
Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第1 共16页

Elasticsearch Service

向量检索指南

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第2 共16页

【版权声明】

©2013-2026 腾讯云版权所有

本文档（含所有文字、数据、图片等内容）完整的著作权归腾讯云计算（北京）有限责任公司单独所有，未经腾讯云

事先明确书面许可，任何主体不得以任何形式复制、修改、使用、抄袭、传播本文档全部或部分内容。前述行为构成

对腾讯云著作权的侵犯，腾讯云将依法采取措施追究法律责任。

【商标声明】

及其它腾讯云服务相关的商标均为腾讯云计算（北京）有限责任公司及其关联公司所有。本文档涉及的第三方主体的

商标，依法由权利人所有。未经腾讯云及有关权利人书面许可，任何主体不得以任何方式对前述商标进行使用、复

制、修改、传播、抄录等行为，否则将构成对腾讯云及有关权利人商标权的侵犯，腾讯云将依法采取措施追究法律责

任。

【服务声明】

本文档意在向您介绍腾讯云全部或部分产品、服务的当时的相关概况，部分产品、服务的内容可能不时有所调整。

您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定，除非双方另有约定，否则，

腾讯云对本文档内容不做任何明示或默示的承诺或保证。

【联系我们】

我们致力于为您提供个性化的售前购买咨询服务，及相应的技术售后服务，任何问题请联系 4009100100或

95716。

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第3 共16页

文档目录

向量检索指南

ES 向量集群配置评估

ES 向量检索性能调优

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第4 共16页

向量检索指南

ES 向量集群配置评估
最近更新时间：2026-02-04 20:19:32

实现一个理想的向量检索业务应用，首先是合理的配置规划。相关评估请参见

。

集群规格和容量配置评估 > 向量搜索

场景

https://cloud.tencent.com/document/product/845/19551#a6b73793-ada8-4532-a616-d4196a2cded5
https://cloud.tencent.com/document/product/845/19551#a6b73793-ada8-4532-a616-d4196a2cded5

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第5 共16页

ES 向量检索性能调优
最近更新时间：2026-02-04 20:19:32

在 AI 快速发展的时代，ES 被广泛用于向量搜索、多模态搜索和知识库构建，它特有的文本和向量混合搜索能力，

兼顾召回率和搜索准确度，受到广大开发者的喜爱。那么如何更好的发挥 ES 向量搜索的性能优势，本文将重点介

绍我们在实践中总结的一些调优经验。

提前做好配置规划

1. 合理的集群配置评估

为了确保 ES 向量搜索的性能，首先需要一个合理的集群配置，重点是确保足够大的内存，如果内存不够而导致经

常性的搜索读盘，性能可能有十倍以上的下降。向量搜索的集群配置估算参见《 》。ES 向量集群配置评估

2. 合理的索引规划

你需要提前评估业务数据和未来规模增长，提前进行索引和分片规划。如果数据规模很大，尽量避免都放在一个索引

而导致每次检索查找整个索引。建议按分类如部门、商品类型等切分索引。分片过大或数量过多都会影响读写性能，

如下是分片设置的实践建议：

单个分片大小建议在 20GB - 50GB，你可以据此初步确定索引的分片数量。

分片数尽量等于数据节点数，若分片数较多，建议分片数为数据节点的整数倍，方便分片在数据节点均匀分布。

单节点所有索引的累计分片数不要超过 1000 个，集群总分片数控制在 3 万个以内。

 增加副本可以提高查询吞吐量（QPS），因为搜索可以在主分片和副本分片上并行执行。

建议：在写入压力不大且需要高查询并发的场景下，适当增加副本数。

// 索引设置

PUT /my_index

{

 "settings": {

 "index": {

 "number_of_shards": 10 // 分片设置，根据未来规模增长合理评估分片数量,

 "number_of_replicas": 1 // 副本设置，根据高可用和并发要求设置

 }

 },

 "mappings": {

 "properties": {

 ...

