, and then you can bind it to a trigger for practical application.

1. In the details page of the function you just created, click Test.

2. Select API Gateway Test Template from the test templates. Modify it as follows to test the API for

obtaining the article list.

{
"requestContext": {
"serviceName": "testsvc",
"path": "/article",
"httpMethod": "GET",

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 9 of 57

"requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",
"identity": {
"secretId": "abdcdxxxxxxxsdfs"
},
"sourceIp": "10.0.2.14",
"stage": "prod"
},
"headers": {
"Accept-Language": "en-US,en,cn",
"Accept": "text/html,application/xml,application/json",
"Host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",
"User-Agent": "User Agent String"
},
"pathParameters": {
},
"queryStringParameters": {
},
"headerParameters":{
"Refer": "10.0.2.14"
},
"path": "/article",
"httpMethod": "GET"
}

In the code above, the path and httpMethod fields in requestContext , as well as the peripheral path

and httpMethod fields are modified as /article (the API path we design) and GET .

1. Click Run to view the results. The running result should be successful, and the content returned should

be the basic information of articles as shown below.

[{"category": "blog", "time": "2017-12-05 13:45", "id": 1, "title": "hello world"}, {"category": "blog", "tim
e": "2017-12-06 08:22", "id": 2, "title": "record info"}, {"category": "python", "time": "2017-12-06 18:32",
"id": 3, "title": "python study"}]

1. Modify the test template as follows to test the API for obtaining article contents.

{
"requestContext": {
"serviceName": "testsvc",
"path": "/article/{articleId}",
"httpMethod": "GET",
"requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",
"identity": {
"secretId": "abdcdxxxxxxxsdfs"

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 10 of 57

},
"sourceIp": "10.0.2.14",
"stage": "prod"
},
"headers": {
"Accept-Language": "en-US,en,cn",
"Accept": "text/html,application/xml,application/json",
"Host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",
"User-Agent": "User Agent String"
},
"pathParameters": {
"articleId":"1"
},
"queryStringParameters": {
},
"headerParameters":{
"Refer": "10.0.2.14"
},
"path": "/article/1",
"httpMethod": "GET"
}

The path and httpMethod fields in requestContext are modified as /article/{articleId} (the API path

we design) and GET . The peripheral path and httpMethod fields are modified as /article/1 (the actual

request path) and GET . The pathParameters field should be "articleId":"1" , the parameter and the

actual value extracted from the API gateway.

1. Click Run to view the results. The running result should be successful, and the content returned should

be the detailed content of articles as shown below.

{"category": "blog", "content": "first blog! hello world!", "time": "2017-12-05 13:45", "id": 1, "title": "hell
o world"}

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 11 of 57

In this section, you will create a service in the API gateway and related API rules, connect the SCF created

in Step 1, and test the correctness of the APIs through the console.

Note:

The API service and the function must be in the same region. In this tutorial, the API service is

created in the region Guangzhou.

Creating an API Service and API Rules

1. Log in to the Tencent Cloud Console, and select Internet Middleware -> API Gateway from Cloud

Products.

2. Click the Services tab and change the region to Guangzhou.

3. Click New to create an API service. Enter the service name blogAPI in the pop-up window and click

Submit to complete the creation.

4. Enter the created service blogAPI , and select the API Management tab.

5. Click New to create an API with the path of /article and the request method of GET. To facilitate the

test later, select No Authentication here. No parameter configuration needs to be made. Click Next.

6. Select Cloud Function for the backend type, and select blogArticle created in Step 1 as the function,

and click Complete.

7. Click New in the API Management tab to create another API with the path of /article/{articleId} and

the request method of GET. Select No Authentication, and enter the parameter articleId in the

parameter configuration with Path as the parameter location, int as the parameter type, and 1 as the

default value, and then click Next.

8. Select Cloud Function for the backend type, and select blogArticle created in Step 1 as the function,

and click Complete.

Step 2. Create and Test API Service
Last updated：2018-09-03 15:27:06

https://console.cloud.tencent.com/apigateway

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 12 of 57

Debugging API Rules

1. To debug the API /article created in the step 5 above, click API Debugging, send a request in the

debugging page, and check whether the response body in the returned result is shown as follows:

[{"category": "blog", "time": "2017-12-05 13:45", "id": 1, "title": "hello world"}, {"category": "blog", "ti
me": "2017-12-06 08:22", "id": 2, "title": "record info"}, {"category": "python", "time": "2017-12-06 18:
32", "id": 3, "title": "python study"}]

2. To debug the API /article/{articleId} created in the step 7 above, click API Debugging, modify the

request parameter value to 1 and send a request in the debugging page, and check whether the

response body in the returned result is shown as follows:

{"category": "blog", "content": "first blog! hello world!", "time": "2017-12-05 13:45", "id": 1, "title": "h
ello world"}

3. You can also modify the value of the request parameter articleId in step 2 to other number and check

the response content.

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 13 of 57

If you complete Step 2: Create and Test the API Service, and the test results meet the expectation, you can

publish this service and initiate requests from a browser to verify whether the APIs run normally.

API Service Publishing

1. In the list in the Services page in the API Gateway console, find the blogAPI service created in Step 2,

and click Publish in Operation.

2. In the pop-up window for service publishing, select Publish for the publishing environment and enter

 Publish API in the comments, and click Submit.

API Online Verification

After published, the APIs can be accessed externally. Next, you can initiate requests from a browser to

verify whether the APIs can respond correctly.

1. In the blogAPI service, click the Environment Management tab, and copy the access path of the

 Publish environment, such as, service-kzeed206-1251762227.ap-

guangzhou.apigateway.myqcloud.com/release .

Note: Since the domain names of services are not the same, the domain name assigned to your service

will be different from that in this document. Therefore, do not copy the address directly in this

document.

2. Add the path of the created API rules after this path as follows:

service-kzeed206-1251762227.ap-guangzhou.apigateway.myqcloud.com/release/article
service-kzeed206-1251762227.ap-guangzhou.apigateway.myqcloud.com/release/article/1
service-kzeed206-1251762227.ap-guangzhou.apigateway.myqcloud.com/release/article/2

3. Copy the new path in step 2, paste it to the browser and access it, and check whether the output is the

same with that when the API is tested.

