

流计算 Oceanus 产品简介

【版权声明】

©2013-2025 腾讯云版权所有

本文档(含所有文字、数据、图片等内容)完整的著作权归腾讯云计算(北京)有限责任公司单独所有,未经腾讯云 事先明确书面许可,任何主体不得以任何形式复制、修改、使用、抄袭、传播本文档全部或部分内容。前述行为构成 对腾讯云著作权的侵犯,腾讯云将依法采取措施追究法律责任。

【商标声明】

🥎 腾讯云

及其它腾讯云服务相关的商标均为腾讯云计算(北京)有限责任公司及其关联公司所有。本文档涉及的第三方主体的 商标,依法由权利人所有。未经腾讯云及有关权利人书面许可,任何主体不得以任何方式对前述商标进行使用、复 制、修改、传播、抄录等行为,否则将构成对腾讯云及有关权利人商标权的侵犯,腾讯云将依法采取措施追究法律责 任。

【服务声明】

本文档意在向您介绍腾讯云全部或部分产品、服务的当时的相关概况,部分产品、服务的内容可能不时有所调整。 您所购买的腾讯云产品、服务的种类、服务标准等应由您与腾讯云之间的商业合同约定,除非双方另有约定,否则, 腾讯云对本文档内容不做任何明示或默示的承诺或保证。

【联系我们】

我们致力于为您提供个性化的售前购买咨询服务,及相应的技术售后服务,任何问题请联系 4009100100或 95716。

文档目录

产品简介

产品概述

产品优势

应用场景

第4 共15页

产品简介产品概述

最近更新时间: 2024-10-11 15:19:01

流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。

产品架构

与开源 Apache Flink 对比

一级分类	功能	描述	腾讯 云 Oce anu s	开 源 Fli nk
------	----	----	----------------------------	---------------------

开发调试	数据连接	依托 C 结果数	onnector 连接多种上下游数据服务,快速实现实时数据汇聚及 据落地	支持	不完全支持
		云数据产品	与腾讯云主流数据产品(腾讯云数据仓库 TCHouse、消息队列、数据库、搜索引擎、对象存储等)无缝集成,包括CDW、CES、EMR、CDB、Ckafka、TDMQ、COS 等	支持	不完全支持
		自建数据服务	按需自定义 Connector 对接各类外部数据系统,涵盖云上和 IDC 中的自建服务	支持	支持
	We bID E 开发		bIDE 的方式提供集图形化开发、多语言开发、元数据管理、代码 依赖管理等为一体的一站式开发调试平台	支持	不支持
		低 代 码	图形化实时 ETL 开发	支持	不 支 持
		多语言	涵盖 SQL/Java/Scala 语言	支持	不 支 持
		元 数 据	内置统一元数据管理,支持元数据参数的变量管理	支持	不完全支持
		自 动 DD L	智能感知外部数据连接系统,自动生成数据源和数据汇的建表语句	支持	不支持
		自定义	用户自定义各类型函数,包括 UDF、UDTF 和 UDAF	支持	支持

		函数			
		作 业 调 试	SQL 在线语法检查	支持	不支持
			SQL 在线调试、且调试过程中不影响生产环境	ΣIV	
		外 部 依 赖	程序包管理、外部依赖(如配置文件、依赖库等)的管理和动 态分发	支持	不 支 持
		计算资源	对 JobManager 和 TaskManager 进行细粒度资源配置以 及算子并行度配置	支持	不完全支持
		作 业 版 本	作业和资源历史版本管理,方便进行业务升级开发	支持	不 支 持
	云 API 开 发	云 API 提供了 WebIDE 开发所具备的全部功能接口,通过云 API 可实现业务平台与流计算 Oceanus 的无缝对接		支持	不 支 持
部署运维	作 业 部 署	WebIDE 和云 API 两种方式对作业进行全生命周期部署管理,包括启动、停止、暂停和恢复			不 支 持
	运行监控	可视化	作业所有的运行参数和运行状态,让作业的运行白盒化	支持	不完全支持
		运行参数	可视化正在运行作业的逻辑和参数,如 SQL 语句详情和参数配 置信息	支持	不支持
		运行	可视化作业异常重启、Snapshot 失败、以及 JobManager/TaskManager 的 CPU、内存异常等各类运	支持	不支