 }

}

https://cloud.tencent.com/document/product/845/128200

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第6 共16页

3. 准备测试集与迭代调优

向量检索的调优是一个反复尝试优化的过程，你可以准备一个高质量的测试集，包含查询词、已知的相关文档（正样

本）​ 和不相关文档（负样本），明确召回率 Recall（召回正样本占全部正样本的比例）和准确率 Precision（查

询结果中包含正样本的比例）的目标要求，通过“假设-验证-迭代”的过程，逐步找到适合自己业务的最佳配置。

向量索引 Mapping 设置

如下是一个常见的向量索引 mapping 设置举例：

// Mappping 设置

PUT /my-index

{

 "mappings": {

 "properties": {

 "category": {

 "type": "keyword"

 },

 "title": {

 "type": "text"

 },

 "title_vector": {

 "type": "dense_vector",

 "dims": 768 // 向量维度,

 "similarity": "cosine" // 向量相似度算法,

 "index_options": {

 "type": "hnsw" // 索引算法,

 "m": 16 // HNSW 图中每个节点的最大连接数,

 "ef_construction": 100 // 构建HNSW时，为每个新节点考察的候选邻居数

量，影响构建索引的质量和速度

 }

 }

 }

 }

}

dims 向量维度：越高则包含的信息越丰富，检索精度越高，但存储和计算成本也越高。你可以先从 384维、

768维开始测试召回率/准确率，不达标则升维，达标可尝试降维。

index 设置：默认值 true，如果设置index为false，将不会进行 KNN 搜索，只能进行暴力扫描

（script_score）

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第7 共16页

type：不同版本的默认值（8.13为hnsw，8.16为int8_hnsw，9.1.3为bbq_hnsw），你可以根据向量规

模参考以下信息设置：

hnsw：建议向量数量在1亿以内采用

int8_hnsw：建议向量数量在1亿-20亿采用

bbq_hnsw：建议向量数量在十亿到百亿采用

bbq_disk：建议向量数量在十亿到千亿采用（diskbbq在 ES 9.2以上支持，云上版本预计Q1上线）

m：默认值16，是每个节点在 HNSW 图中的最大连接数。较大的 m 会提高召回率和查询速度，但会增加索引

时间和内存占用。大多数场景从 ​16​ 开始，如果对召回率要求极高，且可以接受更长索引时间和更大索引体积，

可尝试增加到32或更高。

efConstruction：默认值100，是HNSW 索引构建时，为每个新节点寻找连接时考察的候选邻居数量。增大

此值会提升索引质量和召回率，但会延长索引构建时间。可以从 100 开始，如果数据分布复杂或对精度要求很高

可以设置200或更高。

批量写入向量

1. 原因说明

对于向量搜索场景而言，强烈建议采用批量写入。因为批量写入是ES高吞吐场景的核心优化手段，通过减少网络交

互、优化磁盘I/O和降低索引开销，它能显著提升数据写入效率并保障集群稳定。

2. 批量写入设置

使用 Bulk 批量写入，可以从每批数据 500 -1000 条左右开始测试，观察集群的 CPU 和内存负载，逐步增加直

到性能不再提升或出现拒绝请求。

// 批量写入

POST /_bulk

 "index" : "_index" : "my-index" "_id" : "1" { { , } }

 "category":"cat" "title": "慵懒的猫" "title_vector": 0.1 0.2 ... { , , [, ,]

}

 "index" : "_index" : "my-index" "_id" : "2" { { , } }

 "category":"dog" "title": "遛弯的狗" "title_vector": 0.3 0.4 ... { , , [, ,]

}

//... 更多数据 ...