Step 3. Publish API Service and Test
Online
Last updated：2018-09-03 15:27:20

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 14 of 57

4. You can modify the article ID in the request and check the output to see whether the code can handle

the wrong article ID correctly.

Now, you have learned how to implement services using SCF and provide services using APIs. You can add

new features and API rules subsequently by modifying the code to enrich the application module.

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 15 of 57

In this tutorial, assuming that:

A user is going to upload a photo to a specific COS Bucket

You need to create a thumbnail for every image uploaded by the user

Save the created thumbnails in another COS Bucket

Notes:
1. Two COS Buckets are required. If you use the same bucket as both source and target buckets, each
thumbnail uploaded to the source bucket may trigger another object creation event that will again
call the function, which may cause an infinite loop.
2. The function must be in the same region with COS Bucket.

Implementation Overview

The implementation process of the function is as follows:

Create the function and the event source mapping of COS Bucket

A user uploads the object to the source bucket (object creation event) of COS.

COS Bucket detects the object creation event.

COS calls the function and passes the event data to the function in parameters, thus publishing the

cos:ObjectCreated:* event to the function.

The SCF platform receives the call request and runs the function.

The function acquires the Bucket name and file name from the received event data, obtains the file

from the source Bucket, and uses the graph database to create a thumbnail, and then saves it in the

target Bucket.

Note: By the time you finish this tutorial, your account will contain the following resources:

A SCF used to create thumbnails.

Two COS Buckets: and (the COS Bucket name you specify. For example, if you use the Bucket named

"example" as the source bucket, you will create "exampleresized" as the target Bucket)

Acquire Image on COS and Create a
Thumbnail
Example
Last updated：2018-08-28 15:55:13

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 16 of 57

Notification configuration on the source Bucket: Bind SCF and COS Bucket to the notification

configuration of the Bucket, and add a new option to identify the type of the event to be triggered by

COS (file creation/deletion) and the name of the function to be called. For more information about

COS notification features, please see API PutBucketNotification.

This tutorial is divided into two parts:

Complete the steps required to create a function, and call the function manually using the sample COS

event data. This is designed to verify whether the function works normally.

Add notification configurations to the source Bucket to allow COS to call the function when it detects a

file creation event.

https://cloud.tencent.com/document/product/436/8588

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 17 of 57

Notes:
1. The source Bucket, target Bucket and function must reside in the same region. In this tutorial, Sout
h China (Guangzhou) region is used.
2. Two COS Buckets are required. If you use the same Bucket as both source and target buckets, each
thumbnail uploaded to source bucket may trigger function again, therefore unnecessary recursion i
s generated.

1) Log in to the Tencent Cloud console, and select Cloud Object Storage.

2) Click the Create Bucket button in the Bucket List tab to create a new source COS Bucket.

3) Configure the name of COS Bucket, such as mybucket , and set the region to South China , access

permission to default Public read & Private write , CDN acceleration to default Disabled , and click Save

to create a new COS Bucket.

4) Create the target Bucket mybucketresized in the same way.

5) Upload any image file to the source Bucket (i.e. mybucket). In this example, we use an image

HappyFace.png for demonstration. (Before COS is associated, when manually calling the function to

perform test and verification, you need to pass the sample data that contains this file to SCF, so that SCF

can locate corresponding file according to this data. Therefore, you first need to create this sample

object.)

Step 1. Prepare COS Bucket
Last updated：2018-09-03 15:27:41

https://mc.qcloudimg.com/static/img/eae5118ed07d95ac2837f000f1ab96e5/HappyFace.png

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 18 of 57

The version of image used in SCF underlying container environment is CentOS 7.2. Therefore, in this
example, the Linux example is implemented under the CentOS 7.2 environment. Please make proper
adjustments if your local environment is one of other released Linux versions.

Creating Picture Processing Code

1) Create a directory

If the local environment is Windows, you can create a new folder named CreateThumbnail in any location.

If the local environment is Linux, you can create a new folder named CreateThumbnail in any location, as

shown below:

2) Open text editor and enter the following code.

Note: Replace appid, secret_id, secret_key, and region with your actual data, where:

appid can be found in Account Information in the console.

secret_id and secret_key can be obtained from Cloud API Key in the console.

Step 2. Create Deployment Package
Last updated：2018-09-03 15:27:54

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 19 of 57

region is the region in which the function and COS Bucket reside. sh, gz, and bj are supported. Note:

The region must be the same with that of COS Bucket created in the previous step. The bucket created

in "Step 1: Prepare COS Bucket" resides in South China (Guangzhou), so the region value in the code

must be gz .

import uuid
import json
import os
import logging
from PIL import Image
import PIL.Image
import commands
import datetime
import urllib
from qcloud_cos import CosClient
from qcloud_cos import DownloadFileRequest
from qcloud_cos import UploadFileRequest

print('Loading function')
appid = 1251762222 #please change to your appid. Find it in Account Info
secret_id = u'AKIDYDh085xQp48161uOn2CKKVbeebvDu6j2' #please change to your API secret id. Fin
d it in API secret key pair
secret_key = u'lLkxx40kIfuyqW0IOI0WqyueCYjlgZQ2' #please change to your API secret key. Find it in
API secret key pair
region = u'gz'

cos_client = CosClient(appid, secret_id, secret_key, region)
logger = logging.getLogger()