	事行状态的事件件		持
指标告警	以 Task 粒度定义动态指标,并以维度聚合(sum、max、min、avg)的方式定义从上下游系统到集群作业的健康运行相关的65+项监控指标,对作业进行全方位监控告警	支持	不完全支持
	监 控 展示作业/JobManager/TaskManager/Task 粒度指标, 指 以及容器 POD 精确的 CPU/内存指标 标	支持	不完全支持
	监 控 基于腾讯云监控,支持为65+项监控指标配置告警规则,并支 告 持 AI 动态阈值告警 警	支持	不 支 持
	以异常日志的采集和聚合分析为切入,智能地诊断分析异常信息,并给出建议的解决方案	支持	不完全支持
智能	异常 将作业运行时产生的异常日志,实时投递到腾讯云日志服务 CLS 集	支持	不 支 持
断	异常 查看作业历史实例异常日志,能够按照实例 ID、进程角色、进检程 ID 进行聚合展示及分级检索索	支持	不 支 持
	异常 基于异常日志的一键诊断功能,迅速分析出作业异常原因,并 给出建议的解决方案 断	支持	不支持
黑窗诊	将实际作业的底层 OOM Dump、JFR、异常日志等异常信息自动地上 传到用户的对象存储服务 COS 中	支持	不 支 持
断	信 作业进程结束后,能提供日志目录下的文件 List 供用户分析, 息 涵盖 OOM Dump、JFR 等文件	支持	不支

		采 集		持
	高可用	SL A 集群的分布式设计无任何单点,全链路监控和快速的故障自愈 保 能力保障3个9的可用性 障	支持	不支持
	资源成本	根据业务实际负载特点,按需分配和使用资源,降低计算资源成本	支持	不 支 持
成本		Aut oS 根据业务负载自动进行扩缩容,保障业务时效性的同时避免资 cali 源浪费 ng	支持	不支持
		细 粒 度 为作业选择细粒度资源(如 0.5 CU/进程),避免资源浪费 资 源	支持	不完全支持
安全	安全隔离	多维度进行资源环境的隔离,确保租户间的数据安全	支持	不完全支持
		空 间 租户独享网络空间、计算资源和存储资源,保证租户间的物理 隔 隔离 离	支持	不完全支持
		进 程 作业进程通过容器部署隔离,保证进程的稳定与安全 隔 离	支持	不完全支持
	访问控制	以腾讯云账号体系和 SAML 联合身份认证机制确保账号安全,并达成细 粒度的权限控制	支持	不 支 持
		账 腾讯云账号体系打通,同时支持 SAML 联合身份认证 号	支持	不完

体系			全支持
细 粒 度 权 限	集群级别、作业级别的细粒度权限管理,满足多人协同开发需 求	支持	不支持

第10 共15页

产品优势

最近更新时间: 2024-08-14 10:51:31

一站开发

以 WebIDE 和云 API 两种方式提供集图形化开发、多语言开发、元数据管理、代码调试、依赖管理、全生命周期部署、运行监控、指标告警、智能诊断、黑盒诊断等为一体的一站式开发运维平台。

无缝连接

无缝对接消息队列、数据库、数据仓库、ES 等腾讯云主流数据产品和开源大数据组件,按需拓展 Connector 对接 其他各类外部数据系统,涵盖云上及 IDC 中的自建服务; 100%兼容 Apache Flink,支持开源 Flink 平滑迁移上 云。