3. 其他可调整参数（非必须）

调整刷新间隔

refresh_interval 默认为 1s，使新写入的数据对搜索可见，但频繁刷新会生成大量小 segment，影响向量索

引构建和查询性能。因此建议在批量导入数据期间，可以将 refresh_interval 设置为一个较大的值（如 30s

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第8 共16页

或 60s）或 -1，导入完成后再恢复。请注意，refresh_interval 为 -1 期间新写入的数据无法被搜索到，直到

执行手动刷新或恢复自动刷新后下一次刷新发生。

临时关闭副本

写入大量数据时，也可以先设置 number_of_replicas 为 0，写入完成后再恢复副本数。

// 索引设置

PUT /my_index

{

 "settings": {

 "index": {

 "number_of_shards": 10 // 分片设置，根据未来规模增长合理评估分片数量,

 "number_of_replicas": 0 // 初期批量写入时，临时关闭副本，写完再恢复,

 "refresh_interval": -1 // 通过禁止自动刷新，来提升写入性能

 }

 },

 "mappings": {

 "properties": {

 ...

 }

}

向量搜索参数设置

这是一个简单的向量搜索语句：

// 向量搜索 - 只需召回少量非text字段

GET /my-index/_search

{

 "size" : 3,

 "knn": {

 "field": "title_vector",

 "query_vector": -5 9 -12，...[, ,],

 "k": 10 // 返回的 top k 结果数量,

 "num_candidates": 100 // 指定每个分片上要检索的候选向量数量

 }

 "fields": "category"[],

 "_source": false

}

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第9 共16页

// 向量搜索 - 召回字段较多或有text字段时

GET /my-index/_search

{

 "size" : 3,

 "knn": {

 "field": "title_vector",

 "query_vector": -5 9 -12，...[, ,],

 "k": 10 // 返回的 top k 结果数量,

 "num_candidates": 100 // 指定每个分片上要检索的候选向量数量

 }

 "_source": {

 "excludes": "title_vector" // 排除掉向量字段[]

 // "excludes": ["*_vector"] // 使用通配符，例如排除所有以 vector 开头的字

段

 // "_source": ["doc_id", "title"] // 明确列出需要返回的业务字段

 // "_source": false // 完全不返回原始文档数据,拿到文档 _id 后，会去另一个数

据库如 MySQL根据查询详情

 }

}

k

查询时，召回的 TOP 结果数量，根据需要设置。

num_candidates

指定每个分片上要检索的候选向量数量。这个值必须大于等于 k。增大 num_candidates 会提高召回率（特

别是在量化、有过滤器的情况下），但会增加查询延迟。通常建议设置为 k 的 ​5 到 10 倍，在召回率和性能间平

衡。

避免返回向量字段

向量字段通常很大，如果不需要返回向量数据，可参考如下建议：

如果只需召回 id 等少量非text字段（如keyword、numeric等启用doc_values的字段类型）或显式存

储字段store: true，可以采用fields明确指定召回字段，ES会直接查询doc values或stored存储值，避

免解析 _source的开销，性能更好。

如果召回字段较多或有 text 字段时，可以使用 _source: false、_source: exclude 或 _source:

["field1", "field2"] 来排除向量字段，减少网络传输和序列化开销。

向量量化和过采样

// Mapping 设置（向量采用 int8 量化）

PUT /my-quantized-index

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第10 共16页

{

 "mappings": {

 "properties": {

 "title": {

 "type": "text",

 },

 "title_vector": {

 "type": "dense_vector",

 "dims": 768 ,

 "index": true ,

 "similarity": "cosine" ,

 "index_options": {

 "type": "int8_hnsw" // 启用 8位标量量化 HNSW 索引,

 "m": 16,

 "ef_construction": 100

 }

 }

 }

 }

}

// 向量搜索（过采样）

GET my-quantized-index/_search

{

 "knn": {

 "field": "title_vector",

 "query_vector": 0.15 0.50 ... 0.05 // 查询向量[, , ,],

 "k": 10 // 返回的 top k 结果数,

 "num_candidates": 100 // 需要 >= k,

 "rescore_vector": {

 "oversample": 2.0 // 过采样系数

 }

 }

}

1. 什么是量化

当 ES 的向量搜索规模在亿级甚至十亿级时，我们面临两个挑战：内存占用高和计算速度慢。ES 的向量量化是此时

的重要优化策略，它巧妙结合了量化的速度优势和原始向量的精度优势，在性能和准确率之间取得平衡。量化

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第11 共16页

（Quantization）本质是一种有损压缩技术，核心思想是将高精度的向量数据（通常是 32 位浮点数，float）转

换为低精度表示（如 8 位整数，int8），它可以在召回率损失很少的情况下，大幅降低内存使用并提高查询速度。

2. 量化的内存和存储占用变化

如果你在索引 Mapping 设置中指定了量化，ES 在构建索引时除了生成原始精度数据存储外（假设为float32），

还会额外生成一份对 float32 的量化精度数据存储。因此对于 float32 向量，int8, int4, bbq 量化分别可以将所

需内存减少 4、8、32 倍，但也会降低向量精度并增加磁盘空间（分别增加 25%、12.5% 或 3.125%）。例如当

使用 int8 量化 40GB 的浮点向量时，量化后的向量将额外占用 10GB 的磁盘空间，总磁盘使用量为 50GB，但内

存使用量将减少到 10GB。

3. 量化的粗排与过采样

为了解决量化带来的精度损失问题，ES 的向量搜索分为了近似粗排和精确精排两个阶段：

粗排阶段：ES 使用量化后的查询向量，在基于量化数据构建的 HNSW 图索引上搜索，在每个分片完成搜索

后，会得到一个包含 num_candidates 个文档 ID 和近似得分的列表。

精排阶段：通过设置 rescore_vector 指定 oversample 过采样系数，ES 将对每个分片返回的

num_candidates个文档中的前 k*oversample 个文档，从磁盘上读取原始的 float32 向量，使用原始查询

向量与这些原始文档向量进行高精度相似度计算，从中选出 Top k 个结果。

显然，过采样机制结合了使用量化向量进行近似检索的性能和内存优势，和使用原始向量对最佳候选者进行重新评分

的准确性。实际上int8通常不需要过采样，int4通过设置1.5-2倍可以获得更高的精确度和召回率，bbq通常需要过

采样，3×–5× 过采样通常足够了。关于过采样的更详细说明请参见 。量化向量的过采样和重评分

4. 量化的召回率评估

就我们的实践经验而言，不量化情况下召回率99%的话，int8量化召回率约96-97%，bbq量化召回率约90-

94%，你需要特别留意，量化的召回率和数据规模有较高的相关性，数据集越大，量化带来的召回率损失越小，反

之则越大。因此你应该在尽量大的数据集上来验证最终的召回率效果。

预热文件系统缓存

1. 背景

ES 依赖操作系统的 page cache 来加速磁盘索引文件的读取。在默认情况下，索引文件是在被访问时才被加载到

缓存中。这可能导致一个问题，当主机操作系统重启后，Page Cache 会被清空，在缓存重新被“预热”期间，搜

索性能可能显著下降，因为系统需要频繁地从磁盘读取数据。

2. 解决方案

可以通过设置 index.store.preload，在索引打开阶段，主动将指定的关键数据文件预先加载到内存中，从而避免

在后续搜索中产生耗时的磁盘I/O操作，尤其适用于那些被频繁搜索的“热”索引。

注意：

https://www.elastic.co/docs/solutions/search/vector/knn#dense-vector-knn-search-rescoring