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 20 of 57

def resize_image(image_path, resized_path):
with Image.open(image_path) as image:
image.thumbnail(tuple(x / 2 for x in image.size))
image.save(resized_path)

def delete_local_file(src):
logger.info("delete files and folders")
if os.path.isfile(src):
try:
os.remove(src)
except:
pass
elif os.path.isdir(src):
for item in os.listdir(src):
itemsrc=os.path.join(src,item)
delete_file_folder(itemsrc)
try:
os.rmdir(src)
except:
pass

def main_handler(event, context):
logger.info("start main handler")
for record in event['Records']:
try:
bucket = record['cos']['cosBucket']['name']
cosobj = record['cos']['cosObject']['key']
cosobj = cosobj.replace("/"+str(appid)+"/"+bucket,"")
key = urllib.unquote_plus(cosobj.encode('utf8'))
download_path = '/tmp/{}{}'.format(uuid.uuid4(), key.strip('/'))
upload_path = '/tmp/resized-{}'.format(key.strip('/'))
print("Get from [%s] to download file [%s]" %(bucket,key))

download image from cos
request = DownloadFileRequest(bucket, key, download_path)
download_file_ret = cos_client.download_file(request)
if download_file_ret['code'] == 0:
logger.info("Download file [%s] Success" % key)
logger.info("Image compress function start")
starttime = datetime.datetime.now()

#compress image here
resize_image(download_path, upload_path)
endtime = datetime.datetime.now()
logger.info("compress image take " + str((endtime-starttime).microseconds/1000) + "ms")

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 21 of 57

#upload the compressed image to resized bucket
request = UploadFileRequest(u'%sresized' % bucket, key.decode('utf-8'), upload_path.decode('utf-8'
))
upload_file_ret = cos_client.upload_file(request)
logger.info("upload image, return message: " + str(upload_file_ret))

#delete local file
delete_local_file(str(download_path))
delete_local_file(str(upload_path))
else:
logger.error("Download file [%s] Failed, err: %s" % (key, download_file_ret['message']))
return -1
except Exception as e:
print(e)
print('Error getting object {} from bucket {}. Make sure the object exists and your bucket is in the sam
e region as this function.'.format(key, bucket))
raise e

3) Save the file as CreateThumbnail.py in the directory you just created:

Creating a Deployment Package

For Windows environment

Because the sample program is dependent on Pillow dependent library of Python, to avoid the

dependent library installed under your local Windows environment conflicts with that in the platform, we

recommend that you:

Click the link to download Pillow Library directly, and decompress the zip file to the folder

CreateThumbnail you just created.

Compress all the files in this folder into a zip file named CreateThumbnailDemo.zip (do not compress the

folder): select all files, right-click on them, select a compress software (such as winrar), click Add to

https://mc.qcloudimg.com/static/archive/66534c4192eefc53af8ce3b319c521c9/PIL.zip

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 22 of 57

Archive..., then select the archive format as zip, and click OK to generate a zip file named

 CreateThumbnailDemo.zip .

For Linux environment

Note: Assuming that the following steps are performed under CentOS 7.2 environment, if your enviro
nment is one of other released Linux versions, modify the instructions according to relevant method
of the version, and ensure the Python version is 2.7.

1) Install Python environment.

sudo yum install python

2) Make sure that you have installed a necessary dependent library in the current Linux environment.

sudo yum install python-devel python-pip gcc libjpeg-devel zlib-devel python-virtualenv

3) Create and activate virtual environment.

virtualenv ~/shrink_venv
source ~/shrink_venv/bin/activate

4) Install Pillow library under the virtual environment.

pip install Pillow

5) Add the content related to lib and lib64 into a .zip file (the path is assumed to be

 /CreateThumbnailDemo.zip).

cd $VIRTUAL_ENV/lib/python2.7/site-packages
zip -r /CreateThumbnailDemo.zip *
cd $VIRTUAL_ENV/lib64/python2.7/site-packages
zip -r /CreateThumbnailDemo.zip *

6) Add the PY file created in the first step to this .zip file.

cd /CreateThumbnail
zip -g /CreateThumbnailDemo.zip CreateThumbnail.py

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 23 of 57

In this section, you will create a function to implement thumbnail program, and test the function through

the console or by calling APIs.

Creating a CreateThumbnailDemo SCF

1) Log in to the Serverless Cloud Function Console. Select Guangzhou from the region list and click

Create.

2) In Function configuration section, enter CreateThumbnailDemo as the function name, leave all other

configuration options unchanged, and then click Next.

3) Go to the Function code section, and click Local upload zip file. Enter CreateThumbnail.main_handler

as the execution method, select CreateThumbnailDemo.zip created in Step 2: Create Deployment

Package, and click Next.

4) In the Triggering method section, you need to test the function manually, so no trigger method is

added. Click Done.

Testing the CreateThumbnailDemo SCF

When a function is created, it is generally tested through the console or API, to ensure the function

output meets the expectation, and then you can bind it to a trigger for practical application.

1) In the details page of the CreateThumbnailDemo function you just created, click Test.

2) Choose Upload File to COS/Delete File from COS Test Code from the drop-down list of test templates.

3) In the test code, set name to the name of bucket mybucket created in "Step 1: Prepare COS Bucket",

and set key to the key value of /HappyFace.jpg uploaded in "Step 1: Prepare COS Bucket", as shown in

the example below:

{
"Records":[
{
"event": {

Step 3. Create CreateThumbnailDemo
Function and Test
Last updated：2018-09-03 15:28:00

https://console.cloud.tencent.com/scf

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 24 of 57

"eventVersion":"1.0",
"eventSource":"qcs::cos",
"eventName":"event-type",
"eventTime":"Unix timestamp",
"eventQueue":"qcs:0:cos:gz:1251111111:cos",
"requestParameters":{
"requestSourceIP": "111.111.111.111",
"requestHeaders":{
"Authorization": "Uploaded authentication information"
}
}
},
"cos":{
"cosSchemaVersion":"1.0",
"cosNotificationId":"Configured or returned ID",
"cosBucket":{
"name":"mybucket", #set to demo bucket here
"appid":"appId",
"region":"gz"
},
"cosObject":{
"key":"/HappyFace.png", #set to demo file here
"size":"1024",
"meta":{
"Content-Type": "text/plain",
"x-cos-meta-test": "Custom meta",
"x-image-test": "Custom meta"
},
"url": "Origin server URL for accessing files"
}
}
}
]
}

4) Click Run to view the results. This program is running normally if both upload and download are

successful in the result。

5) Go to the COS Console, and click mybucketresized created in "Step 1: Prepare COS Bucket", to check

whether a thumbnail named HappyFace.png is generated.

https://console.cloud.tencent.com/cos4/index

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 25 of 57

6) Download the picture and compare it with the size of original picture.