亚秒延时

端到端亚秒级数据处理延迟,单核每秒数十万条记录处理能力,同时支持数万并发超大规模实时任务计算。

低廉成本

业内领先的自研服务器技术,根据业务实际负载分配和使用资源,单核计算每小时低至0.23元,总成本大幅低于 IDC 自建。

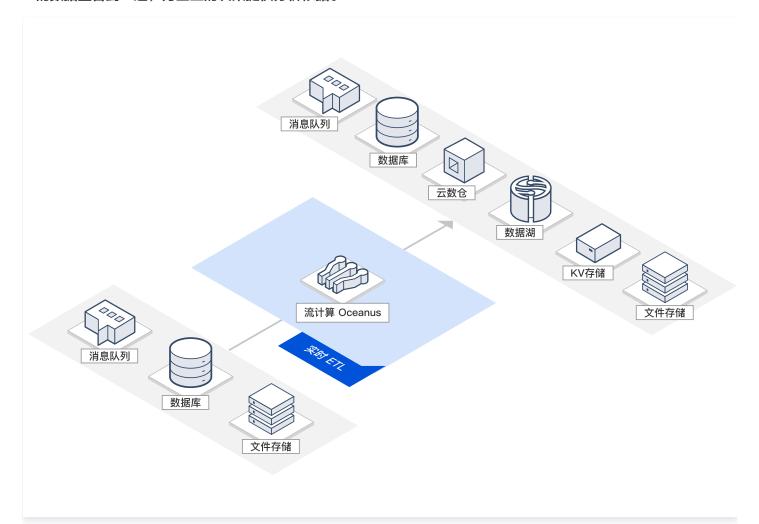
安全稳定

从空间和进程两个维度进行资源环境的隔离,以腾讯云账号体系和 SAML 联合身份认证机制确保账号安全,并达成细粒度的权限控制,全方位确保租户的数据安全,同时提供全链路监控报警及秒级故障自愈机制,保障99.9%的服务可用性。

专家服务

腾讯云专家团队,提供端到端生产解决方案支持及7 × 24小时运维保障服务。

应用场景

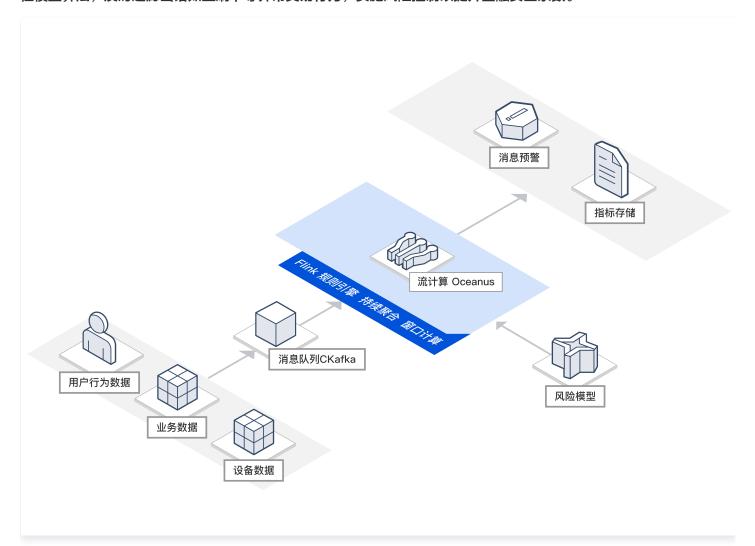

最近更新时间: 2024-12-09 15:35:42

流计算 Oceanus 主要应用于以下场景:

- 异构数据服务间的实时 ETL(抽取、转换、加载)。
- 实时推荐、实时风控、数据库查询加速等。
- 实时数仓、实时大屏、实时报表等。
- 实时监控、实时异常发现和预警等。

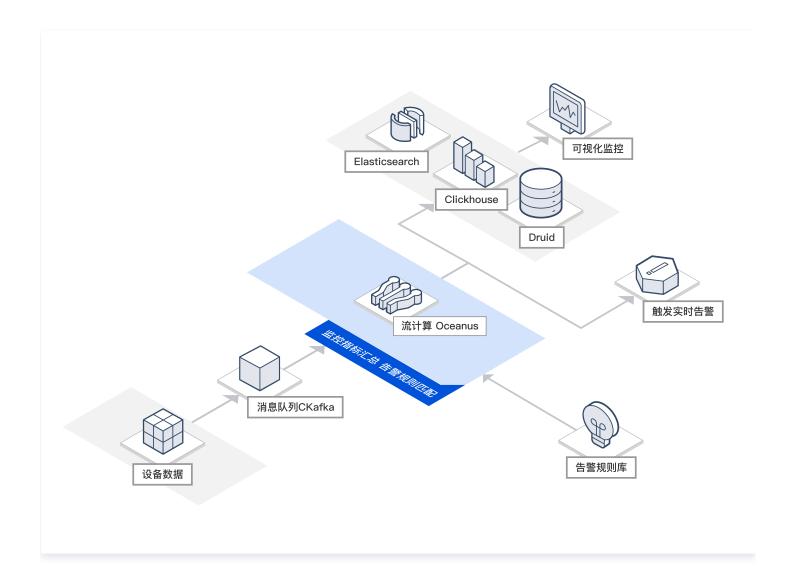
实时 ETL

ETL 是将业务系统的数据经过抽取、清洗转换之后加载到目的端的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。