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第12 共16页

1. 如果文件系统缓存容量不足以容纳所有数据，则在过多索引或文件上过早地将数据加载到 Page

Cache 中会降低搜索速度。请谨慎使用。

2. 如果你使用量化索引，只需预加载相关的量化值和索引结构，例如 HNSW 图。预加载原始向量

（vec）是不必要的，而且可能适得其反，因为对原始向量进行预加载可能导致操作系统从缓存中移除

重要的索引结构。

3. 向量搜索相关的文件类型

index.store.preload 具体加载哪些索引文件，请参考下面的文件扩展名说明：

文件扩展名 文件作用

vex 存储HNSW图结构文件。

vec 所有非量化向量值。包括所有元素类型：float、byte 和 bit。

veq 量化索引的量化向量：int4 或 int8。

veb 量化索引的二进制向量：bbq。

vem、vemf、vemq、

vemb
元数据，通常很小，不需要预加载。

4. 预加载设置

index.store.preload 是一个静态设置，意味着它只能在索引创建时或在配置文件中指定，无法在索引创建后动态

修改，对于非量化场景一般我们建议可以简单设置为“ve*”，对于量化场景可以逐个指定（比如指定屏蔽vex,

vec）。

通常我们建议同时设置 mmapfs，它将索引文件直接映射到进程的虚拟内存地址空间。之后，ES 可以像访问普通

内存一样读写文件（实际的数据加载由操作系统通过缺页中断机制完成），mmapfs 和 preload 结合使用，可以

实现高效的查询和无冷启动的平滑体验，但是会增加节点重启时间。

// 索引创建时，设置预加载

PUT /my-preloaded-index

{

 "settings": {

 "index.store.preload": "ve*" // 预加载[],

 //"index.store.preload": ["vex", "vec"], // 预加载，也可以精细化指定

 "index.store.type": "mmapfs" // 将索引文件映射到进程虚拟内存地址空间

 },

 "mappings": {

 ...

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第13 共16页

 }

}

如果你想对集群上创建的所有新索引生效，可以在全局配置文件 config/elasticsearch.yml 中设置：

index.store.preload "ve*" // 预加载特定数据文件到 Page Cache: []

index.store.type mmapfs // 将索引文件映射到进程虚拟内存地址空间:

对于已经存在的索引，必须先关闭它才能修改此设置：

// 1. 关闭索引

POST /my-existing-index/_close

// 2. 更新索引设置

PUT /my-existing-index/_settings

{

 "index.store.preload": "ve*" // 预加载特定数据文件到 Page Cache[]

 "index.store.type": "mmapfs" // 将索引文件映射到进程虚拟内存地址空间

}

// 3. 重新打开索引。打开过程中会触发预加载操作，打开速度会变慢。

POST /my-existing-index/_open

减少索引段的数量

ES 分片由段（segment）组成，段是索引中的内部存储元素。对于近似 KNN 搜索，ES 将每个段的向量值存储

为单独的 HNSW 图，因此 knn 搜索必须检查每个段。虽然 knn 搜索并行化使得跨多个段的搜索速度大大提升，

但如果段的数量较少，knn 搜索的速度仍然可以提升数倍。默认情况下，ES 通过后台合并定期将较小的段合并为

较大的段。如果这还不够，你可以采取以下明确的步骤来减少索引段的数量。

1. 提高段的最大值

ES 提供了许多可调参数来控制合并过程,一个重要参数是 index.merge.policy.max_merged_segment，它

控制合并过程中创建段的最大值，通过提高该值可以减少索引中段的数量。该值默认为 5 GB，这对于高维向量来说

可能太小，建议将此值增加到 10 GB 或 20 GB，有助于减少段数。这是一个静态设置，因此如果对已经存在的索

引，需要先关闭索引再设置：

// 1. 关闭索引

POST /my-index/_close

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第14 共16页

// 2. 更新索引设置

PUT /my-index/_settings

{

 "merge.policy.floor_segment": "300mb" // 段的最小值,

 "merge.policy.max_merged_segment": "10g" // 段的最大值

}

// 3. 重新打开索引

POST my-index/_open

2. 在批量索引期间创建大段

常见做法是先执行初始批量写入和创建索引，除了依赖后台定期段合并外，你还可以调整索引设置以鼓励 ES 创建

更大的初始段：

确保批量上传期间不进行任何搜索，并将 index.refresh_interval 设置为 -1。这可以防止刷新操作，避免产

生额外的段。

为 ES 分配一个较大的索引缓冲区，以便它在刷新之前可以接收更多文档。可以将

indices.memory.index_buffer_size 设置为堆大小的 10%，对于像 32 GB 这样较大的堆大小，这通常足

够了。要允许使用完整的索引缓冲区，你还应该限制 index.translog.flush_threshold_size 小于

indices.memory.index_buffer_size。

3. 强制段合并(Force Merge)