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 26 of 57

If you complete "Step 3: Create CreateThumbnailDemo Function and Test", and the test result meets the

expectation, you can add COS configurations so that COS can publish events to SCF and call the function.

1) In the details page of the CreateThumbnailDemo function you just created, select the Triggering

Method tab, and click Add trigger mode.

2) Select COS trigger for the trigger method, mybucket created in Step 1: Prepare COS Bucket for COS

Bucket, File Upload for the event type, and then click Save.

In this way, you have completed all steps. You can test the configuration by following the steps below:

1. Go to the COS Console, select mybucket , upload a .jpg or .png picture, and check whether a file with

the same name exists in mybucketresized after a period of time.

2. You can monitor the function activities in the Serverless Cloud Function Console, and select Logs to

check the logs in which the calling of the function is recorded.

Step 4. Add Trigger
Last updated：2018-09-03 15:28:05

https://console.cloud.tencent.com/cos4/index
https://console.cloud.tencent.com/scf

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 27 of 57

In this tutorial, assuming that:

You will upload some text files (such as logs) to a specific COS Bucket from time to time.

You need to calculate the number of words in these text files.

Notes:
1. Two COS Buckets are required. If you use the same bucket as both source and target buckets, each
thumbnail uploaded to the source bucket may trigger another object creation event that will again
call the function, which may cause an infinite loop.
2. The function must be in the same region with COS Bucket.

Implementation Overview

The implementation process of the function is as follows:

Create the function and the event source mapping of COS Bucket

A user uploads the object to the source bucket (object creation event) of COS.

COS Bucket detects the object creation event.

COS calls the function and passes the event data to the function in parameters, thus publishing the

cos:ObjectCreated:* event to the function.

The SCF platform receives the call request and runs the function.

The function acquires the Bucket name and the file name from the event data it received, obtains the

file from the source Bucket, calculates the number of words using the wordcount implemented in the

code, and saves it in the target Bucket.

Note: By the time you finish this tutorial, your account will contain the following resources:

Two SCFs: Mapper and Reducer

Three COS Buckets: srcmr, middlestagebucket and destmr

Notification configuration on the source Bucket: Bind SCF and COS Bucket to the notification

configuration of the Bucket, and add a new option to identify the type of the event to be triggered by

MapReduce Method that Uses
WordCount as an Example
Example
Last updated：2018-08-28 15:49:18

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 28 of 57

COS (file creation/deletion) and the name of the function to be called. For more information about

COS notification features, please see the API PutBucketNotification.

This tutorial is divided into two parts:

Complete the steps required to create a function, and call the function manually using the sample COS

event data. This is designed to verify whether the function works normally.

Add notification configurations to the source Bucket to allow COS to call the function when it detects a

file creation event.

https://cloud.tencent.com/document/product/436/8588

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 29 of 57

Make sure you have obtained the permission to use SCF before implementing this example.

1) Log in to the Tencent Cloud console, and select Cloud Object Storage.

2) Click the Create Bucket button in the Bucket List tab to create a source COS Bucket.

3) Configure the name of COS Bucket, such as srcmr , and set the region to South China , access

permission to default Public read and private write , and CDN acceleration to default Disabled , and click

the Save button to create a COS Bucket.

4) Create the intermediate Bucket middlestagebucket and target Bucket destmr in the same way.

5) Upload a text file to the source Bucket (i.e. srcmr). In this example, we use a text file Serverless.txt for

demonstration. (Before COS is associated, when manually calling the function to perform test and

verification, you need to pass the sample data that contains this file to SCF, so that SCF can locate

corresponding file according to this data. Therefore, you first need to create this sample file.)

Step 1: Prepare a COS Bucket
Last updated：2018-09-03 15:28:43

http://srcmr-1251740579.cosgz.myqcloud.com/serverless.txt

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 30 of 57

Creating a Mapper Deployment Package

1) Create a new folder named WordCount in any location.

2) Create a new .py file named map_function , enter the following code in it and save the file. Note:

Replace appid, secret_id, secret_key, and region with your actual data, where:

appid can be found in Account Information in the console.

secret_id and secret_key can be obtained from Cloud API Key in the console.

region is the region in which the function and COS Bucket reside. sh, gz, and bj are supported. Note:

The region must be the same with that of COS Bucket created in the previous step. The bucket created

in "Step 1: Prepare COS Bucket" resides in South China (Guangzhou), so the region value in the code

must be gz :

import mapper_triggered as Mapper
import datetime
from qcloud_cos import CosClient

def map_caller(event, context):
appid = 1251762222 # change to user's appid
secret_id = u'AKIDYDh085xQp48161uOn2CKKVbeebvDu6EE' # change to user's secret_id
secret_key = u'lLkxx40kIfuyqW0IOI0WqyueCYjlgZEE' # change to user's secret_key
region = u'gz' # change to user's region
cos_client = CosClient(appid, secret_id, secret_key, region)

bucket = event['Records'][0]['cos']['cosBucket']['name']
key = event['Records'][0]['cos']['cosObject']['key']
middle_stage_bucket = u'middlestagebucket'
middle_file_key = '/' + 'middle_' + key.split('/')[-1]

return Mapper.do_mapping(cos_client, bucket, key, middle_stage_bucket, middle_file_key)

def main_handler(event, context):
start_time = datetime.datetime.now()
res = map_caller(event, context)
end_time = datetime.datetime.now()
print("data mapping duration: " + str((end_time-start_time).microseconds/1000) + "ms")
if res == 0:

Step 2. Create Deployment Package
Last updated：2018-09-03 15:28:48

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 31 of 57

return "Data mapping SUCCESS"
else:
return "Data mapping FAILED"