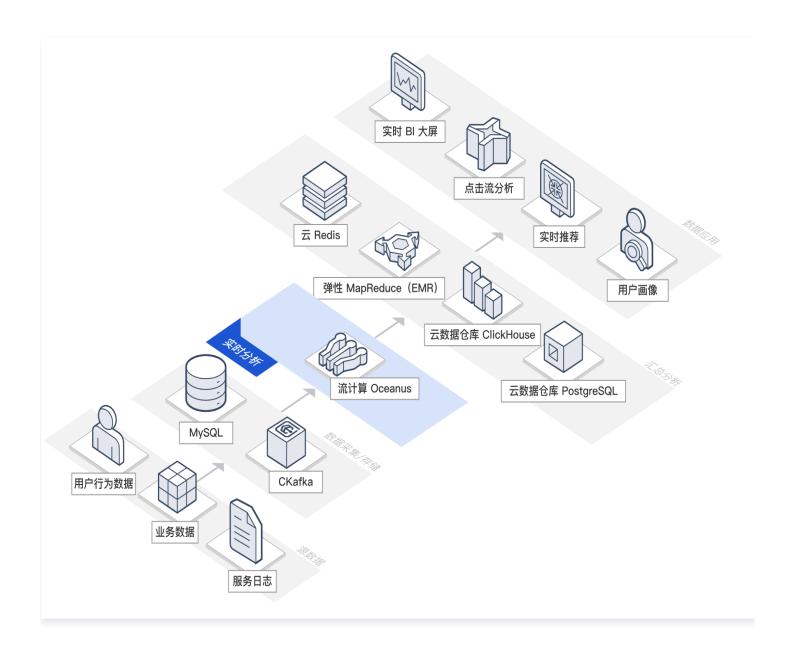
金融实时风控

版权所有:腾讯云计算(北京)有限责任公司 第11 共15页


在金融应用场景中,快速探测到风险能够有效地减少损失,将金融交易大数据与流计算 Oceanus 相结合,引入特征模型算法,及时过滤出诸如盗刷卡等异常交易行为,实施风险控制以提升金融安全系数。

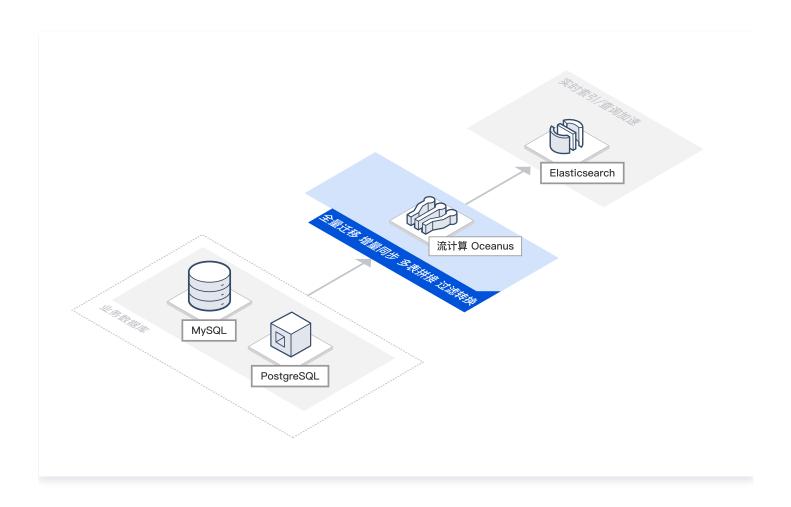
物联网(IoT)监控

在工业设备运转过程中,及早发现潜在故障能够极大地降低生产风险。通过云端流计算 Oceanus,实时汇聚工业 传感器数据,并进行聚合计算和异常分析筛选,便可实现设备的秒级监控和异常告警,保障工业生产的平稳运行。



电商精准推荐

在电商交易场景中,借助于云端流计算 Oceanus,实时提取特征变量及用户关注品类,以预测用户的消费趋势,为精准推荐提供基础能力,从而提升用户购物体验、促进消费行为。



数据库查询加速

关系型数据库在海量数据下容易遇到查询性能不足、可扩展性差的挑战。通过流计算 Oceanus 将数据从关系型数据库实时同步到 ES, 借助 ES 的海量数据高并发低延时查询、SQL、弹性扩展等能力,更好地满足数据库查询加速的需求,弥补传统关系型数据库的不足。