如前所述，向量索引构建在每个段上，段越多查询时需要搜索的图就越多，性能越差。建议在批量写入数据后，或在

数据不再频繁更新的索引上，执行强制合并。对于只读索引合并为 1 个 segment：POST /my-

index/_forcemerge?max_num_segments=1。注意：强制合并是一个重资源操作，应在低峰期执行。

设置 preload 提升混合搜索性能

下面是一个典型的前置过滤搜索：

// 前置过滤搜索

GET /my-index/_search

{

 "knn":{

 "field":"title_vector",

 "query_vector": -5 9 -12，... [, ,],

 "k": 10 ,

 "num_candidates": 100,

 "filter":{

 "term":{

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第15 共16页

 "category":"cat"

 }

 }

 }

}

开源 ES 在前置过滤时，会先进行标量过滤，通过倒排链获取全部满足条件的 DocID，然后进行 KNN 查询，每找

到一个相邻的向量就去标量过滤生成的DocID集合中检查是否存在，一直到获取 TOP N 个结果。这种情况下如果

标量过滤结果集很大，比如查询性别为“男”的结果可能有亿级，将导致查询性能的显著下降。

针对混合搜索中前置过滤的性能问题，腾讯云ES自研了预过滤优化，你可以通过设置preload来启用，preload是

动态参数，不需要重新打开索引。

// 预过滤优化

PUT /my-index/_settings

{

 "index.query.knn.optimize_prefilter_enable": "true" // 启用预过滤优

化，提升前置过滤的性能

}

使用 GPU 进行模型推理

向量的生成（Embedding）需要大量的计算，社区版 ES 支持机器学习节点专门用于向量模型推理，但是暂时还

不支持 GPU 推理。

好消息是腾讯云 ES 从 8.16 版本开始已经支持了机器学习节点的 GPU 推理，这可以大大加速向量的推理速度，推

理性能较 CPU 提升 30 倍，同时性价比较 CPU 有超过 10 倍的提升。因此在大规模向量生成的情况下，建议采用

腾讯云 ES 机器学习节点进行 GPU 推理，方法是在购买ES集群时启用机器学习节点，并选择GPU机型，对于存

量集群可以通过调整配置来启用机器学习节点。

特别提示：谨慎使用 script_score 执行向量搜索

// 采用 script_score 进行向量暴力搜索举例

GET /my_index/_search

{

 "query": {

 "script_score": {

 // 1. 定义扫描范围，这里是全表扫描

 "query": "match_all": { {} },

 // 2. 向量计算脚本

 "script": {

Elasticsearch Service

版权所有：腾讯云计算（北京）有限责任公司 第16 共16页

 // 调用内置函数计算余弦相似度

 // doc['title_vector'] 是文档中的向量

 // params.query_vector 是外部传入的查询向量

 // + 1.0 是为了保证得分为正数（余弦相似度范围是 -1 到 1）

 "source": "cosineSimilarity(params.query_vector,

doc['title_vector']) + 1.0",

 "params": {

 "query_vector": 0.12 0.34 -0.55 ...[, , ,]

 }

 }

 }

 },

 "size": 10

}

ES 的 script_score 查询是一项强大的高级功能，在文本搜索场景深受 ES 开发者喜爱，它允许你使用脚本来自

定义文档的评分计算方式，可以结合文本相关性与业务指标来实现复杂的排序逻辑，比如你可以结合用户画像和点击

行为数据来更好的优化排序，以实现更精准的搜索和推荐，这给我们的业务实现带来了很大的灵活性和实用性。

但是当我们把 script_score 用于向量搜索时，它将执行暴力扫描（即使你在索引 mapping 中将索引类型设置为

hnsw），而不是你在索引设置中定义的近似 KNN 搜索，脚本会对范围内的每一个文档，读取其存储的

title_vector 字段值，并调用内置的向量函数（如 cosineSimilarity）与传入的查询向量参数进行计算，向量搜

索性能会急剧下降，因此，除非在小数据集 (<10万) 或必须精确的场景，我们一般不建议将 script_score 用于向

量搜索。