Upon creation, create a .py file named mapper_triggered under the same path, enter the following code

in it and save the file:

from qcloud_cos import UploadFileRequest
from qcloud_cos import DownloadFileRequest
import re
import os
import logging

logger = logging.getLogger()

#delete folders and files
def delete_file_folder(src):
if os.path.isfile(src):
try:
os.remove(src)
except:
pass
elif os.path.isdir(src):
for item in os.listdir(src):
itemsrc=os.path.join(src,item)
delete_file_folder(itemsrc)
try:
os.rmdir(src)
except:
pass

Download files
def download_file(cos_client, bucket, key, local_file_path):
request = DownloadFileRequest(bucket, key, local_file_path)
download_file_ret = cos_client.download_file(request)
if download_file_ret['code'] == 0:
logger.info("Download file [%s] Success" % key)
return 0
else:
logger.error("Download file [%s] Failed, err: %s" % (key, download_file_ret['message']))
return -1

Upload file to bucket
def upload_file(cos_client, bucket, key, local_file_path):

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 32 of 57

request = UploadFileRequest(bucket.decode('utf-8'), key.decode('utf-8'), local_file_path.decode('utf-
8'))
upload_file_ret = cos_client.upload_file(request)
if upload_file_ret['code'] == 0:
logger.info("Upload data map file [%s] Success" % key)
return 0
else:
logger.error("Upload data map file [%s] Failed, err: %s" % (key, upload_file_ret['message']))
return -1

domapping
def do_mapping(cos_client, bucket, key, middle_stage_bucket, middle_file_key):
src_file_path = u'/tmp/' + key.split('/')[-1]
middle_file_path = u'/tmp/' + u'mapped_' + key.split('/')[-1]
download_ret = download_file(cos_client, bucket, key, src_file_path) #download src file
if download_ret == 0:
inputfile = open(src_file_path, 'r') #open local /tmp file
mapfile = open(middle_file_path, 'w') #open a new file write stream

for line in inputfile:
line = re.sub('[^a-zA-Z0-9]', ' ', line) #replace non-alphabetic/number characters
words = line.split()
for word in words:
mapfile.write('%s\t%s' % (word, 1)) #count for 1
mapfile.write('\n')

inputfile.close()
mapfile.close()

upload_ret = upload_file(cos_client, middle_stage_bucket, middle_file_key, middle_file_path) #upload
the file's each word

delete_file_folder(src_file_path)
delete_file_folder(middle_file_path)
return upload_ret
else:
return -1

3) If the local environment is Windows, you can find two py files under this path.

If the local environment is Linux, you can find two py files under this path, as shown below:

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 33 of 57

Compress these two files into a zip file named mapper (note: you need to compress the files instead of the

folder in which these files reside).

In Windows environment:

Select these two files, right-click on them, select a compress software (such as winrar), click Add to

Archive..., then select the archive format as zip, and click OK to generate a zip file.

In Linux environment:

Enter the directory directly to run the command.

cd /WordCount
zip mapper.zip map_function.py mapper_triggered.py

Creating a Reducer Deployment Package

1) Similarly, create a .py file named reduce_function under WordCount directory, enter the following

code in it and save the file. Note: Replace appid, secret_id, secret_key, and region with your actual data,

where:

appid can be found in Account Information in the console.

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 34 of 57

secret_id and secret_key can be obtained from Cloud API Key in the console.

region is the region in which the function and COS Bucket reside. sh, gz, and bj are supported. Note:

The region must be the same with that of COS Bucket created in the previous step. The bucket created

in "Step 1: Prepare COS Bucket" resides in South China (Guangzhou), so the region value in the code

must be gz :

import reducer_triggered as Reducer
import datetime
from qcloud_cos import CosClient

def reduce_caller(event, context):
appid = 1251762222 # change to user's appid
secret_id = u'AKIDYDh085xQp48161uOn2CKKVbeebvDu6EE' # change to user's secret_id
secret_key = u'lLkxx40kIfuyqW0IOI0WqyueCYjlgZEE' # change to user's secret_key
region = u'gz' # change to user's region
cos_client = CosClient(appid, secret_id, secret_key, region)

bucket = event['Records'][0]['cos']['cosBucket']['name']
key = event['Records'][0]['cos']['cosObject']['key']
result_bucket = u'destmr'
result_key = '/' + 'result_' + key.split('/')[-1]

return Reducer.qcloud_reducer(cos_client, bucket, key, result_bucket, result_key)

def main_handler(event, context):
start_time = datetime.datetime.now()
res = reduce_caller(event, context)
end_time = datetime.datetime.now()
print("data reducing duration: " + str((end_time-start_time).microseconds/1000) + "ms")
if res == 0:

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 35 of 57

return "Data reducing SUCCESS"
else:
return "Data reducing FAILED"

Upon creation, create a .py file named reducer_triggered under the same path, enter the following code

in it and save the file:

from qcloud_cos import UploadFileRequest
from qcloud_cos import DownloadFileRequest
import os
import logging
from operator import itemgetter

logger = logging.getLogger()

#delete folders and files
def delete_file_folder(src):
if os.path.isfile(src):
try:
os.remove(src)
except:
pass
elif os.path.isdir(src):
for item in os.listdir(src):
itemsrc=os.path.join(src,item)
delete_file_folder(itemsrc)
try:
os.rmdir(src)
except:
pass

Download files
def download_file(cos_client, bucket, key, local_file_path):
request = DownloadFileRequest(bucket, key, local_file_path)
download_file_ret = cos_client.download_file(request)
if download_file_ret['code'] == 0:
logger.info("Download file [%s] Success" % key)
return 0
else:
logger.error("Download file [%s] Failed, err: %s" % (key, download_file_ret['message']))
return -1

Upload file to bucket
def upload_file(cos_client, bucket, key, local_file_path):

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 36 of 57

request = UploadFileRequest(bucket.decode('utf-8'), key.decode('utf-8'), local_file_path.decode('utf-
8'))
upload_file_ret = cos_client.upload_file(request)
if upload_file_ret['code'] == 0:
logger.info("Upload data map file [%s] Success" % key)
return 0
else:
logger.error("Upload data map file [%s] Failed, err: %s" % (key, upload_file_ret['message']))
return -1

doreducing
def qcloud_reducer(cos_client, bucket, key, result_bucket, result_key):
word2count = {}
src_file_path = u'/tmp/' + key.split('/')[-1]
result_file_path = u'/tmp/' + u'result_' + key.split('/')[-1]
download_ret = download_file(cos_client, bucket, key, src_file_path)
if download_ret == 0:
map_file = open(src_file_path,'r')
result_file = open(result_file_path,'w')

for line in map_file:
line = line.strip()
word, count = line.split('\t', 1)
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
logger.error("error value: %s, current line: %s" % (ValueError, line))
continue
map_file.close()
delete_file_folder(src_file_path)

sorted_word2count = sorted(word2count.items(), key=itemgetter(1))[::-1]
for wordcount in sorted_word2count:
res = '%s\t%s' % (wordcount[0], wordcount[1])
result_file.write(res)
result_file.write('\n')
result_file.close()

upload_ret = upload_file(cos_client, result_bucket, result_key, result_file_path)
delete_file_folder(result_file_path)
return upload_ret

3) Compress these two files into a zip file named reducer according to the above method (note: directly

compress the files instead of the folder in which these files reside).

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 37 of 57

In this section, you will create two functions to implement simple WordCount, and test the functions

through the console or by calling API.

Creating a Mapper Function

Creating a function through the console

1) Log in to the Serverless Cloud Function Console. Select Guangzhou from the region list and click

Create.

2) In the Function configuration section, enter Mapper as the function name and keep default settings

for the other options, and then click Next.

3) Go to the Function code section, and click Local upload zip file. Enter map_function.main_handler for

the execution method, select the mapper.zip created in "Step 2: Create Deployment Package", and click

Next.

4) In the Triggering method section, you need to test the function manually, so no trigger method is

added. Click Done.

Creating a function using API

For more information, please see API CreateFunction.

Creating a Reducer Function

Creating a function through the console

1) Log in to the Serverless Cloud Function Console. Select Guangzhou from the region list and click

Create.

2) In the Function configuration section, enter Reducer as the function name, leave all the other

configuration options unchanged, and then click Next.

3) Go to the Function code section, and click Local upload zip file. Enter reduce_function.main_handler

for the execution method, select the reducer.zip created in "Step 2: Create Deployment Package", and

Step 3. Create Mapper and Reducer
Functions and Test
Last updated：2018-09-03 15:29:27

https://console.cloud.tencent.com/scf
https://console.cloud.tencent.com/scf

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 38 of 57

click Next.

4) In the trigger method section, you need to test the function manually, so no trigger method is added.

Click Done.

Creating a function using API

For more information, please see API CreateFunction.

Testing Functions

When a function is created, it is generally tested through the console or API, to ensure the function

output meets the expectation, and then you can bind it to a trigger for practical application.

Testing the function through the console

1) In the details page of the Mapper function you just created, click Test.

2) Choose Upload File to COS/Delete File from COS Test Code from the drop-down list of test templates.

3) In the test code, set name to the name of bucket srcmr created in "Step 1: Prepare COS Bucket", and

set key to the key value of /serverless.txt uploaded in "Step 1: Prepare COS Bucket", as shown in the

example below:

{
"Records":[
{
"event": {
"eventVersion":"1.0",
"eventSource":"qcs::cos",
"eventName":"event-type",
"eventTime":"Unix timestamp",
"eventQueue":"qcs:0:cos:gz:1251111111:cos",
"requestParameters":{
"requestSourceIP": "111.111.111.111",
"requestHeaders":{
"Authorization": "Uploaded authentication information"
}
}
},
"cos":{
"cosSchemaVersion":"1.0",
"cosNotificationId":"Configured or returned ID",
"cosBucket":{

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 39 of 57

"name":"srcmr", #set to demo bucket here
"appid":"appId",
"region":"gz"
},
"cosObject":{
"key":"/serverless.txt", #set to demo file here
"size":"1024",
"meta":{
"Content-Type": "text/plain",
"x-cos-meta-test": "Custom meta",
"x-image-test": "Custom meta"
},
"url": "Origin server URL for accessing files"
}
}
}
]
}

4) Click Run to view the results.

5) Go to the COS Console, and click destmr created in "Step 1: Prepare COS Bucket", to check whether a

file named result_middle_serverless.txt is generated in COS Bucket. The file collects the number of times

each word appears in the uploaded text file:

6) Download this file, and you can see the content similar to the following:

the 29
as 25
to 20
of 17
and 16
a 16
code 16
in 15
be 14
or 12
serverless 10
is 10
that 10
computing 9
by 9
for 9
an 8
not 8

https://console.cloud.tencent.com/cos4/index

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 40 of 57

cloud 7
functions 6
edit 6
can 6
with 5
servers 5
on 5
because 5
at 5
Serverless 5
have 5
platform 5
such 5
time 4
virtual 4
up 4
function 4
provider 4
autoscaling 4
used 4
it 4
js 4
are 4
also 4
than 4
service 4
written 4
2016 4
1 4
runtime 4
example 4
use 4
Node 4
run 3
does 3
Java 3
execution 3
other 3
model 3
In 3
requests 3
means 3
typically 3
which 3
latency 3

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 41 of 57

any 3
could 3
This 3
may 3
via 3
resources 3
required 2
10 2
developers 2
application 2
underutilisation 2
hosted 2
was 2
start 2
support 2
microservices 2
per 2
back 2
server 2
source 2
generally 2
It 2
well 2
user 2
running 2
Python 2
handling 2
JSON 2
addition 2
limits 2
both 2
available 2
For 2
request 2
The 2
efficient 2
part 2
2 2
system 2
APIs 2
first 2
completely 2
supports 2
container 2
programmer 2

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 42 of 57

API 2
name 2
provision 2
now 2
they 2
3 2
its 2
operations 2
machine 2
end 2
more 2
from 2
public 2
officially 2
even 2
cost 2
Functions 2
all 2
requires 1
At 1
2006 1
starting 1
serialized 1
calls 1
assets 1
InterConnect 1
exposure 1
needed 1
included 1
suited 1
includes 1
you 1
5 1
setting 1
when 1
no 1
periods 1
abstract 1
defined 1
called 1
continuously 1
simplifying 1
Infrequently 1
but 1
triggered 1

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 43 of 57

significantly 1
registration 1
down 1
functional 1
into 1
own 1
software 1
automatically 1
introduced 1
about 1
although 1
processing 1
business 1
However 1
latencies 1
some 1
creation 1
exposed 1
spins 1
either 1
specific 1
necessary 1
using 1
rules 1
usable 1
has 1
Despite 1
4 1
web 1
world 1
being 1
just 1
spend 1
without 1
person 1
task 1
provisioned 1
uses 1
Resource 1
meets 1
development 1
composition 1
units 1
make 1
pay 1

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 44 of 57

if 1
worry 1
technology 1
launched 1
stopping 1
owns 1
policies 1
will 1
batch 1
unlike 1
case 1
demand 1
ensuring 1
bulk 1
containers 1
offers 1
been 1
billing 1
tuning 1
GitHub 1
sequences 1
simply 1
simple 1
point 1
consume 1
Monitoring 1
s 1
sensitive 1
triggers 1
essentially 1
packages 1
premise 1
Programming 1
initially 1
terms 1
C 1
invoker 1
behind 1
capacity 1
Performance 1
configured 1
wrote 1
where 1
fixed 1
architecture 1

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 45 of 57

imposed 1
Swift 1
resource 1
infrequent 1
conjunction 1
cheaper 1
do 1
8 1
black 1
only 1
outside 1
renting 1
quantity 1
Cloud 1
Cost 1
traditional 1
considered 1
alpha 1
significant 1
performance 1
online 1
purchasing 1
responsible 1
offering 1
option 1
need 1
rent 1
debugging 1
jobs 1
PaaS 1
11 1
specialists 1
released 1
serve 1
Zimki 1
structures 1
their 1
management 1
given 1
open 1
directly 1
instances 1
number 1
features 1
major 1

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 46 of 57

launch 1
language 1
multithreading 1
announced 1
7 1
since 1
measure 1
another 1
events 1
fully 1
9 1
introduce 1
Alternatively 1
greater 1
affected 1
non 1
might 1
2014 1
systems 1
production 1
actually 1
group 1
style 1
suffer 1
including 1
order 1
allow 1
Haskell 1
purchase 1
response 1
data 1
designed 1
produce 1
REST 1
provisioning 1
rather 1
involve 1
providers 1
dedicated 1
believed 1
this 1
hour 1
endpoint 1
high 1
billed 1

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 47 of 57

known 1
expose 1
sharing 1
6 1
Microsoft 1
would 1
environment 1
private 1
followed 1
FaaS 1
involves 1
amount 1
deserialized 1
box 1
groups 1
supporting 1
satisfy 1
new 1
version 1
Disadvantages 1
machines 1
likely 1
cron 1
HTTP 1
workloads 1
small 1
level 1
announcing 1
include 1
languages 1
Docker 1
go 1
manages 1

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 48 of 57

If you complete "Step 3: Create Mapper and Reducer Functions and Test", and the test result meets the

expectation, you can add COS configuration so that COS can publish event to SCF and call the function.

1) In the details page of Mapper function you just created, select "Trigger Method" tab, and click "Add

Trigger Method" button.

2) Select COS trigger for the trigger method, srcmr created in "Step 1: Prepare COS Bucket" for COS

Bucket, File Upload for the event type, and click "Save" button.

Now you have completely implemented this example. You can test the configuration by following the

steps below:

1. Go to COS Console, select src , upload any .txt text file, and check whether a similar file generated in

 destmr after a certain period of time.

2. You can monitor the function activities in SCF Console, and select "Log" to check the logs in which the

calling of the function is recorded.

Step 4. Add Trigger
Last updated：2018-09-03 15:29:32

https://console.cloud.tencent.com/cos4/index
https://console.cloud.tencent.com/scf

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 49 of 57

In this tutorial, assuming that:

The system needs to send an email in a specific case.

You want to use CMQ to collect and send necessary information and specify the recipient.

Implementation Overview

The implementation process of the function is as follows:

Create the function and the event source mapping of CMQ Topic.

A user sends the required message contents and the recipient to CMQ in a specific data format.

CMQ calls the SCF and passes the message to the function in an event.

The SCF platform receives the call request and runs the function.

The function acquires the message contents and the recipient from the event data, and calls the

sendEmail API to send an email.

Note: By the time you finish this tutorial, your account will contain the following resources:

An SCF to send emails.

A CMQ Topic.

Subscription configuration in the CMQ Topic.

This tutorial is divided into three parts:

Create a CMQ Topic.

Complete the steps required to create a function, and call the function manually using the sample CMQ

event data. This is designed to verify whether the function works normally.

Bind the CMQ Topic and the function and test the linkage of the CMQ and the SCF using the

sendEmail API, so that the CMQ can call the function when receiving a message.

Data Structure Design

Send Email According to the Messages in
CMQ
Example
Last updated：2018-08-29 17:09:24

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 50 of 57

We assume that the data structure used to send an email is shown below. This data structure will be sent

to the CMQ after you enter required values as needed and SCF will receive and process it to send the

email.

{
"fromAddr":"sender@testhost.com",
"toAddr":"test@testhost.com",
"title":"hello from scf & cmq",
"body":"email content to send"
}

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 51 of 57

Note:

CMQ and the function must be in the same region. In this tutorial, South China (Guangzhou) region

is used.

1. Log in to the Tencent Cloud Console, select Messaging Service CMQ in Cloud Products.

2. Click the Subscribe Topic tab and select the South China (Guangzhou) region.

3. Click the +Create button to create a queue and enter sendEmailQueue as the topic name in the pop-

up window.

4. Click Create.

Step 1. Create CMQ Topic Mode Queue
Last updated：2018-09-03 15:29:39

https://console.cloud.tencent.com/mq/topic

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 52 of 57

In this section, you will create a function to implement the sendEmail program, and test the function

through the console or by calling APIs.

Creating a sendEmail SCF

1. Log in to the Serverless Cloud Function Console. Select Guangzhou from the region list and click

Create.

2. In the Function configuration section, enter sendEmail as the function name and keep default

settings for the other options, and then click Next.

3. In the Function code section, enter index.main_handler as the execution method and paste the

following codes into the code window, and then click Next.

-*- coding: utf8 -*-
import json
import smtplib
from email.mime.text import MIMEText
from email.header import Header

#Third-party SMTP service
mail_host="smtp.qq.com" #SMTP server
mail_user="3473058547@qq.com" #User name
mail_pass="xxxxxxx" #Password
mail_port=465 # SMTP service port

def sendEmail(fromAddr,toAddr,subject,content):
sender = fromAddr
receivers = [toAddr] # To receive emails. You can set it as your QQ mailbox or other mailbox.

message = MIMEText(content, 'plain', 'utf-8')
message['From'] = Header(fromAddr, 'utf-8')
message['To'] = Header(toAddr, 'utf-8')
message['Subject'] = Header(subject, 'utf-8')

Step 2. Create and Test sendEmial
Function
Last updated：2018-09-03 15:29:44

https://console.cloud.tencent.com/scf

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 53 of 57

try:
smtpObj = smtplib.SMTP_SSL(mail_host, mail_port)
smtpObj.login(mail_user,mail_pass)
smtpObj.sendmail(sender, receivers, message.as_string())
print("send success")
except smtplib.SMTPException as e:
print(e)
print("Error: send fail")

def main_handler(event, context):
cmqMsg = None
if event is not None and "Records" in event.keys():
if len(event["Records"]) >= 1 and "CMQ" in event["Records"][0].keys():
cmqMsgStr = event["Records"][0]["CMQ"]["msgBody"]
cmqMsg = json.loads(cmqMsgStr)
print cmqMsg
sendEmail(cmqMsg['fromAddr'], cmqMsg['toAddr'], cmqMsg['title'], cmqMsg['body'])
return "send email success"

1. In the Triggering method section, you need to test the function manually, so no trigger method is

added currently. Click Complete.

Note

You must configure the mail_host, mail_user, mail_pass, and mail_port parameters based on the mailbox

or mail server you use to receive emails. For example, you can view here to learn about how to enable the

SMTP feature of QQ Mail. After it is enabled, the relevant parameters are as follows:

mail_host: SMTP server "smtp.qq.com"

mail_user: Your email address as the login user name, such as 3473058547@qq.com

mail_pass: The password you specified when you enable the SMTP feature.

mail_port: The server login port. Since you can only log in to your QQ mailbox using SSL, the port must

always be 465. Use smtplib.SMTP_SSL in codes to build SSL SMTP connection.

Testing the sendEmail SCF

When a function is created, it is generally tested through the console or API, to ensure the function

output meets the expectation, and then you can bind it to a trigger for practical application.

1) In the details page of the sendEmail function you just created, click Test.

2) Enter the following in the test template:

http://service.mail.qq.com/cgi-bin/help?subtype=1&&no=166&&id=28

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 54 of 57

{
"Records": [
{
"CMQ": {
"type": "topic",
"topicOwner":1253970226,
"topicName": "sendEmailQueue",
"subscriptionName":"sendEmailFunction",
"publishTime": "2017-09-25T06:34:00.000Z",
"msgId": "123345346",
"requestId":"123345346",
"msgBody": "{\"fromAddr\":\"3473058547@qq.com\",\"toAddr\":\"3473058547@qq.com\",\"title\":\"h
ello from scf & cmq\",\"body\":\"email content to send\"}",
"msgTag": []
}
}
]
}

You can modify both fromAddr and toAddr in the msgBody field to your email address. In this way,

you can send an email from and to the same email address to test the validity of email sending. Here, we

use 3473058547@qq.com to test.

3) Click Run to view the results. This program is running normally if "send email success" is displayed in

both the returned value and the log.

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 55 of 57

4) Go to the mailbox you specified to check whether the email is received. Open the email to check

whether configured information is displayed.

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 56 of 57

If you complete "Step 2: Create sendEmail Function and Test", and the test result meets the expectation,

you can add a CMQ Topic trigger configuration so that the CMQ Topic can send message events to the

SCF and call the function.

1. In the details page of the sendEmail function you just created, click the Triggering Method tab and

click Add trigger mode.

2. Select CMQ topic subscription trigger, and sendEmailQueue created in Step 1: Create a CMQ Topic

for the CMQ Topic, and then click Save.

In this way, you have completed all steps. You can test the configuration by following the steps below:

1. Go to Messaging Service CMQ. Select Subscribe Topic in the left navigation pane, find the created

 sendEmailQueue queue from the list, and click Send MSG in the Operation column of the queue.

Enter the following message in the popup window:

You can modify the message content as needed, including "fromAddr", "toAddr", "title", and "body".

Step 3. Adding Trigger and Test
Last updated：2018-09-03 15:29:49

https://cloud.tencent.com/document/product/583/11696
https://console.cloud.tencent.com/mq

Practical Operation of Code Product Introduction

©2013-2018 Tencent Cloud. All rights reserved. Page 57 of 57

{
"fromAddr":"xxx@qq.com",
"toAddr":"xxx@qq.com",
"title":"hello from scf & cmq",
"body":"email content to send"
}

2. Monitor the activities of the sendEmail function you created in the Serverless Cloud Function Console

and select Logs to check the logs in which the calling of the function is recorded.

3. Log in to your receiving mailbox and check whether the email is received and the email content is

correct.

After the test, you can embed the CMQ SDK in your application codes and send the message defined in

the example to the sendEmailQueue queue to send the email.

https://console.cloud.tencent.com/scf

